
ISR 2014
Strategies

Hélène KIRCHNER
Inria

August 2014

Strategy languages : Examples

Hélène KIRCHNER Inria ISR 2014 Strategies 1 / 63

Strategy language

A strategy language gives syntactic means to describe strategies.
Several attempts:

ELAN, Stratego, Strafunski, TOM, Maude, PORGY...

Two main purposes:

build derivation step and derivations
operationaly compute the next acceptable strategic steps.

Hélène KIRCHNER Inria ISR 2014 Strategies 2 / 63

Strategy language

A strategy language gives syntactic means to describe strategies.
Several attempts:

ELAN, Stratego, Strafunski, TOM, Maude, PORGY...

Two main purposes:

build derivation step and derivations
operationaly compute the next acceptable strategic steps.

Hélène KIRCHNER Inria ISR 2014 Strategies 2 / 63

Languages references

OBJ3, CafeOBJ, Maude
Elan, Tom
ASF+SDF, Stratego, Strafunski
Porgy

Hélène KIRCHNER Inria ISR 2014 Strategies 3 / 63

Elan

http://elan.loria.fr/elan.html
The ELAN system provides an environment for specifying and
prototyping deduction systems in a language based on rewrite rules
controlled by strategies. It offers a natural and simple logical framework
for the combination of the computation and deduction paradigms as it
is backed up by the concepts of rewriting calculus and rewriting logic. It
permits to support the design of theorem provers, logic programming
languages, constraint solvers and decision procedures and to offer a
modular framework for studying their combination.

Hélène KIRCHNER Inria ISR 2014 Strategies 4 / 63

http://elan.loria.fr/elan.html

Tom

https://gforge.inria.fr/projects/tom/
Tom is a programming language particularly well-suited for
programming various transformations on tree structures and XML
based documents. Tom is a language extension which adds new
matching primitives to C and Java as well as support for rewrite rules
systems. The rules can be controlled using a strategy language.
Tom is good for:
programming by pattern matching
developing compilers and DSL
transforming XML documents
implementing rule based systems
describing algebraic transformations

Hélène KIRCHNER Inria ISR 2014 Strategies 5 / 63

https://gforge.inria.fr/projects/tom/

Stratego

http://strategoxt.org/Stratego/WebHome
Stratego/XT is a language and toolset for program transformation. The
Stratego language provides rewrite rules for expressing basic
transformations, programmable rewriting strategies for controlling the
application of rules, concrete syntax for expressing the patterns of
rules in the syntax of the object language, and dynamic rewrite rules
for expressing context-sensitive transformations, thus supporting the
development of transformation components at a high level of
abstraction. The XT toolset offers a collection of extensible, reusable
transformation tools, such as powerful parser and pretty-printer
generators and grammar engineering tools. Stratego/XT supports the
development of program transformation infrastructure, domain-specific
languages, compilers, program generators, and a wide range of
meta-programming tasks.

Hélène KIRCHNER Inria ISR 2014 Strategies 6 / 63

http://strategoxt.org/Stratego/WebHome

Maude
http://maude.cs.uiuc.edu/
Maude is a high-performance reflective language and system
supporting both equational and rewriting logic specification and
programming for a wide range of applications. Maude has been
influenced in important ways by the OBJ3 language, which can be
regarded as an equational logic sublanguage. Besides supporting
equational specification and programming, Maude also supports
rewriting logic computation.
Maude supports in a systematic and efficient way logical reflection.
This makes Maude remarkably extensible and powerful, supports an
extensible algebra of module composition operations, and allows many
advanced metaprogramming and metalanguage applications. Indeed,
some of the most interesting applications of Maude are metalanguage
applications, in which Maude is used to create executable
environments for different logics, theorem provers, languages, and
models of computation.

Hélène KIRCHNER Inria ISR 2014 Strategies 7 / 63

http://maude.cs.uiuc.edu/

Porgy

tulip.labri.fr/TulipDrupal/?q=porgy
PORGY aims at designing relevant graphical representations and
adequate interactions on dynamic graphs emerging from graph
rewriting systems. Graph rewriting systems appear as a powerful
formalism to capture and study phenomena occurring in complex
systems, such as the evolution of bio-molecular networks, adhoc
communication networks or interaction nets. The ability to act on the
simulation of the rewriting calculus will offer the expert a unique mean
of interacting with the systems they design and study, turning
interactive visualisation of graph rewriting systems into a high-level
visual programming environment.

