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Computation, Deduction and Strategies

Series of workshops since 1997

Strategies CADE-IJCAR Reduction Strategies RTA-RDP

Strategies in Rewriting, Proving, and Programming FLoC

This lecture is based on joint work with many people, in particular the
members of the PROTHEO and the PORGY teams. Thanks to all of them!
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Rules... and Strategies

Rules describe local transformations
Rules for computations: unique normal form required
the strategy is fixed
Rules for deductions: no confluence nor termination required
an application strategy is required

Strategies describe the control of rule application

Derivation tree exploration:
strategies are needed to express choices
Strategies describe selected computations
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Strategies are ALWAYS needed

1- In Functional or Logic Programming, Theorem Proving,
Constraint Solving, Formal Specifications, ...

2- To describe the way computation or deduction should be
done

Lazy evaluation
Search plans
Action plans
Tactics
Priorities ...

3- This requires in general to search for a particular
derivation corresponding to the desired strategy.

Hélène KIRCHNER Inria ISR 2014 Strategies 4 / 48



Example - HO rewriting

A non-deterministic strategy for higher-order rewriting: choose an
outermost redex and skip redexes that do no contribute to the normal
form because they are in a cycle [Klop,vOostrom,vRaamsdonk07]

Hélène KIRCHNER Inria ISR 2014 Strategies 5 / 48



Example - in theorem proving

Given two tactics A and B, apply tactic B only if the application of tactic
A has either failed or did not modify the proof (definition of orelse in
LCF)
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Example - constraint programming

/* Strategy : Forward Checking with Choice Point */
/* Value selection : Value enumeration first to last */
/* Number of solutions : All */
(“FCChoicePointFirstToLastAll” [CastroPhd])
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Example - program transformation strategies

In program transformation [VisserJSC05], a strategy can be provided by
a transformation engine or can be user-definable.
Transformation strategies are the control part of transformation
systems that determine the order of application of basic transformation
steps.
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Example - in game theory

Two players W and B with respective rules RW and RB play a game by
rewriting terms in the combined signature. Is there a winning strategy
to reach the normal form? [Dougherty-WRS09]
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Our approach

We are at International School on Rewriting, so we adopt a rewriting
point of view !
This is a meaningful “parti-pris” !

Rules and strategies provide powerful formalism to express and study
uniformly computations and deductions in automated deduction and
reasoning systems.

Strategic rewriting and strategic programs
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Objectives of the lecture

1 Define strategies, strategic rewriting, strategic programs
2 Define semantics of strategies and strategic programs
3 Provide examples of strategy languages and how to write

strategies
4 Explore some properties of strategic programs
5 Identify research topics
6 Provide bibliography
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Contents of the whole lecture
1 Objectives and contents
2 What are strategic rewriting and strategic programming?

I Rewriting point of view: different uses of rules
I Strategic point of view: different uses of strategies
I Focus on term rewriting strategies

3 Strategy Semantics: different points of view
I Rewriting logic
I Rewriting calculus
I Abstract reduction systems
I Properties of strategic rewriting

4 Strategy languages
I Examples of languages
I Common constructs in strategy languages
I Operational semantics of strategic programs
I PORGY

5 Further work: verification techniques,...
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Ingredients of rewriting

The syntactic structure
Words, Terms, Propositions, Logic formulas, Dags,
Graphs, Structured Objects, Segments . . .

The pattern : rule
Expressed with⇒, variables, left-hand side, right-hand
side, condition or constraint

The application mode

match to select a redex (possibly modulo some
axioms, constraints,...)
instantiate variables
replace
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Formally

t rewrites to t ′ using the rule ` : l ⇒ r if

t|p = σ(l) and t ′ = t [σ(r)]p

This is denoted

t −→p,`,σ t ′

The choices: position(s), rule, matching substitution(s).
Rewriting may be concurrent, probabilistic, modulo...
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Matching modulo associativity-commutativity

∪ is assumed to be an associative commutative (AC) symbol:
∀x , y , z, x ∪ (y ∪ z) = (x ∪ y) ∪ z and ∀x , y , x ∪ y = y ∪ x .

{i} ∪ s ⇒ i

{i} ∪ s �AC {1} ∪ {2} ∪ {3} ∪ {4} ∪ {5}

{1} ∪ {2} ∪ {3} ∪ {4} ∪ {5} =AC
{2} ∪ {3} ∪ {4} ∪ {5} ∪ {1} =AC
. . .
{5} ∪ {1} ∪ {2} ∪ {3} ∪ {4}

5 different and non AC-equivalent matches.
The rewrite rule applies in 5 different ways and gives 5 different results
: 1,2,3,4,5.

