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Information Science and Rewriting

Information science and technology address

data representation

data transformation

What about Rewriting in this context ?

data are terms or more generally structured objects

this is a way to describe transformations of these objects

it allows formalizing and analysing the relations between these

objects
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What can you do with Rewriting ?

Can rewriting be used

for formal specifications ?

functional or algebraic framework, express and check properties

of specifications.

as a programming langage ?

high-level, type discipline, prototyping, efficient compilation

in a proof environnement ?

equality in first-order theories, computational part of proofs, as a

logic and a higher-order calculus.
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1 A smooth introduction

2 Defining term rewriting

Terms and Substitutions

Matching

Rewriting

More on rewriting

3 Properties of rewrite systems

Abstract rewrite systems

Termination

Confluence

Completion of TRS

4 Equational rewrite systems

Matching modulo

Rewriting modulo

5 Strategies

Why strategies ?

Abstract strategies

Properties of rewriting under strategies

Strategy language
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(Some) Additional Recommended Readings

Term Rewriting Systems

Terese (M. Bezem, J. W. Klop and R. de Vrijer, eds.)

Cambridge Univerty press, 2002

Term Rewriting and all That

Franz Baader and Tobias Nipkow

Cambridge Univerty press, 1998

Repository of Lectures on Rewriting and Related Topics

qsl.loria.fr

The rewriting and IFIP WG1.6 page

rewriting.loria.fr

The Rewriting Calculus Home page

rho.loria.fr
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A smooth introduction

A simple game

The rules of the game :
•• ! ◦
◦◦ ! ◦
•◦ ! •
◦• ! •

A starting point :

• ◦ • ◦ • ◦ • • • • ◦ ◦ • ◦ ◦ • •◦

Who wins ?

!Who puts the last white ?
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A smooth introduction

•• ◦ • ◦ • • ◦ ◦ • ◦ ◦ • •◦
◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • •◦
◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦••
◦ ◦ •◦ • • ◦ ◦ • ◦••
◦◦• • • ◦ ◦ • ◦ • •
◦• • • ◦ ◦ • ◦ • •
• • •◦ ◦ • ◦ ••
• • • ◦ •◦ ••
• • • ◦ •◦◦
• • • ◦ •◦
• • •◦•
• • ••
••◦
••
◦

Can I always win ? Does the game terminate ? Do we always get the same result ?
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A smooth introduction

What are the basic operations that have been used ?

1– Matching
The data : •• •◦ ◦ • ◦ ••
The rewrite rule : •◦ ! •

2– Compute what should be substituted

The lefthand side : •

3– Replacement

The new generated data : • • • ◦ • ◦ ••

Note that the last list is a NEW object.
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A smooth introduction

Addition in Peano arithmetic

Peano gives a meaning to addition by using the following axioms :

0+ x = x

s(x) + y = s(x + y)

What’s the result of s(s(0)) + s(s(0))?

s(s(0)) + s(s(0)) = s(s(0) + s(s(0))
= s(s(0+ s(s(0))))
= s(s(s(s(0))))
= s(0) + s(s(s(0)))
= 0+ 0+ 0+ s(s(s(s(0))))
= . . .

Is there a better result ?
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A smooth introduction

Addition in Peano arithmetic

Compute a result by turning the equalities into rewrite rules :

0+ x ! x

s(x) + y ! s(x + y)

s(s(0)) + s(s(0)) ! s(s(0) + s(s(0)) !
s(s(0+ s(s(0)))) !
s(s(s(s(0))))

Is this computation terminating ,

is there always a result (e.g. an expression without +)
is such a result unique ? ? ?
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A smooth introduction

What are the basic operations that have been used ?

1– Matching

The data : s( s(0) ) + s(s(0))

The rewrite rule : s( x ) + y ! s(x + y)

2– Compute what should be substituted

The instanciated lhs : s( s(0) + s(s(0)) )

3– Replacement

The new generated data : s(s(0)+s(s(0)))

Note that this last entity is a NEW object.
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A smooth introduction

Fibonacci

[α] fib(0) ! 1

[β] fib(1) ! 1

[γ] fib(n) ! fib(n − 1) + fib(n − 2)

fib( 3 )

! fib( 2 ) + fib( 1 )

fib(2) + fib(1) ! fib(2) + 1

fib( 2 ) + 1 ! fib( 1 ) + fib( 0 ) + 1

fib(1) + fib(0) + 1 ! 1 + fib(0) + 1

. . .

Finally fib(3) = 3, fib(4) = 5, ...
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A smooth introduction
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A smooth introduction

Graphical Rewriting

F ! F + F − F − FF + F + F − F

!
. .

. . . . .

. .

L-systems (Lindenmeier)
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A smooth introduction

Ecological Rewriting

http ://algorithmicbotany.org/
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A smooth introduction

Sorting by rewriting

rules for List

X, Y : Nat ; L L’ L’’ : List;

hd (X L) => X ; tl (X L) => L ;

sort nil => nil .

sort (L X L’ Y L’’) => sort (L Y L’ X L’’) if Y < X .

end

sort (6 5 4 3 2 1) => ...

sorts NeList List ; subsorts Nat < NeList < List ;

operators

nil : List ;

@ @ : (List List) List [associative id: nil] ;

@ @ : (NeList List) NeList [associative] ;

hd @ : (NeList) Nat ;

tl @ : (NeList) List ;

sort @ : (List) List ;

end
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A smooth introduction

On what objects can rewriting act ?

It can be defined on

terms like 2 + i(3) or XML documents

strings like “What is rewriting ?” (sed performs string rewriting)

graphs

sets

multisets

. . .

We will “restrict” in this lecture to first-order terms
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Defining term rewriting

1 A smooth introduction

2 Defining term rewriting

Terms and Substitutions

Matching

Rewriting

More on rewriting

3 Properties of rewrite systems

Abstract rewrite systems

Termination

Confluence

Completion of TRS

4 Equational rewrite systems

Matching modulo

Rewriting modulo

5 Strategies

Why strategies ?

Abstract strategies

Properties of rewriting under strategies

Strategy language
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Defining term rewriting

The relation, the logic, the calculus

This part deals with the

rewriting relation

on

first-order term

This is just the oriented version of replacement of equal by equal
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Defining term rewriting Terms and Substitutions

First-order terms
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Defining term rewriting Terms and Substitutions

Signature and first-order terms

F0 a set of symbols of arity 0 (the constants)

Fi a set of symbols of arity i

F = ∪nFn

X a set of arity 0 symbols called variables .

T (F ,X ) is the smallest set such that :

X ⊆ T (F ,X ) ,

∀f ∈ F ,∀t1, . . . , tn ∈ T (F ,X ) : f (t1, . . . , tn) ∈ T (F ,X ) .