Hélène KIRCHNER Inria ISR 2014 Strategies 8 / 63

tulip.labri.fr/TulipDrupal/?q=porgy

ISR 2014
Strategies

Hélène KIRCHNER
Inria

August 2014

Strategy languages : Constructs

Hélène KIRCHNER Inria ISR 2014 Strategies 9 / 63

Strategy language

Notation:
t or G denotes a syntactic expression (term, graph,...)
S is a strategy expression in a strategy language on a rewrite rule
system R
Application of S to G is denoted S•G.
Elementary strategies

Identity , Failure
Id and Fail are two constant strategies that respectively denote
cess and failure.
Rule l ⇒ r
A (labelled) rule R is a strategy.

Hélène KIRCHNER Inria ISR 2014 Strategies 10 / 63

Strategy language

Application of rules
Select one match
If a rule R has several possible applications (due to several
matchings for instance), One(R) non-deterministically computes
only one of them and ignore the others.
Apply all :
If a rule R has several possible applications All(R) applies R in all
possible ways, giving different branches.
Parallel application :
R1 ‖ R2 applies rules R1 and R2 at disjoint positions.
(generalized to R1 ‖ . . . ‖ Rn)

Hélène KIRCHNER Inria ISR 2014 Strategies 11 / 63

Strategy language

Application of rules
Probabilistic application :
When probabilities p1, . . . ,pn ∈ [0,1] are associated to rules
R1, . . . ,Rn such that p1 + . . .+ pn = 1, the strategy
ppick(R1,p1, . . . ,Rn,pn) picks one of the rules for application,
according to the given probabilities.
Don’t care:
In ELAN, the construct dc(R1, . . . ,Rn) non-deterministically
chooses one of the rules for application (with an equiprobability).

Hélène KIRCHNER Inria ISR 2014 Strategies 12 / 63

Strategy language

Building derivations
Composition : Sequence(S1,S2) or seq(S1,S2) or S1 Then S2 or
S1 ; S2
applies S1 then S2.

Hélène KIRCHNER Inria ISR 2014 Strategies 13 / 63

Strategy language

Choices (selection of branches in the derivation tree)

First(S1,S2) or (S1)orelse(S2) or S1 <
+ S2

selects the first strategy that does not fail; it fails if both fail
Try(S) tries the strategy S but never fails

Try(S) = First(S, Id)

One(S) selects one possible application of the strategy S
One(S1, . . . ,Sn) selects one possible application of one strategy.
Probabilistic choice ppick(S1,p1, . . . ,Sn,pn)
When probabilities p1, . . . ,pn ∈ [0,1] are associated to strategies
S1, . . . ,Sn such that p1 + . . .+ pn = 1, ppick(S1,p1, . . . ,Sn,pn)
picks one of the strategies for application, according to the given
probabilities.

Hélène KIRCHNER Inria ISR 2014 Strategies 14 / 63

Strategy language

Conditionals and Tests

If − Then − Else
if(S)then(S′)else(S′′) checks if application of S returns Id, in
which case S′ is applied, otherwise S′′ is applied
Match
In Maude, match(S) matches the term S to t and returns t if
success or Fail otherwise.
Not
not(S) , if(S)then(Fail)else(Id)
fails if S succeeds and succeeds if S fails.

Hélène KIRCHNER Inria ISR 2014 Strategies 15 / 63

Strategy language

Exploiting the structure of objects: terms

On a term t , AllSuc(S) applies the strategy S on all immediate
subterms:

AllSuc(S)•f (t1, ..., tn) = f (t ′1, ..., t
′
n)

if S•t1 = t ′1, ...,S•tn = t ′n; it fails if there exists i such that S•ti fails.

On a term t , OneSuc(S) applies the strategy S on the first
immediate subterm (if it exists) where S does not fail:

OneSuc(S)•f (t1, ..., tn) = f (t1, ..., t ′i , ..., tn)

if for all 1 ≤ j < i , S•tj fails, and S•ti = t ′i ;

it fails if f is a constant or if for all i , S•ti fails.