Hélène KIRCHNER Inria ISR 2014 Strategies 16 / 48



Matching modulo associativity-commutativity

∪ is assumed to be an associative commutative (AC) symbol:
∀x , y , z, x ∪ (y ∪ z) = (x ∪ y) ∪ z and ∀x , y , x ∪ y = y ∪ x .

{i} ∪ s ⇒ i

{i} ∪ s �AC {1} ∪ {2} ∪ {3} ∪ {4} ∪ {5}

{1} ∪ {2} ∪ {3} ∪ {4} ∪ {5} =AC
{2} ∪ {3} ∪ {4} ∪ {5} ∪ {1} =AC
. . .
{5} ∪ {1} ∪ {2} ∪ {3} ∪ {4}

5 different and non AC-equivalent matches.
The rewrite rule applies in 5 different ways and gives 5 different results
: 1,2,3,4,5.

Hélène KIRCHNER Inria ISR 2014 Strategies 16 / 48



Example: Sorting by rewriting

rules for List
X, Y : Nat ; L L’ L’’ : List;
sort (L X L’ Y L’’) => sort (L Y L’ X L’’) if Y < X.
sort L => L .

end

sort (6 5 4 3 2 1) -> ... -> (1 2 3 4 5 6)

sorts NeList List ; subsorts Nat < NeList < List ;
operators

nil : List ;
@ @ : (List List) List [associative id: nil] ;
@ @ : (NeList List) NeList [associative] ;
sort @ : (List) List ;

end
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Example: Lindenmayer’s systems
E.g. http://en.wikipedia.org/wiki/L-system: The Sierpinski triangle

start: A
rules: A=>B-A-B, B=>A+B+A
angle: 60

A →
B-A-B →
A+B+A-B-A-B-A+B+A →
...
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Example: Program Transformation
Refactoring rules in Stratego

rules
InlineF:

let f(xs) = e in e’[f(es)] =>
let f(xs) = e in e’[e[es/xs]]

InlineV:
let x = e in e’[x] => let x = e in e’[e]

Dead:
let x = e in e’ => e’ where <not(in)> (x,e’)

Extract(f,xs):
e => let f(xs) = e in f(xs)

Hoist:
let x = e1 in let f(xs) = e2 in e3 =>
let f(xs) = e2 in let x = e1 in e3
where <not(in)> (x, <free-vars> e2)
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Biochemical rules
Basic rules for the mail delivery system

c
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Example: Biochemical program
A mail system configuration
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Rewrite rules and Strategies

Rewrite rules describe local transformations

Rewrite derivations are computations
Normal forms are the results

Strategies describe the control of rewrite rule application

Strategic rewriting derivations are selected computations

But the strategy is often implicite in algebraic languages: ASF+SDF,
OBJ, Maude,...
and in functional languages: ML, Haskell,...
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Derivation tree

Given a set of rewrite rules R, a derivation , or computation from G is
a sequence of rewriting steps

G→R G′ →R G”→R . . .

The derivation tree of G, written DT (G,R), is a labelled tree
- whose root is labelled by G,
- its children are all the derivation trees DT (Gi ,R) such that G→R Gi .
The edges of the derivation tree are labelled with the rewrite rule and
the morphism used in the corresponding rewrite step.
A derivation tree may be infinite, if there is an infinite reduction
sequence out of G.
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A derivation tree

G1
1

G2
1

φ2
1 // G2

2 . . .

G0
0

φ1
0

BB

φ2
0

99

φn
0

%%

...

Gn
1

φn
1 // . . .

φn
n−2 // Gn

n−1

φn
n−1 // Gn

n
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Strategic programming

Intuitively,

a strategic program consists of an initial structure G (or t when it is
a term), together with a set of rules R that will be used to reduce
it, following the given strategy expression S.
in general, there is more than one way of rewriting a structure, so
the set of rewrite derivations can be organised as a derivation
tree. We need to identify the branches in G’s derivation tree that
satisfy the strategy S.
the strategy expression S is used to decide which rewrite steps
should be performed on G.

Hélène KIRCHNER Inria ISR 2014 Strategies 27 / 48



Strategic programming

A strategic rewrite program consists of a finite set of rewrite rules R,
a strategy expression S (built from R using a strategy language) and a
given structure G.