T (F , ∅) = T (F) is the set of ground terms .
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Defining term rewriting Terms and Substitutions

Terms as mappings : (N, .) ! F

t = f (a+ x ,h(f (a,b))) is represented by :

position (→ symbol

Λ (→ f

1 (→ +
1.1 (→ a

1.2 (→ x

2 (→ h

2.1 (→ f

2.1.1 (→ a

2.1.2 (→ b

Dom(t) = {Λ,1,1.1,1.2,2,2.1,2.1.1,2.1.2}
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f ,a} with arity(f ) = 2, arity(a) = 0, x , y , z ∈ X :

what are the following terms?

f (a,a)
f (x , f (a, x))
f (x , f (y , z))

What about the following terms?

f (a,a,a) is ill-formed (since f is of arity 2)
a is correct

x(a) is ill-formed (since all variables are assumed of arity 0)
f is ill-formed (since f is of arity 2)
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Defining term rewriting Terms and Substitutions

Subterms

t [s]ω denotes the term t with s as subterm at position (or

occurrence) ω .

t |ω denotes the subterm at occurrence ω .

f (a+ x ,h(f (a,b)))|2 = h(f (a,b))
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Defining term rewriting Terms and Substitutions

Terms as trees

t = f (a+ x ,h(f (a,b))) is represented by :

f
1

!!!!!!!!!!!!!!
2

""""""""""""""

+
1.1

##
##

##
## 1.2

$$
$$

$$
$$

h

2.1

a x f
2.1.1

%%
%%

%%
%% 2.1.2

&&
&&

&&
&&

a b

|t | is the size of t i.e. the cardinality of Dom(t).

|f (a+ x ,h(f (a,b)))| = 8

Var(t) denotes the set of variables in t .

Var(f (a+ x ,h(f (a,b)))) = {x}
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f (f (a,b),g(a))|1.1 ?

— a

What is f (f (a,b),g(a))|Λ ? — f (f (a,b),g(a))

What is f (f (a,b),g(a))|1.2 ? — b

What is the arity of f just above ? — 2

What is the arity of a just above ? — 0

What are the variables of f (f (a,b),g(a))|1.2 ? — ∅

What are the variables of f (f (x , x),g(a))|1.2 ? — {x}

What are the variables of f (f (x , x),g(a))? — {x}
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Defining term rewriting Terms and Substitutions

Substitutions
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Defining term rewriting Terms and Substitutions

Substitution

A substitution σ is a mapping from the set ot variables to the set of

terms :

σ : X (→ T (F ,X )
It is extended as a morphism from terms to terms :

σ : T (F ,X ) (→ T (F ,X )

σ(f (t1, t2)) = f (σ(t1),σ(t2))

If σ = {x (→ a, y (→ f (a,g(z)), z (→ g(z)}, then
σ(f (x , f (a, z))) = f (a, f (a,g(z))).
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Defining term rewriting Matching

Matching
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Defining term rewriting Matching

Matching

Finding a substitution σ such that

σ(l) = t

is called the matching problem from l to t .

This is denoted l *? t

It is decidable in linear time in the size of t .

It induces a relation on terms called subsumption
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Defining term rewriting Matching

Matching : A rule based description

Delete t *? t ∧ P

→ P

Decomposition f (t1, . . . , tn) *? f (t ′1, . . . , t
′
n) ∧ P

→
∧
i=1,...,n ti *? t ′i ∧ P

SymbolClash f (t1, . . . , tn) *? g(t ′1, . . . , t
′
m) ∧ P

→ Fail if f ,= g

SymbolVariableClash f (t1, . . . , tn) *? x ∧ P

→ Fail if x ∈ X

MergingClash x *? t ∧ x *? t ′ ∧ P

→ Fail if t ,= t ′
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Defining term rewriting Matching

Find a match

x+(y∗3) *? 1+(4∗3)

⇒Decomposition x *? 1 ∧ y ∗ 3*? 4 ∗ 3

⇒Decomposition x *? 1 ∧ y *? 4 ∧ 3*? 3

⇒Delete x *? 1 ∧ y *? 4

x+(y∗y) *? 1+(4∗3)

⇒Decomposition x *? 1 ∧ y ∗ y *? 4 ∗ 3

⇒Decomposition x *? 1 ∧ y *? 4 ∧ y *? 3

⇒MergingClash Fail
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Defining term rewriting Matching

Matching rules

Does it terminate ?

Do we always get the same result ?

Theorem The normal form by the rules in Match, of any matching

problem t *? t ′ such that Var(t) ∩ Var(t ′) = ∅, exists and is unique.
1 If it is Fail , then there is no match from t to t ′.

2 If it is of the form
∧
i∈I xi *? ti with I ,= ∅, the substitution

σ = {xi (→ ti}i∈I is the unique match from t to t ′.

3 If it is empty then t and t ′ are identical : t = t ′ .
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Defining term rewriting Matching

Matching is used everywhere

ML

TOM

XQUERY

“pattern matching” in general

. . .

CyberSitter censors "menu */ #define" because of the string "nu...de".

From Internet Risks Forum NewsGroup (RISKS), vol. 19, issue 56.
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Defining term rewriting Matching

Term subsumption

s * t ⇐⇒ σ(s) = t

Vocabulary :

t is called an instance of s

s is said more general than t or

s subsumes t

σ is a match from s to t .

* is a quasi-ordering on terms called subsumption .

f (x , y) * f (f (a,b),h(y))

Theorem : [Huet78]

Up to renaming, the subsumption ordering on terms is well-founded.
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Defining term rewriting Matching

Notice that

s ≤ t ,⇒ f (u, s) ≤ f (u, t)
since

x ≤ a but f (x , x) ,≤ f (x ,a)

s ≤ t ,⇒ σ(s) ≤ σ(t)
since

x ≤ a but (x (→ b)x ,≤ (x (→ b)a
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Defining term rewriting Rewriting

Rewriting
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Defining term rewriting Rewriting

Definition of rewriting

It relies on 5 notions :

" The objects : terms and rewrite rules

" The actions

matching

substitutions

replacement

and, given a rule and a term, it consists in :

! finding a subterm of the term

! that matches the left hand side of the rule

! and replacing that subterm by the right hand side of the rule

instanciated by the match
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Defining term rewriting Rewriting

Formally

t rewrites to t ′ using the rule l ! r if

t|p = σ(l) and t ′ = t [σ(r)]p

This is denoted

t −→l!r
p t ′
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Defining term rewriting Rewriting

Rewrite relation

A term rewrite system R (a set of rewrite rules) determines a relation

on terms denoted −→R :

u !R v

iff

there exist t , l ! r ∈ R, an occurrence ω in t , such that

u = t [σ(l)]ω
and

v = t [σ(r)]ω

t [σ(l)]ω !R t [σ(r)]ω

USUALLY, when defining the rewriting relation, one requires the all

rewrite rules satisfy Var(r) ⊆ Var(l).

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 39 / 178



Defining term rewriting Rewriting

Rewrite relation

A term rewrite system R (a set of rewrite rules) determines a relation

on terms denoted −→R :

u !R v

iff

there exist t , l ! r ∈ R, an occurrence ω in t , such that

u = t [σ(l)]ω
and

v = t [σ(r)]ω

t [σ(l)]ω !R t [σ(r)]ω

USUALLY, when defining the rewriting relation, one requires the all

rewrite rules satisfy Var(r) ⊆ Var(l).