Hélène KIRCHNER Inria ISR 2014 Strategies 16 / 63

Strategy language

Exploiting the structure of objects: graphs

On a graph G, AllNbg(S) applies the strategy S on all immediate
successors of the nodes in G, where an immediate successor of a
node v is a node connected to v .
OneNbg(S) applies the strategy S on one immediate successor of
a node in G, chosen non-deterministically.

Hélène KIRCHNER Inria ISR 2014 Strategies 17 / 63

Strategy language

Recursive strategies and iterations

Fixpoint: µx .S = S[x ← µx .S]

Repeat: Repeat(S) keeps on sequentially applying S until it fails
and returns the last result

Repeat(S) = µx .First(Sequence(S, x), Identity)

While:
while(S)do(S′) keeps on sequentially applying S′ while the
expression S is successful; if S fails, then Id is returned.

Hélène KIRCHNER Inria ISR 2014 Strategies 18 / 63

Strategy language

Traversal strategies(Tom)

OnceBottomUp(S) = µx .First(OneSuc(x),S)
BottomUp(S) = µx .Sequence(AllSuc(x),S)
TopDown(S) = µx .Sequence(S,AllSuc(x))
Innermost(S) = µx .Sequence(AllSuc(x),Try(Sequence(S, x)))

Hélène KIRCHNER Inria ISR 2014 Strategies 19 / 63

Strategy language

Recursive closure strategies (Stratego [Visser01])
The recursive closure recx(S) of the strategy S attempts to apply S to
the entire subject term and the strategy recx(S) to each occurrence of
the variable x in S.

try(S) = S <+ id
repeat(S) = recx(try(S; x))
while(c,S) = recx(try(c;S; x))
do − while(S, c) = recx(S; try(c; x))
while − not(c,S) = recx(c <+ S; x)
for(i , c,S) = i ;while − not(c,S)

Hélène KIRCHNER Inria ISR 2014 Strategies 20 / 63

Exercise : KB completion

[Delete] (E U s=s ; R) => (E ; R)
[Compose] (E ; R U s->t) => (E ; R U s->u)

if reduce(t->u)
[Simplify] (E U s=t ; R) => (E U s=u ; R)

if reduce(t->u)
[Orient] (E U s=t ; R) => (E ; R U s->t)

if s > t
[Collapse] (E ; R U s->t) => (E U u=t ; R)

if reduce(s->u)
[Deduce] (E ; R) => (E U s=t ; R)

if s=t in CP(R)

Hélène KIRCHNER Inria ISR 2014 Strategies 21 / 63

Exercise : KB completion

completion =>
repeat(repeat(repeat(Collapse);

repeat(Compose) ;
repeat(Simplify) ;
repeat(Delete) ;
repeat(Orient)) ;

Deduce)

Hélène KIRCHNER Inria ISR 2014 Strategies 22 / 63

Exercise : Propositional formulas

module prop-laws
imports libstrategolib prop
rules

DefI : Impl(x, y) -> Or(Not(x), y)
DefE : Eq(x, y) -> And(Impl(x, y), Impl(y, x))

DN : Not(Not(x)) -> x

DMA : Not(And(x, y)) -> Or(Not(x), Not(y))
DMO : Not(Or(x, y)) -> And(Not(x), Not(y))

DAOL : And(Or(x, y), z) -> Or(And(x, z), And(y, z))
DAOR : And(z, Or(x, y)) -> Or(And(z, x), And(z, y))

DOAL : Or(And(x, y), z) -> And(Or(x, z), Or(y, z))
DOAR : Or(z, And(x, y)) -> And(Or(z, x), Or(z, y))

Hélène KIRCHNER Inria ISR 2014 Strategies 23 / 63

Exercise : Propositional formulas

strategies

nf = innermost (
DefI <+ DefE <+ DAOL <+ DAOR <+ DN <+ DMA <+ DMO

)

Hélène KIRCHNER Inria ISR 2014 Strategies 24 / 63

ISR 2014
Strategies

Hélène KIRCHNER
Inria

August 2014

Operational semantics of strategic programs

Hélène KIRCHNER Inria ISR 2014 Strategies 25 / 63

Strategic programming

A strategic rewrite program consists of a finite set of rewrite rules R,
a strategy expression S (built from R using a strategy language L(R))
and a given structure G.

A configuration C is a multiset {O1, . . . ,On} where each Oi is a
strategic program [S′,G′].