We denote it [SR,G] , or simply [S,G] when R is clear from the
context.
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Term rewriting (positional) strategies

In first-order term rewriting,
Terms may have normal forms or admit infinite reductions.
Rewriting strategies are efficient ways to compute normal forms.
Strategies are used to determine at each step of a derivation
which is the next redex. Rather than exploring all possible rewrite
sequences from a given term, a rewrite strategy dictates which
sequences must be computed.

Which (computable) strategies are guaranteed to find a normal form
for any term whenever it exists?
[Terese]
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Rewriting strategies on terms

Innermost and outermost reduction
Needed and standard reduction
Reduction under local strategies
Context-sensitive reduction
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Definitions

A strategic term rewriting reduction is a relation S−→ such that
S−→⊆ +−→R

and NF (
S−→) = NF (R) (additional hypothesis for positional term

rewriting strategies).

A strategic term rewriting reduction normalizes the term t if there

is no infinite S−→-rewrite sequence starting from t .
A strategic rewriting reduction is normalizing or complete if it
normalizes every term that has a R-normal form
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Maximal strategies

A maximal multi-step relation
‖−→ is inductively defined as follows:

1 x
‖−→ x for all variables x

2 f (s1, ..., sn)
‖−→ f (t1, ..., tn) if si

‖−→ ti , ∀i ,1 ≤ i ≤ n and f (s1, ..., sn)
is no redex

3 σ(l)
‖−→ τ(r) if l → r ∈ R and σ

‖−→ τ
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Innermost and outermost reduction

R = {f (x ,b)⇒ b; a⇒ b; c ⇒ c}

leftmost outermost f (c,a) −→ f (c,a)

leftmost innermost f (c,a) −→ f (c,a)

maximal outermost f (c,a)
‖−→ f (c,b)

maximal innermost f (c,a)
‖−→ f (c,b)

Hélène KIRCHNER Inria ISR 2014 Strategies 34 / 48



Innermost and outermost reduction
Reminder - definitions

orthogonal: left-linear and no critical pair
overlay: no critical pairs with respect to a non-root position
left-normal:
A term t is left-normal if q ∈ PosV (t) for all positions p,q ∈ Pos(t)
such that p ∈ PosV (t) and p <left q
R is left-normal if all left-hand sides of rules in R are left-normal.

Exercise : Combinatory Logic is left-normal and orthogonal

(K · x) · y → x
((S · x) · y) · z → (x · z) · (y · z)
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Innermost and outermost reduction

(see [Terese] and A. Middledorp’s slides)
Leftmost outermost strategy is normalizing for orthogonal
left-normal TRS
Leftmost outermost strategy is not normalizing in general
([HuetLevy1991])

R = {f (x ,b)⇒ b; a⇒ b; c ⇒ c}

Exercise : f (c,a) has a normal form which is not found by the
leftmost outermost strategy.
Innermost strategy is complete for terminating and non ambiguous
TRS.
Innermost strategy is complete for terminating, right-linear and
overlay TRS [Okamoto&all2003]
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Needed reduction

Needed reduction is interesting for orthogonal term rewriting systems:
combinatory logic, λ-calculus, functional programming ...

Intuition: reductions to normal form contract same redexes (only order
of contraction differs). A needed strategy performs needed steps: do
not contract other redexes to reach result

Let R be a TRS. Let • be a fresh constant and consider the extension
R• = R∪ {• → •}. A redex ∆ in a term t = C[∆] is needed if t = C[•]
has no normal form in R•.

Hélène KIRCHNER Inria ISR 2014 Strategies 37 / 48



Needed reduction

Let R be an orthogonal TRS.

Every reducible term contains a needed redex.
Repeated contraction of needed redexes results in a normal form,
if the term under consideration has a normal form.

Unfortunately
Neededness of a redex is not decidable.
(cf. [Terese, ch.9] for a counter-example)
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Needed redexes

But needed redexes can be computed for some classes of rewrite
systems:

In sequential TRS, every term which is not in normal form
contains a needed redex ([HuetLevy91],[Terese]).
Strong sequentiality is decidable for left-linear TRS.
External redexes (outermost until contracted) are needed.