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 39 / 178



Defining term rewriting Rewriting

Rewrite relation

A term rewrite system R (a set of rewrite rules) determines a relation

on terms denoted −→R :

u !R v

iff

there exist t , l ! r ∈ R, an occurrence ω in t , such that

u = t [σ(l)]ω
and

v = t [σ(r)]ω

t [σ(l)]ω !R t [σ(r)]ω

USUALLY, when defining the rewriting relation, one requires the all

rewrite rules satisfy Var(r) ⊆ Var(l).

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 39 / 178



Defining term rewriting Rewriting

Rewrite relation

A term rewrite system R (a set of rewrite rules) determines a relation

on terms denoted −→R :

u !R v

iff

there exist t , l ! r ∈ R, an occurrence ω in t , such that

u = t [σ(l)]ω
and

v = t [σ(r)]ω

t [σ(l)]ω !R t [σ(r)]ω

USUALLY, when defining the rewriting relation, one requires the all

rewrite rules satisfy Var(r) ⊆ Var(l).

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 39 / 178



Defining term rewriting Rewriting

Simple examples —

Consider the rewrite system R :

x + x ! x

(a+ x) + y ! y + x

How many redexes are in (a+ a) + (a+ a)?

— 4

Draw the rewrite derivation tree issued from (a+ a) + (a+ a).

Is ((a+ a) + (a+ a),a) in the transitive closure of !? — yes

Is (a,a) in the transitive closure of !? — no

Is (a,a) in the reflexive closure of !? — yes

Is there any infinite derivation starting from a finite tree using R ? — no

Why?
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Defining term rewriting More on rewriting

Expressiveness of rewriting

[Max Dauchet 1989]

A Turing machine can be simulated by a single rewrite rule

This unique rewrite rule can further be left linear and regular !

... Termination of a rewrite relation
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Defining term rewriting More on rewriting

On the use of term rewriting

for programming (ASF, ELAN, MAUDE, ML, OBJ, Stratego, . . . )

for proving (Completion procedures, proof systems, . . . )

for solving (Constraint manipulations, . . . )

for verifying (Exhaustive (and may be intelligent) search)
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Defining term rewriting More on rewriting

What are the typical problems of the field ?

Confluence

Termination

Control of rewriting : strategies

Conditional rewriting

Theorem proving and rewriting

Rewriting and higher-order features : ρ-calculus
Types and rewriting
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Defining term rewriting More on rewriting

Extended notions of rewriting
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Defining term rewriting More on rewriting

Conditional rules

l ! r if c

l , r ∈ T (F ,X ),
c a boolean term

Var(r) ∪ Var(c) ⊆ Var(l)

The rule applies on a term t provided the matching substitution σ
allows cσ to reduce to true .
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Defining term rewriting More on rewriting

Applying a conditional rewrite rule

even(0) ! true

even(s(x)) ! odd(x)
odd(x) ! true if not(even(x))
odd(x) ! false if even(x)

even(s(0)) −→ odd(0) −→ false
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Defining term rewriting More on rewriting

Generalized rules

l ! r where p1 := c1 . . . where pn := cn

l , r ,p1, . . . ,pn, c1, . . . , cn ∈ T (F ,X ),
Var(pi) ∩ (Var(l) ∪ Var(p1) ∪ · · · ∪ Var(pi−1)) = ∅,
Var(r) ⊆ Var(l) ∪ Var(p1) ∪ · · · ∪ Var(pn)
Var(ci) ⊆ Var(l) ∪ Var(p1) ∪ · · · ∪ Var(pi−1).

where true := c is equivalently written if c.

pi is oftern reduced to a variable x .
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Defining term rewriting More on rewriting

Generalized rule application

l ! r where p1 := c1 . . . where pn := cn

To apply this rewrite rule on t , the matching substitution σ from l to t

(i.e. such that lσ = t) is successively composed with each match µi
from pi to ciσµ1 . . . µi−1, for all i = 1, . . . ,n.

move(S) ! C(x , y) where < x , y >:= position(S) if x = y
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Properties of rewrite systems

1 A smooth introduction

2 Defining term rewriting

Terms and Substitutions

Matching

Rewriting

More on rewriting

3 Properties of rewrite systems

Abstract rewrite systems

Termination

Confluence

Completion of TRS

4 Equational rewrite systems

Matching modulo

Rewriting modulo

5 Strategies

Why strategies ?

Abstract strategies

Properties of rewriting under strategies

Strategy language
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Properties of rewrite systems Abstract rewrite systems

Think abstractly

The properties of this relation could be studied in an abstract way :

⇒ Abstract rewrite systems
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Properties of rewrite systems Abstract rewrite systems

Abstract rewrite systems

" Consider a set T

" Consider a binary relation −→ on T (one-step reduction)

! a −→ b : b is the reduct of a

" Induced relations

! transitive closure :
+−→

! transitive reflexive closure :
∗−→

! symetric closure :←→
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Properties of rewrite systems Abstract rewrite systems

Normalization

Consider an ARS (T ,→)

" An element t ∈ T is a→-normal form if there exists no t ′ ∈ T
such that t → t ′.

" The relation→ is terminating (or strongly normalizing, or

noetherian) if every reduction sequence is finite.

. a→ a is not terminating

" The relation→ is weakly normalizing (or weakly terminating) if

every element t ∈ T has a normal form.

. a→ a a→ b is weakly terminating

" The relation→ has the unique normal form property if for any

t , t ′ ∈ T , t ∗←→ t ′ and t , t ′ are normal forms imply t = t ′.
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Properties of rewrite systems Abstract rewrite systems

Showing normalization

A (partial) order on T is a reflexive, antisymetric and transitive relation.

An ordering is total on T when two terms are always comparable

> is well-founded or Noetherian on T if there is no infinite

decreasing sequence on T :

t1 > t2 > t3 > . . .

Theorem

Consider an ARS (A,→).

→ is terminating

iff

there exists a well-founded (partial) order > on T and a mapping φ s.t.

for all rewrite rule a→ a′ implies φ(a) > φ(a′).
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Properties of rewrite systems Abstract rewrite systems

Example

Use the order (>,N) which is well-founded.