C0 = {[S,G]} ∗−→ . . .
∗−→ Ck = {...[S′k ,G′k]...}

Let Reach([S,G],Ck) the set of all intermediate generated structures
G′ occurring in C0, . . . ,Ck .

Hélène KIRCHNER Inria ISR 2014 Strategies 26 / 63

Correctness and Completeness

w.r.t. rewriting derivations

L(R) strategy language, S ∈ L(R)
C0 = {[S,G]} ∗−→ . . .

∗−→ Ck = {...[S′k ,G′k]...}

Correctness:
If C0 = {[S,G]} ∗−→ . . .

∗−→ Ck = {...[S′k ,G′k]...}
and if G′ ∈ Reach([S,G],Ck), then G→∗R G′.
Completeness:
If G→∗R G′, there exists S ∈ L(R) such that
C0 = {[S,G]} ∗−→ . . .

∗−→ Ck = {...[S′k ,G′k]...}
and G′ ∈ Reach([S,G],Ck).

Hélène KIRCHNER Inria ISR 2014 Strategies 27 / 63

Correctness and Completeness

w.r.t. semantics

L(R) strategy language, S ∈ L(R)
C0 = {[S,G]} ∗−→ . . .

∗−→ Ck = {...[S′k ,G′k]...}
JSK•G is a set of derivations

Correctness:
If C0 = {[S,G]} ∗−→ . . .

∗−→ Ck = {...[S′k ,G′k]...}
and if G′ ∈ Reach([S,G],Ck), then G→∗R G′ ∈ JSK•G.

Completeness:
If G→∗R G′ ∈ JSK•G, there exists S ∈ L(R) such that

C0 = {[S,G]} ∗−→ . . .
∗−→ Ck = {...[S′k ,G′k]...}

and G′ ∈ Reach([S,G],Ck).

Hélène KIRCHNER Inria ISR 2014 Strategies 28 / 63

Operational semantics

Given a strategic graph program [SR,G], transitions are
performed, according to the strategy S, starting from the initial
configuration {[S,G]}.
A result is of the form [Id,G] or [Fail,G].

A strategic graph program [S,G] is (strongly) terminating if there
is no infinite transition sequence out of the initial configuration
{[S,G]}, otherwise it is non-terminating.
It is weakly terminating if we can reach a configuration having at
least one result.

Hélène KIRCHNER Inria ISR 2014 Strategies 29 / 63

Operational semantics

Given a strategic graph program [S,G],
- A configuration is terminal if no transition can be performed from it.
- The result set associated to a sequence of transitions out of the
initial configuration {[S,G]} is the set of all the results in the
configurations in the sequence.
- If the sequence of transitions out of the initial configuration {[S,G]}
ends in a terminal configuration, then the result set of the sequence is
a complete result set for the program {[S,G]}.
- If a strategic graph program does not reach a terminal configuration
(in case of non-termination) then the complete result set is undefined
(⊥).

Hélène KIRCHNER Inria ISR 2014 Strategies 30 / 63

Operational semantics

The transition relation −→ is a binary relation on configurations defined
as follows:

{O1, . . . ,Ok ,V1, . . . ,Vj} −→ {O′11, . . . ,O
′
1m1

, . . . ,O′kmk
,V1, . . . ,Vj}

if Oi → {O′i1, . . . ,O′imi
}, for 1 ≤ i ≤ k , where k ≥ 1 and some of the O′ij

might be results.

Hélène KIRCHNER Inria ISR 2014 Strategies 31 / 63

Operational semantics

G′ ∈ LSl⇒r (G)
[one(l ⇒ r),G]→ {[Id,G′]}

where LS is the legal set of reducts

LSl⇒r (G) = ∅
[one(l ⇒ r),G]→ {[Fail,G]]}

Hélène KIRCHNER Inria ISR 2014 Strategies 32 / 63

Operational semantics

[Id;S,G]→ {[S,G]}

[Fail;S,G]→ {[Fail,G]}

[S1,G]→ {[S1
1 ,G1], . . . , [Sk

1 ,Gk]}

[S1;S2,G]→ {[S1
1 ;S2,G1], . . . , [Sk

1 ;S2,Gk]}

Hélène KIRCHNER Inria ISR 2014 Strategies 33 / 63

Operational semantics

∃G′,M s.t . {[S1,G]} −→∗ {[Id,G′],M}

[if(S1)then(S2)else(S3),G]→ {[S2,G]}

6 ∃G′,M s.t . {[S1,G]} −→∗ {[Id,G′],M}

[if(S1)then(S2)else(S3),G]→ {[S3,G]}

Hélène KIRCHNER Inria ISR 2014 Strategies 34 / 63

Operational semantics

Semantics of while/repeat loops:

[while(S1)do(S2),GQ
P]→

{[if(S1)then(S2;while(S1)do(S2))else(Id),G]}

Hélène KIRCHNER Inria ISR 2014 Strategies 35 / 63

Termination

Strategic programs are not terminating in general, however it may be
suitable to identify a terminating sublanguage (i.e. a sublanguage for
which the transition relation is terminating)
Pb: characterise the strategic programs that yield terminal
configurations.

Termination property:
The sublanguage that excludes iterators (such as the while/repeat
construct) is strongly terminating.

Lemma:
If [S1,G] is strongly terminating and S2 is such that [S2,G′] is strongly
terminating for any G′, then [S1;S2,G] is strongly terminating.

Hélène KIRCHNER Inria ISR 2014 Strategies 36 / 63

Properties to prove

Progress property: Characterisation of Terminal
Configurations
For every strategic graph program [S,G] that is not a result (i.e.,
S 6= Id and S 6= Fail), there exists a configuration C such that
{[S,G]} → C.

Uniqueness/ Determinism property:
Il the language contains only non-deterministic operators
(excluding One for instance):
every strategic graph program has at most one result set.

Computational Completeness property:
The set of all strategic programs [SR,G] is Turing complete, i.e.
can simulate any Turing machine. (Sequential composition and
iteration are enough [HaberPlump2001])

Hélène KIRCHNER Inria ISR 2014 Strategies 37 / 63

ISR 2014
Strategies

Hélène KIRCHNER
Inria

August 2014

PORGY

Hélène KIRCHNER Inria ISR 2014 Strategies 38 / 63

Graph rewriting strategies
PORGY strategy language

Goal: to facilitate the specification, analysis and simulation of complex
systems, using port graphs.

A system is represented by
- an initial graph,
- a collection of graph rewriting rules,
- a user-defined strategy to control the application of rules.

The strategy language includes constructs to deal with graph traversal
and management of rewriting positions in the graph.

Hélène KIRCHNER Inria ISR 2014 Strategies 39 / 63

PORGY Overview

(1) one state of the graph (2) a rule; (3) all rules; (4) derivation tree; (5) the
strategy editor

Hélène KIRCHNER Inria ISR 2014 Strategies 40 / 63

Graph rewriting strategies
PORGY strategy language

Specific case of positions
Where to apply a rule in a graph?
Top-down or bottom-up traversals do not make sense.
Need for a strategy language which includes operators to select
rules and the positions where the rules are applied, and also to
change the positions along the derivation.

Hélène KIRCHNER Inria ISR 2014 Strategies 41 / 63

Graph rewriting strategies

PORGY solution (Porgy2011):
A located graph GQ

P consists of a graph G, a subgraph P of G called
the position subgraph and a subgraph Q of G called the banned
subgraph.

Rewriting must take place fully or partially in P.
No rewriting can happen fully or partially in Q.

Hélène KIRCHNER Inria ISR 2014 Strategies 42 / 63

Graph rewriting strategies
New constructs

A strategy expression combines

applications of located rewrite rules, generated by the
non-terminal A,
position updates, generated by the non-terminal U,
focusing expressions generated by F .

Hélène KIRCHNER Inria ISR 2014 Strategies 43 / 63

PORGY Strategy language
Usual constructs

Let L,R be port graphs; M,N positions; n ∈ N;

πi=1...n ∈ [0,1];
n∑

i=1
πi = 1

S ::= A | U | S;S | repeat(S) | while(S)do(S)
| (S)orelse(S) | if(S)then(S)else(S)
| ppick(S1, π1, . . . ,Sn, πn)

A ::= Id | Fail | allT | oneT
T ::= LW ⇒ RN

M | (T ‖ T)

Hélène KIRCHNER Inria ISR 2014 Strategies 44 / 63

Graph rewriting strategies
New constructs

Focusing Strategies
U ::= setPos(F) | setBan(F) | isEmpty(F)
F := CrtGraph | CrtPos | CrtBan | AllNbg(F)

| OneNbg(F) | NextNbg(F) | Property(ρ,F)
| F ∪ F | F ∩ F | F \ F | ∅

Hélène KIRCHNER Inria ISR 2014 Strategies 45 / 63

Graph rewriting strategies
New constructs

Properties
Let attribute be an attribute label; a a valid value for the given attribute
label;
function-name the name of a built-in or user-defined function.