- Combinatory logic: leftmost-outermost redex external
- λ-calculus: idem
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Reduction under local strategies

Historically, local strategies were used
in eager languages such as Lisp (lazy cons)
in the OBJ family of languages (OBJ, CafeOBJ, Maude,...) to
guide the evaluation (local strategies of functions)
in (lazy) functional programming, via different kinds of syntactic
annotations on the program (strictness annotations, or global and
local annotations).
Haskell allows for syntactic annotations on the arguments of
datatype constructors.
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Strategy annotations

Informally, a strategy annotation is a list of argument positions and
rule names.
The argument positions indicate the next argument to evaluate and the
rule names indicate a rule to apply.

The innermost strategy for a function symbol C corresponds to an
annotation

strat(C) = [1,2, , .., k ,R1,R2, ...Rn]

that indicates that all its arguments should be evaluated from left to
right and that the rules Ri should be tried.
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Example
Rewrite system with non-terminating reduction [Visser01]

imports integers
signature

sorts Int
constructors

Fac : Int -> Int
If :Bool*Int*Int->Int rules

Fac : Fac(x) -> If(Eq(x,0), 1, Mul(x,Fac(Sub(x,1))))
IfT : If(True, x, y) -> x
IfF : If(False, x, y) -> y
IfE : If(p, x, x) -> x

strat(If) = [1,IfT,IfF,2,3,IfE]

declares that only the first argument should be evaluated before
applying rules IfT and IfF.
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Strategy annotation definitions

A strategy annotation for function symbol f is a finite list A(f )
containing
- argument positions of f
- (labels of) rewrite rules for f .
A strategy annotation A(f ) for function symbol f is full if A(f )
contains all argument positions of f and all rewrite rules for f .
A strategy annotation A(f ) for function symbol f is in-time if
argument positions are listed in A(f ) before rewrite rules that need
them.
A rewrite rule f (s1, ..., sn)→ t needs argument position i if
- si is non-variable
- si is variable that appears in s1, ..., si−1, si+1, ..., sn.
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Just-in-time strategies

Strategy annotations for functions:

For any full and in-time strategy annotation A, any term t , if
leftmost innermost strategy normalizes t then the corresponding
SA−→ normalizes t .

If all argument positions and all rules for a function are mentioned
in the annotation, it can be guaranteed that a normal form is
reached.

The just-in-time strategy is a permutation of argument positions and
rules in which rules are applied as early as possible.
See JITty: http://www.cwi.nl/~vdpol/jitty/
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Context-sensitive reduction

Context-sensitive rewriting (CSR) is a rewriting restriction which can
be associated to every term rewriting system (TRS) [Lucas98].

Given a signature F , a mapping µ : F 7→ P(N), called the
replacement map , discriminates some argument positions
µ(f ) ⊆ {1, ..., k} for each k -ary symbol f .
Given a function call f (t1, ..., tk ), the replacements are allowed on
arguments ti such that i ∈ µ(f ) and are forbidden for the other
argument positions.
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Example
[Lucas2001]

sel(0, x : y)→ x
sel(s(x), y : z)→ sel(x , z)
from(x)→ x : from(s(x))
first(0, x)→ []
first(s(x), y : z)→ y : first(x , z)

µ(s) = µ(:) = µ(from) = 1
µ(sel) = µ(first) = {1,2}

Context-sensitive rewriting derivation:

sel(s(0), from(s(0))) → sel(s(0),s(0):from(s(s(0)))) →
sel(0, from(s(s(0)))) → sel(0,s(s(0)):from(s(s(0)))) → s(s(0))

Infinite derivation avoided:

sel(s(0), from(s(0))) → sel(s(0), s(0) : from(s(s(0))))
→ sel(s(0), s(0) : s(s(0)) : from(s(s(s(0))))) → . . .
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Context-sensitive reduction

Sufficient conditions to ensure that CSR is still able to compute head-
normal forms and values have been established in [[Lucas98].
The canonical replacement map (denoted by µcan) specifies the most
restrictive replacement map which can be (automatically) associated to
a TRS R in order to achieve completeness of context-sensitive
computations.

Left-linear, confluent, and µcan-terminating TRS admit a
computable normalizing strategy.
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Context-sensitive reduction

Exercise : With the replacement map µ in previous Example, show
that every term t having a value sn(0) for some n ≥ 0 can be evaluated
using CSR.
Compare with:

µcan(first) = µcan(sel) = 1,2
µcan(s) = µcan(:) = µcan(from) = ∅

Hélène KIRCHNER Inria ISR 2014 Strategies 48 / 48