Several choices for strings A = (• | ◦)∗

φ(w) = number of •
works for all •-decreasing reductions

φ(w) = number of ◦
works for all ◦-decreasing reductions

•• ! ◦
◦◦ ! ◦
•◦ ! •
◦• ! •

φ(w) = number of • and ◦
works for all length-decreasing reductions
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Properties of rewrite systems Abstract rewrite systems

Definitions ( Relathionships )

Localy confluent (LC)

t0

!!##
##

##
#

""&
&&

&&
&&

t1

∗
""

t2

∗
!!

t3

Church Rosser (CR)

t

∗
""

+ ## s$$

∗
%%

u

Diamond property (DP)

t0

!!##
##

##
#

""&
&&

&&
&&

t1

""

t2

!!
t3

Confluent (C)

t0
∗

&&''
''

''
' ∗

''((
((

((
(

t1

∗ ''

t2

∗&&
t3

Relathionships
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Properties of rewrite systems Abstract rewrite systems

Local versus global confluence

1 C ⇒ LC

2 LC ⇒ C?

! Consider four distinct

elements a,b, c,d of T
and the relation :
a→ b

b → a

a→ c

b → d

a
!" #$((
((

b%&'())
((((

c d
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Properties of rewrite systems Abstract rewrite systems

Newman’s lemma

[Newman 1942]

Provided the relation→ is terminating

then

→ is confluent iff it is locally confluent

Proof :

locally confluent if confluent

! obvious

confluent if locally confluent

!?
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Properties of rewrite systems Abstract rewrite systems

Noetherian induction : a fondamental tool

Let (T , >) be an ordered set s.t. > is well-founded.

Let P be a proposition :

1 ∀t ∈ T , [∀t ′ ∈ {t ′ | t > t ′}, P(t ′)] ⇒ P(t)

2 P(t) is provable for all minimal element t ,

then ∀t ∈ T ,P(t).
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Properties of rewrite systems Abstract rewrite systems

Noetherian induction : a fondamental tool

Consider (T ,→)

t

!!##
##

##
##

"")
))

))
))

)

t ′1
m−1

!!%%
%%

%%
%% ∗

"")
))

))
))

)
t ′2

∗

!!**
**

**
** n−1

"")
))

))
))

)

t1
∗

"")
))

))
))

t ′

∗

!!%%
%%

%%
%%

t2

∗

!!%%
%%

%%
%%

%%
%%

%%
%%

%%
%

t ′′1
∗

**&
&&

&&
&&

&

u
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Properties of rewrite systems Termination

How to build well founded orderings ?
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Properties of rewrite systems Termination

Termination

R (or→R) terminates

iff all derivation issued from any term terminates.

Termination implies the existence of normal form(s) for any term.

Termination is in general undecidable

but interesting sufficient condition can be found.
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Properties of rewrite systems Termination

Proving termination could be tricky . . .

f (a,b, x) ! f (x , x , x)

is terminating

g(x , y) ! x

g(x , y) ! y ,

is terminating

Is the union terminating ?
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Properties of rewrite systems Termination

f (a,b, x) ! f (x , x , x)
g(x , y) ! x

g(x , y) ! y ,

We have the derivation :

f (g(a,b),g(a,b),g(a,b)) ## f (a,g(a,b),g(a,b)) ## f (a,b,g(a,b))
#$!"((

[Toyama 1986]
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Properties of rewrite systems Termination

Termination

ensures finiteness of computations

is a necessary condition for deciding of other properties

(non ambiguity, reachability tests, . . . )

is undecidable.
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Properties of rewrite systems Termination

Proving Termination

Termination of rewriting can be checked by sufficient conditions :

Syntactic and semantic methods (applying directly to the TRS)

KBO [Knuth & Bendix 1970], LPO [Kamin & Levy 1980], RPO

[Dershowitz 1982], RPOS [Steinbach 1989], GPO [Dershowitz & Hoot

1995], Polynomial interpretations [Lankford 1975, Ben Cherifa &

Lescanne 1986],. . .

Transformational approaches (transforming one TRS into another)

Semantic labelling [Zantema 1995], Dependency pairs [Arts & Giesl

1996], . . .

Induction on the derivation trees (schematization by abstraction

and narrowing of the derivations)

[Fissore & Gnaedig & Kirchner 2003]
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Properties of rewrite systems Termination

Termination
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Properties of rewrite systems Termination

Orderings on terms

A Reduction ordering is an ordering on T ,
stable by context and substitution :

! for every context C[_] and for all substitutions σ,

if t > s then C[t ] > C[s] and σ(t) > σ(s) .

Theorem R terminates iff there exists a well-founded reduction

ordering > s.t. for all rewrite rule (l ! r) ∈ R, l > r .
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Properties of rewrite systems Termination

Example

The rules of the game :

•• ! ◦
◦◦ ! ◦
•◦ ! •
◦• ! •

l > r if |l | > |r |

|f (f (x , x), y)|>|f (y , y)|
but

|f (f (x , x), f (x , x))| ,> |g(g(x , x),g(x , x))|
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Properties of rewrite systems Termination

Example modified

The rules of the game slightly change :

•• ! ◦◦
◦◦ ! ◦
•◦ ! •
◦• ! •

l > r if |l |•◦ > |r |•◦
(|t |•◦=number of • and ◦ of the term t)

| • •|•◦ = 2 ,> 2 = | ◦ ◦|•◦
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Properties of rewrite systems Termination

Example

The rules of the game :

•• ! ◦◦
◦◦ ! •
•◦ ! •
◦• ! •

l > r if |l |•◦+• > |r |•◦+•

| ◦ ◦|•◦+• = 2 ,> 2 = | • |•◦+•
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Properties of rewrite systems Termination

Extensions of reduction ordering
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Properties of rewrite systems Termination

Lexicographical extensions

Let > be an ordering on T .
Its lexicographical extension >lex on T n is defined as :

(s1, . . . , sn) >lex (t1, . . . , tn)

if there exists i , 1 ≤ i ≤ n s.t. si >i ti , and ∀j ,1 ≤ j < i , sj = tj .

If > is well-founded on T , then>lex is well-founded on T n.

FALSE for an infinite product of ordered sets :

T = {a,b} with a < b

b >lex ab >lex aab >lex aaab >lex . . .

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 72 / 178



Properties of rewrite systems Termination

Lexicographical extensions

Let > be an ordering on T .
Its lexicographical extension >lex on T n is defined as :

(s1, . . . , sn) >lex (t1, . . . , tn)

if there exists i , 1 ≤ i ≤ n s.t. si >i ti , and ∀j ,1 ≤ j < i , sj = tj .

If > is well-founded on T , then>lex is well-founded on T n.

FALSE for an infinite product of ordered sets :

T = {a,b} with a < b

b >lex ab >lex aab >lex aaab >lex . . .

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 72 / 178



Properties of rewrite systems Termination

Multiset extensions

Let > an ordering on T .

Its (strict) multiset extension denoted >mult is defined by :

M = {s1, . . . , sm} >mult N = {t1, . . . , tn}

if there exist i ∈ {1, . . . ,m} and 1 ≤ j1 < . . . < jk ≤ n with k ≥ 0, such

that :

si > tj1 , . . . , si > tjk and,

eitherM−{ si} >mult N − {tj1 , . . . , tjk} or the multisetsM−{ si}
and N − {tj1 , . . . , tjk} are equal.
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Properties of rewrite systems Termination

Multiset extensions - Examples

if > is well-founded on T , then>mult is well-founded onM456(T ).