ρ := (Elem,Expr)|(Function, function-name)
Elem := Node | Edge | Port
Expr := Label == a | Label != a | attribute Relop attribute

| attribute Relop a
Relop := == | != | > | < | >= | <=

Hélène KIRCHNER Inria ISR 2014 Strategies 46 / 63

Outermost rewriting on trees

start , Property((Function,Root),CrtGraph) selects the subgraph
containing just the root of the tree.
The next ports for each node are defined to be the ones that connect
with their children.

The strategy for outermost rewriting with a rule R is:
setPos(start);
while(not(isEmpty(CrtPos)))do(
if(R)then(R;setPos(start))else(setPos(AllNbg(CrtPos))))

Hélène KIRCHNER Inria ISR 2014 Strategies 47 / 63

Innermost rewriting on trees

start , Property((Function,Leaf),CrtGraph) selects the leaves of
the tree
rest , CrtGraph \ start
For each node, the next port connects with the parent node.

setPos(start); setBan(rest);
while(not(isEmpty(CrtPos)))do(
if(R)then(R ; setPos(start) ; setBan(rest))else(
setPos(AllNbg(CrtPos)) ; setBan(CrtBan\ CrtPos)))

Hélène KIRCHNER Inria ISR 2014 Strategies 48 / 63

Sorting Exercise: french flag

Sort a list of three colours (Blue, Red and White) to represent the
French flag (Blue first, then White and finally Red)

- three port nodes representing each colour that have two ports each:
a previous port (to the left of the node) and a next port (to the right of
the node).
- a Mast port node at the beginning of the list
- three rules to swap two colours if they are in the wrong order.

Hélène KIRCHNER Inria ISR 2014 Strategies 49 / 63

Sorting Exercise: french flag
- the list to sort (top left)
- the three flag sorting rules white1 (bottom right), red1 (top right) and
red2 (bottom left) in Porgy

Hélène KIRCHNER Inria ISR 2014 Strategies 50 / 63

Sorting Exercise: french flag

Define:
swap , ((white1)orelse(red1))orelse(red2)
backToMast , Property((Node,mast),CrtGraph)
Strategy:

setPos(backToMast);
while(not(isEmpty(CrtPos)))do(
if(swap)then(

swap;
setPos(backToMast)

)else(
setPos(AllNbg(CrtPos)))

)

Hélène KIRCHNER Inria ISR 2014 Strategies 51 / 63

Sorting Exercise: french flag

Write a strategy to test if the list is correctly sorted.

Hint: From the begining of the list, the strategy traverses all nodes with
the corresponding color. It fails on the first node of the wrong color.
Define:
CheckXNodes ,

if(isEmpty(Property((Node, Colour=X),CrtPos)))
then(

Fail);
setPos(NextNbg(CrtPos));
while(not(isEmpty(Property((Node,

Colour=X),CrtPos))))do(
setPos(NextNbg(CrtPos)));

where X defines the color to check.

Hélène KIRCHNER Inria ISR 2014 Strategies 52 / 63

Sorting Exercise: french flag

Strategy:
setPos(backToMast);
setPos(NextNbg(CrtPos));

CheckBlueNodes;
CheckWhiteNodes;
CheckRedNodes;
CheckEnd

where CheckEnd checks if the list is terminated, i.e. the current
position set is empty:

if(not(isEmpty(CrtPos))) then(
Fail)

Hélène KIRCHNER Inria ISR 2014 Strategies 53 / 63

Graph testing exercise

Test if a graph is connected. If not, the strategy ends on a failure.