{3,3,1,2} >mult {3,1}
{3,3,1,2} >mult {3,2,2,2,2}
{3,3,1,2} >mult {3,0} >mult {3} >mult {}.
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Properties of rewrite systems Termination

Syntactic reduction ordering
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Properties of rewrite systems Termination

Lexicographic Path Ordering (LPO)

For a given precedence on F ,

s = f (s1, .., sn) >lpo t = g(t1, . . . , tm)

if at least one of the following condition is satisfied :

1 f = g and (s1, . . . , sn) >lex
lpo (t1, . . . , tm) and

∀j ∈ {1, . . . ,m}, s >lpo tj

2 f >F g and ∀j ∈ {1, . . . ,m}, s >lpo tj

3 ∃i ∈ {1, . . . ,n} s.t either si >lpo t , or si = t .

Theorem LPO is a simplification ordering

i.e. a reduction ordering that contains the subterm ordering.
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Properties of rewrite systems Termination

Extension of LPO

The definition of the ordering can be extended to terms with variables

by adding the following conditions :

1 two different variables are incomparable,

2 a function symbol and a variable are incomparable.
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Properties of rewrite systems Termination

A typical LPO example

Termination of the Ackermann function :

ack(0, y) ! succ(y)
ack(succ(x),0) ! ack(x , succ(0))

ack(succ(x), succ(y)) ! ack(x ,ack(succ(x), y)).

With ack >F succ , we can show that

ack(0, y) >lpo succ(y)
ack(succ(x),0) >lpo ack(x , succ(0))

ack(succ(x), succ(y)) >lpo ack(x ,ack(succ(x), y)).
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Properties of rewrite systems Termination

Multiset Path Ordering (MPO)

For a given precedence on F ,
s = f (s1, .., sn) >mpo t = g(t1, . . . , tm) if one at least of the following
conditions holds :

1 f = g and {s1, . . . , sn} >mult
mpo {t1, . . . , tm}

2 f >F g and ∀j ∈ {1, . . . ,m}, s >mpo tj

3 ∃i ∈ {1, . . . ,n} such that either si >mpo t or si ∼ t

where ∼ means equivalent up to permutation of subterms.
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Properties of rewrite systems Termination

An MPO example

Termination of the max function :

max(n,0) ! n

max(0,n) ! n

max(succ(n), succ(m)) ! succ(max(n,m))

Precedence >F
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Properties of rewrite systems Termination

An MPO example

Termination of the max function :

max(n,0) ! n

max(0,n) ! n

max(succ(n), succ(m)) ! succ(max(n,m))

Precedence max >F succ
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Properties of rewrite systems Termination

Semantic reduction ordering
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Properties of rewrite systems Termination

Building reduction orderings using interpretations

Consider a homomorphism τ from ground terms to (A, >) with > a

well-founded ordering and let fτ denote the image of f ∈ F using τ ;

τ and > are constrained to satisfy the monotonicity condition :

∀a,b ∈ A,∀f ∈ F , a > b implies fτ (. . . ,a, . . .) > fτ (. . . ,b, . . .) .

Then the ordering >τ defined by :

∀s, t ∈ T (F), s >τ t if τ(s) > τ(t) ,

is well-founded.
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Properties of rewrite systems Termination

Building reduction orderings using interpretations

Then the ordering >τ is extended by defining

∀s, t ∈ T (F ,X ), s >τ t if ν(τ(s)) > ν(τ(t))

for all assignment ν of values in A to variables of τ(s) and τ(t) .
Because > is assumed to be well-founded, a rewrite system is

terminating if one can find A, τ and > as defined above.
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Properties of rewrite systems Termination

Example

Is the reduction induced by i(f (x , y)) ! f (f (i(x), y), y) terminating ?

τ(i(x)) = τ(x) 2

τ(f (x , y)) = τ(x) + τ(y)
τ(x) = x

τ(y) = y

Monotonicity : a > b implies fτ (a) > fτ (b)
(each function is increasing on natural numbers)

τ(i(f (x , y))) = (x + y)2 = x2 + y2 + 2xy

τ(f (f (i(x), y), y)) = x2 + 2y

For any assignment of positive natural numbers n and m to the

variables x and y : n2 +m2 + 2nm > n2 + 2m
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Properties of rewrite systems Termination

Another example

Is the following system terminating ?

99 x ! x

9(x ⊕ y) ! (9x)⊕ (9y)
9(x ⊗ y) ! (9x)⊗ (9y)

x ⊗ (y ⊕ z) ! (x ⊗ y)⊕ (x ⊗ z)
(x ⊕ y)⊗ z ! (x ⊗ z)⊕ (y ⊗ z)

Interpretation :

τ(9x) = 2τ(x)

τ(x ⊕ y) = τ(x) + τ(y) + 1

τ(x ⊗ y) = τ(x)τ(y)

τ(c) = 3
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Properties of rewrite systems Termination

Recursion analysis
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Properties of rewrite systems Termination

Dependency pairs method

Standard approaches compare left- and right-hand sides of rules

Automated techniques often use simplification orders, but fail on

minus(x ,0) ! x

minus(s(x), s(y)) ! minus(x , y)
div(0, s(y)) ! 0

div(s(x), s(y)) ! s(div(minus(x , y), s(y)))

div(s(x), s(s(x))) ,≥ s(div(minus(x , s(x)), s(s(x))))

The dependency pair approach focusses only on those subterms

which are responsible for starting new reductions
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Properties of rewrite systems Termination

Dependency pairs for termination

minus(x ,0) ! x

minus(s(x), s(y)) ! minus(x , y)
div(0, s(y)) ! 0

div(s(x), s(y)) ! s(div(minus(x , y), s(y)))

minus and div (top of lhs) are called defined functions.

If f (s1, ..., sn) ! C[g(t1, ..., tm)] is a rule and g is defined, then
F (s1, ..., sn) ! G(t1, ..., tm) is a dependency pair .
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Properties of rewrite systems Termination

Dependency pairs method

A sequence of dependency pairs DP(R) = s1 ! t1, s2 ! t2, s3 ! t3,...

is a dependency chain iff there exists a substitution σ s.t. :

t1σ →∗ s2σ, t2σ →∗ s3σ, ...

Theorem : A rewrite system R terminates iff there is no infinite

dependency chain.

Dependency Graph :

Nodes are dependency pairs

There is an arrow from s1 ! t1 to s2 ! t2 if there exists a

substitution σ s.t. : t1σ →∗ s2σ.
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Properties of rewrite systems Termination

Dependency pairs method

(≥, >) is a reduction pair iff

> is stable by substitution and well-founded

≥ is stable by context and by substitution

> and ≥ are compatible : > ◦ ≥⊆> or ≥ ◦ >⊆>.

Theorem : A rewrite system R terminates if for any cycle P in the

dependency graph, there exists a reduction pair (≥, >) such that
l ≥ r for all rules l ! r in R

s > t for at least one dependency pair s ! t in P

s′ ≥ t ′ for all other dependency pairs s′ ! t ′ in P
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Properties of rewrite systems Termination

Well-founded reduction orderings

Syntactic

Based on the precedence concept (i.e. a partiel order >F on F)
Example : Recursive or Lexicographic path ordering [Dershowitz, 82]

Semantic

Terms are interpreted in another structure where a well-founded

ordering is known (e.g. the natural numbers)

Example : Polynomial interpretations

Combinations

Ordering combining semantical and syntactical behavior

Recursion analysis

Induction, dependency pairs
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Properties of rewrite systems Confluence

How to determine the unicity of the result ?
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Properties of rewrite systems Confluence

Back to ARS properties

Consider an ARS (T ,→)

" An element t ∈ T is a→-normal form if there exists no t ′ ∈ T
such that t → t ′.

" The relation→ is terminating (or strongly normalizing, or

noetherian) if every reduction sequence is finite.

" The relation→ is weakly normalizing (or weakly terminating) if

every element t ∈ T has a normal form.

" The relation→ has the unique normal form property if for any

t , t ′ ∈ T , t ∗←→ t ′ and t , t ′ are normal forms imply t = t ′.
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Properties of rewrite systems Confluence

Definitions

Localy confluent (LC)

t0

!!##
##

##
#

""&
&&

&&
&&

t1

∗
""

t2

∗
!!

t3

Church Rosser (CR)

t

∗
""

+ ## s$$

∗
%%

u

Diamond property (DP)

t0

!!##
##

##
#

""&
&&

&&
&&

t1

""

t2

!!
t3

Confluent (C)

t0
∗

&&''
''

''
' ∗

''((
((

((
(

t1

∗ ''

t2

∗&&
t3
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Properties of rewrite systems Confluence

Newman’s lemma

[Newman 1942]

Provided the relation ! is terminating

then

! is confluent iff it is locally confluent
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Properties of rewrite systems Confluence

Confluence

Allows us to forget about non-determinism :

Whatever rewriting is done we will converge later.
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Properties of rewrite systems Confluence

Back with the simple game

The rules of the game :
•• ! ◦
◦◦ ! ◦
•◦ ! •
◦• ! •

A starting point :

• ◦ • ◦ • ◦ • • • • ◦ ◦ • ◦ ◦ • •◦

From a given start, is the result determinist ?
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Properties of rewrite systems Confluence

Analysing the different cases

Disjoint redexes :
· · ·⊗⊗ · · ·⊗⊗ · · ·
· · ·⊗ · · ·⊗⊗ · · ·
· · ·⊗ · · ·⊗ · · ·

is the same as :
· · ·⊗⊗ · · ·⊗⊗ · · ·
· · ·⊗⊗ · · ·⊗ · · ·
· · ·⊗ · · ·⊗ · · ·
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Properties of rewrite systems Confluence

No disjoint redexes (central black) :

· · · ◦• • · · · · · · •• • · · ·
· · · •• · · · · · · ◦• · · ·
· · · ◦ · · · · · · • · · ·

but
· · · ◦ •• · · · · · · • •• · · ·
· · · ◦◦ · · · · · · •◦ · · ·
· · · ◦ · · · · · · • · · ·

or
· · · ◦• ◦ · · · · · · •• ◦ · · ·
· · · •◦ · · · · · · ◦◦ · · ·
· · · • · · · · · · ◦ · · ·

but
· · · ◦ •◦ · · · · · · • •◦ · · ·
· · · ◦• · · · · · · •• · · ·
· · · • · · · · · · ◦ · · ·
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Properties of rewrite systems Confluence

No disjoint redexes (central white) :

· · · ◦◦ • · · · · · · •◦ • · · ·
· · · ◦• · · · · · · •• · · ·
· · · • · · · · · · ◦ · · ·

but
· · · ◦ ◦• · · · · · · • ◦• · · ·
· · · ◦• · · · · · · •• · · ·
· · · • · · · · · · ◦ · · ·

or
· · · ◦◦ ◦ · · · · · · •◦ ◦ · · ·
· · · ◦◦ · · · · · · •◦ · · ·
· · · ◦ · · · · · · • · · ·

but
· · · ◦ ◦◦ · · · · · · • ◦◦ · · ·
· · · ◦◦ · · · · · · •◦ · · ·
· · · ◦ · · · · · · • · · ·
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Properties of rewrite systems Confluence

Thus :

t0

!!##
##

##
#

""&
&&

&&
&&

t1

""&
&

&
& t2

!!#
#

#
#

t3

but what about :

t0
∗

!!##
##

##
#

∗

""&
&&

&&
&&

t1
∗

""&
&

&
& t2

∗

!!#
#

#
#

t3
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Properties of rewrite systems Confluence

Confluence

! Undecidable in general, confluence is decidable for finite and

terminating rewrite systems.

! Assuming termination of the rewrite relation, its confluence is

equivalent to the confluence of critical pairs .

! If a rewrite system is orthogonal (linear and non-overlapping), then it is

confluent.
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Properties of rewrite systems Confluence

Critical pair

A non-variable term t ′ and a term t overlap if there exists a position

ω in t such that t|ω and t ′ are unifiable (with t|ω not a variable).

Two terms t and t ′ are unifiable if there exists a substitution σ such that

σ(t) = σ(t ′). σ is called a unifier of t and t ′.
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Properties of rewrite systems Confluence

Parenthesis

Unification problems
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Properties of rewrite systems Confluence

Solve an equation

Does it exist x , y , z such that

x+(z∗y) = y+(x∗z)

An infinity of solutions,

but a most general one

x = y = z

Unification problem : a most general unifier of t and t ′ is a minimal
unifier for the subsumption ordering extended to substitutions. It is

unique up to renaming.
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Properties of rewrite systems Confluence

General Unification Problems

F a set of function symbols,

X a set of variables,

A an F-algebra.
A < F ,X ,A >-unification problem
is a disjunction of existentially quantified formulas

Pj = ∃*z
∧

i∈Ij

si =?
A ti

sometimes abbreviated

Pj = ∃*z {si =?
A ti}i∈Ij .

A unifier to such a problem is a substitution σ such that

∃j ,∀i ∈ Ij , A |= ∃*z σ|X−#z(si) = σ|X−#z(ti).
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Properties of rewrite systems Confluence

SYNTACTIC UNIFICATION

Formulas : quantifier free unification problems

Domain : T (F ,X ) (no equational axioms)

Interpretation : trivial one

Solved forms : Tree or dag solved forms
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Properties of rewrite systems Confluence

From : J.A. Robinson. A machine-oriented logic based on the

resolution principle. Journal of the Association for Computing

Machinery, 12 :23–41, 1965.

...

5.8 Unification Algorithm. The following process, applicable to any

finite nonempty set A of well formed expressions, is called the

Unification Algorithm :

Step 1. Set σ0 = ε and k = 0, and go to step 2.

Step 2. If Aσk is not a singleton, go to step 3. Otherwise, set
σA = σk and terminate.

Step 3. Let Vk be the earliest, and Uk the next earliest, in the

lexical ordering of the disagreement set Bk of Aσk . If Vk is
a variable, and does not occur in Uk , set

σk+1 = σ{Uk/Vk}, add 1 to k , and return to step 2.
Otherwise, terminate.