Hint: Assuming that in the initial graph all nodes have the Boolean
attribute state set to false, we need just one rewriting rule, which
simply sets state to true on a node.
The strategy pick-one-node selects a node n, non-deterministically, as
a starting point. The current position set is set to all neighbours of n.
Then, the rule is applied as long as possible. If the rule cannot be
applied, the position subgraph is set to all neighbours of its nodes
which are not already tagged (visit-neighbours-at-any-distance). When
there is no more nodes in the position subgraph, if the rule can still be
applied, there is another connected component in the graph, so the
strategy ends on a failure (check-all-nodes-visited).

Hélène KIRCHNER Inria ISR 2014 Strategies 54 / 63

Graph testing exercise

pick-one-node:
setPos(CrtGraph);
oneR;
setPos(Property((Node, state==true,CrtGraph));

visit-neighbours-at-any-distance:
setPos(AllNbg(CrtPos));
while(not(isEmpty(CrtPos)))do(
if(R)then(R)else(
setPos(AllNbg(CrtPos) \ Property((Node,

state==true),CrtGraph))
));

check-all-nodes-visited:
setPos(CrtGraph);
if(R) then(Fail)

Hélène KIRCHNER Inria ISR 2014 Strategies 55 / 63

ISR 2014
Strategies

Hélène KIRCHNER
Inria

August 2014

Verification - Open problems

Hélène KIRCHNER Inria ISR 2014 Strategies 56 / 63

ARS versus other formalisms

ARS coincide mathematically with STS - state transition systems

Comparison with other formalisms:
- labeled transition systems LTS
- Kripke structures KS
- Buchi automata BA
- Petri Nets PN
- Concurrent Game Structure CGS

STS differ however from finite state automata in several ways:
- In STS, the set of states and the set of transitions are not necessarily
finite, or even countable.
- A finite-state automaton distinguishes a special "start" state and a set
of special "final" states.

Hélène KIRCHNER Inria ISR 2014 Strategies 57 / 63

Labeled transition systems

In LTS, a labeling function maps each state to the set of atomic
propositions that are true in this state.

One can define:
trace equivalence
simulation
bisimilarity

Hélène KIRCHNER Inria ISR 2014 Strategies 58 / 63

Concurrent Game Structure

CGSs provides a generalization of labeled transition systems,
modeling multi-agent systems, viewed as multi-player games in which
players perform concurrent actions, chosen strategically as a function
of the history of the game. [MogaveroMV-FSTTCS10]

A strategy is a plan for an agent that contains all choices of moves as a
function of the history of the current outcome.

Hélène KIRCHNER Inria ISR 2014 Strategies 59 / 63

Concurrent Game Structure

[MogaveroMV-FSTTCS10]
A Concurrent Game Structure (CGS)

G = 〈AP,Ag,Ac,St , λ, τ, s0〉

- AP finite non-empty set of atomic propositions
- Ag finite non-empty set of agents
- Ac enumerable non-empty set of actions
- St enumerable non-empty set of states, s0 ∈ St initial state
- λ : St 7→ 2AP labeling function that maps each state to the set of
atomic propositions that are true in this state.
- Decisions or action profiles Dc = AcAg are functions representing the
choices of an action for each agent.
- τ : St × Dc 7→ St is the transition function

Hélène KIRCHNER Inria ISR 2014 Strategies 60 / 63

Concurrent Game Structure

Tracks and paths are legal sequences (resp. finite and infinite) of
reachable states in G that can be seen as possible outcomes of
the game modeled by G.
Let Trk ⊆ ST+ and Pth ⊆ STω be the sets of non-trivial tracks and
paths.
A strategy is a partial function f : Trk → Ac, non associated to
any particular agent, mapping each non-trivial track in its domain
to an action.
A play is the outcome of a game determined by all the agent
strategies participating to the game.

Hélène KIRCHNER Inria ISR 2014 Strategies 61 / 63

Concurrent Game Structure

[MogaveroMV-FSTTCS10]
Strategy Logic SL extends LTL with existential and universal strategy
quantifiers an agent binding (a, x) meaning “bind agent a to the
strategy associated with variable x”.

In SL the model checking problem is decidable (2ExpTime complete)

Hélène KIRCHNER Inria ISR 2014 Strategies 62 / 63

Conclusion

Further topics:
Game theory for strategies
Proving properties of strategies and strategic reductions
Strategies for autonomic computing and runtime verification

Hélène KIRCHNER Inria ISR 2014 Strategies 63 / 63