...
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Properties of rewrite systems Confluence

Rules for syntactic unification

Delete P ∧ s =? s

→ P

Decompose P ∧ f (s1, . . . , sn) =? f (t1, . . . , tn)
→ P ∧ s1 =? t1 ∧ . . . ∧ sn =? tn

Conflict P ∧ f (s1, . . . , sn) =? g(t1, . . . , tp)
→ Fail if f ,= g

Coalesce P ∧ x =? y

→ {x (→ y}P ∧ x =? y if x , y ∈ Var(P) ∧ x ,= y
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Properties of rewrite systems Confluence

Rules for syntactic unification

Eliminate P ∧ x =? s

(→(→ {x (→ s}P ∧ x =? s if x /∈ Var(s), s /∈ x, x ∈ Var(P)

Merge P ∧ x =? s ∧ x =? t

(→(→ P ∧ x =? s ∧ s =? t if 0 < |s| ≤ |t |

Check P ∧ x =? s

(→(→ Fail if x ∈ Var(s) and s /∈ x

Check∗ P ∧ x1 =? s1[x2] ∧ . . .
. . . ∧ xn =? sn[x1]

(→(→ Fail if si /∈ x for some i ∈ [1..n]
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Properties of rewrite systems Confluence

Solving an equation

x+(z∗y) = y+(x∗z)

⇒decompose x = y ∧ z ∗ y = x ∗ z

⇒decompose x = y ∧ z = x ∧ y = z

⇒coalesce y = z ∧ x = z ∧ z = x

⇒coalesce z = x ∧ y = x ∧ x = x

⇒delete z = x ∧ y = x
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Properties of rewrite systems Confluence

Examples

x =? a

x =? a ∧ y =? f (x ,a)
f (x , f (x ,a)) =? f (f (a,b), f (u, v))
x =? a ∧ x =? b
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Properties of rewrite systems Confluence

Strategy : No

A tree solved form for P is any conjonction of equations

x1 =? t1 ∧ · · · ∧ xn =? tn

equivalent to P such that ∀i , xi ∈ x and :

(i) ∀1 ≤ i ≤ n, xi ∈ Var(P),
(ii) ∀1 ≤ i , j ≤ n, i ,= j ⇒ xi ,= xj ,
(iii) ∀1 ≤ i , j ≤ n, xi /∈ Var(tj).

Example : x =? f (f (y)) ∧ z =? g(a).
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Properties of rewrite systems Confluence

Theorem : Starting with a unification problem P and using the above

rules repeatedly until none is applicable

— results in Fail iff P has no solution, or else it

— results in a tree solved form x1 =? t1 ∧ · · · ∧ xn =? tn with the same

set of solutions than P.

Moreover

σ = {x1 (→ t1, . . . , xn (→ tn}

is a most general unifier of P.
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Properties of rewrite systems Confluence

Strategy : Never apply eliminate

A dag solved form for a unification problem P is any system of

equations :

x1 =? t1 ∧ · · · ∧ xn =? tn

equivalent to P such that ∀i , xi ∈ x and :

(i) ∀1 ≤ i ≤ n, xi ∈ Var(P),
(ii) ∀1 ≤ i , j ≤ n, i ,= j ⇒ xi ,= xj ,
(iii) ∀1 ≤ i ≤ j ≤ n, xi /∈ Var(tj).

Example : x =? f (u) ∧ u =? f (y) ∧ z =? g(a)
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Properties of rewrite systems Confluence

Theorem : Starting with a unification problem P and using the above

rules except eliminate repeatedly until none is applicable,

— results in Fail iff P has no solution, or else

— in a dag solved form :

x1 =? t1 ∧ . . . ∧ xn =? tn

such that σ = {xn (→ tn} . . . {x1 (→ t1} is a most general unifier of P.
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Properties of rewrite systems Confluence

Critical pair

A non-variable term t ′ and a term t overlap if there exists a position

ω in t such that t|ω and t ′ are unifiable (with t|ω not a variable).

Do 0+ x ! x and s(x) + y ! s(x + y) overlap ?

Where do (x + y) + z and (x ′ + y ′) + z ′ overlap ?
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Properties of rewrite systems Confluence

Critical Pairs

Superposition

l1 ! r1 l2[u] ! r2
l2[r1]σ = r2σ

u is a non-variable sub-term of l2
σ is the mgu(u, l1)

Do 0+ x ! x and (x + y) + z ! x + (y + z) overlap ?

Compute the critical pairs between these two rules.
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Properties of rewrite systems Confluence

Critical Pair Lemma

R is locally confluent iff all critical pair satisfies :

l2[r1]σ
∗−→R ⊗ R

∗←− r2σ

Prove that the following rewrite systen is locally confluent :

(x ∗ y) ∗ z ! x ∗ (y ∗ z)
f (x ∗ y) ! f (x) ∗ f (y)

Prove that it is confluent.
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Properties of rewrite systems Confluence

Orthogonal systems

A rewrite system that is both linear (the left-hand side of each rule is

a linear term) and non-overlapping is called orthogonal.

Theorem If a rewrite system is orthogonal, then it is confluent.

Linearity is needed for non-terminating rewriting system :

d(x , x) ! t

d(x , c(x)) ! f

a ! c(a)
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Properties of rewrite systems Confluence

Other systems

What if the system is non-terminating and non-orthogonal ?

Theorem Consider a reduction relation !R and let !D s.t.

!R ⊆ !D ⊆
∗!R

!D has the diamond property

Then, !R is confluent.
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Properties of rewrite systems Completion of TRS

Completion of TRS
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Properties of rewrite systems Completion of TRS

The group example

Let us concentrate on the use of rewriting for proving equational

theorems.

G =






[Assoc] (x + y) + z = x + (y + z)
[NElmt ] x + 0 = x

[Inver ] x + i(x) = 0

where these three equational axioms are implicitly assumed to be

universaly quantified.

Simple ( ?) exercice, prove that 0+ x = x .
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Properties of rewrite systems Completion of TRS

What is completion ?

Transform any equational proof in E into a valley proof in R :

u0 =E u1 =E . . . =E . . . =E un−1 =E un

←R ←R . . . !R . . . ←R !R

S +++
++

++
++

+

S,,,,
,,

,,
,,

,

S +++
++

++
++

+

S,,,,
,,

,,
,,

,

S ++-
--

--
--

-

S--..
..

..
..

S **$
$$

$$
$$

S%%//
//

//
/

u
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Properties of rewrite systems Completion of TRS

Completion as a compilation process

Given an equational theory E

Find a term rewrite system R

Such that,

E < t = t ′ ⇐⇒ t
∗−→R . R

∗←− t ′
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Properties of rewrite systems Completion of TRS

First completion principle : ORIENT

Orient equalities to build (at least) a well founded ordering

Simple example

x + 0 = x is oriented into x + 0 ! x

Less obvious, how to orient

(x + y) + z = x + (y + z)

Furthermore, well-founded orderings are used to decrease proof

complexity
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Properties of rewrite systems Completion of TRS

Completion of groups : starts with

P =






x + e = x

x + (y + z) = (x + y) + z

x + i(x) = e

R = ∅

Apply saturation rules
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Properties of rewrite systems Completion of TRS

Orient P ∪ {p = q},R (→(→ P,R ∪ {p ! q}
si p > q

Deduce P,R (→(→ P ∪ {p = q},R
si (p,q) ∈ CP(R)

Simplify P ∪ {p = q},R (→(→ P ∪ {p′ = q},R
si p !R p

′

Delete P ∪ {p = p},R (→(→ P,R

Compose P,R ∪ {l ! r} (→(→ P,R ∪ {l ! r ′}
si r !R r

′

Collapse P,R ∪ {l ! r} (→(→ P ∪ {l ′ = r},R
si l !g!d

R l ′ and l ! r >> g ! d
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Properties of rewrite systems Completion of TRS

Completion of groups : ends with

Q = ∅ R =






x + e ! x

e + x ! x

x + (y + z) ! (x + y) + z

x + i(x) ! e

i(x) + x ! e

i(e) ! e

(y + i(x)) + x ! y

(y + x) + i(x) ! y

i(i(x)) ! x

i(x + y) ! i(y) + i(x)
[Knuth & Bendix 1970]
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Properties of rewrite systems Completion of TRS

The associated proof transformations

1 Orient : t
∗←→

p=q
P t ′ =⇒ t !p!q

R t ′

2 Deduce : t ′ ←l!r
R t !g!d

R t ′′ =⇒ t ′ ←→p=q
P t ′′

3 Simplify : t ←→p=q
P t ′ =⇒ t !l!r

R t ′′ ←→p′=q
P t ′ if p !l!r

R p′.

4 Delete : t ←→p=p
P t =⇒ Λ

5 Compose : t !l!r
R t ′ =⇒ t !l!r ′

R t ′′ ←g!d
R t ′ if r !g!d

R r ′.

6 Collapse : t !l!r
R t ′ =⇒ t !g!d

R t ′′ ←→l ′=r
P t ′ if l !g!g

R l ′.

7 Peak without overlap : t ′ ←l!r
R t !g!d

R t ′′ =⇒ t ′ !g!d
R t1 ←l!r

R t ′′

8 Peak with variable overlap :

t ′ ←l!r
R t !g!d

R t ′′ =⇒ t ′
∗−→R t1 ←− ∗Rt ′′
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Properties of rewrite systems Completion of TRS

The main result

The sets of persisting rules and pairs are defined as :

P∞ =
⋃
i≥0

⋂
j>i
Pj and R∞ =

⋃
i≥0

⋂
j>i
Rj .

If the derivation (P0,R0) (→(→(P1,R1) (→(→ · · · satisfies
CP(R∞) is a subset of

⋃
i≥0 Pi (i.e. the set of all generated

equalities),

R∞ is reduced and

P∞ is empty,

then R∞ is Church-Rosser and terminating.
∗←→P0∪R0 and

∗←→R∞ coincides.

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 131 / 178



Properties of rewrite systems Completion of TRS

Three possible issues

A completion process may

terminate

diverge by generating infinitely many rules

fail on an unorientable equation
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Properties of rewrite systems Completion of TRS

Exercise

Let F = {c, f} where c is a constant and f a unary operator. Complete
the set of equalities

f (f (f (f (f (x))))) = x

f (f (f (x))) = x
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Properties of rewrite systems Completion of TRS

Exemple

The theory of idempotent semi-groups (sometimes called bands) is

defined by a set E of two axioms :

(x ∗ y) ∗ z = x ∗ (y ∗ z)
x ∗ x = x

From P0 = E the completion generates

(x ∗ y) ∗ z ! x ∗ (y ∗ z)
x ∗ x ! x

x ∗ (x ∗ z) ! x ∗ z
x ∗ (y ∗ (x ∗ y)) ! x ∗ y

x ∗ (y ∗ (x ∗ (y ∗ z))) ! x ∗ (y ∗ z)
. . .

x ∗ (y ∗ (z ∗ (y ∗ (x ∗ (y ∗ (z ∗ x)))))) ! x ∗ (y ∗ (z ∗ x))
. . .
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Equational rewrite systems

1 A smooth introduction

2 Defining term rewriting

Terms and Substitutions

Matching

Rewriting

More on rewriting

3 Properties of rewrite systems

Abstract rewrite systems

Termination

Confluence

Completion of TRS

4 Equational rewrite systems

Matching modulo

Rewriting modulo

5 Strategies

Why strategies ?

Abstract strategies

Properties of rewriting under strategies

Strategy language
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Equational rewrite systems Matching modulo

Matching and Rewriting Modulo
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Equational rewrite systems Matching modulo

Equality modulo C

C(+) : ∀x , y ∈ T (F ,X ) x + y = y + x

For example, on Peano integer, + is commutative :

(s(0) + (x + s(y))) + x =C(+) ((s(y) + x) + s(0)) + x

Theorem :

t1 + t2 =C(+) t
′
1 + t ′2 ⇐⇒ (t1 =C(+) t

′
1 ∧ t2 =C(+) t

′
2)

∨
(t1 =C(+) t

′
2 ∧ t2 =C(+) t

′
1)
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Equational rewrite systems Matching modulo

Matching modulo

Finding a substitution σ such that

σ(l) = t

is called the matching problem from l to t (denoted l *? t ).

Finding a substitution σ such that

σ(l) =E t

is called the matching problem from l to t (denoted l *?
E t ).
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Equational rewrite systems Matching modulo

Examples (commutative symbol(s))

F = {a(0),b(0), c(0), f (2),g(2),h(1)}
f is assumed to be commutative (the other symbols have no

property).

C(f ) : ∀x , y ∈ T (F ,X ) f (x , y) = f (y , x)

f (a,b) = f (b,a)

— yes

g(f (a,b),a) = g(f (b,a),a) — yes

g(f (a,b),a) = g(a, f (b,a)) — no

f (a, f (a,b)) = f (f (b,a),a) — yes

f (a, f (b, c)) = f (f (c,b),a) — yes

f (f (a,b), c) = f (a, f (b, c)) — no
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f is assumed to be commutative (the other symbols have no

property).

C(f ) : ∀x , y ∈ T (F ,X ) f (x , y) = f (y , x)

f (a,b) = f (b,a) — yes

g(f (a,b),a) = g(f (b,a),a) — yes

g(f (a,b),a) = g(a, f (b,a)) — no

f (a, f (a,b)) = f (f (b,a),a) — yes

f (a, f (b, c)) = f (f (c,b),a) — yes

f (f (a,b), c) = f (a, f (b, c)) — no
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Equational rewrite systems Matching modulo

Matching modulo C : examples

Solve the following problems :

f (x , y) *?
C f (a,b)

σ = {x (→ a, y (→ b}
σ = {x (→ b, y (→ a}

f (y , f (x , x)) *?
C f (f (f (a,b), f (b,a)), f (b,a))

σ = {x (→ f (a,b), y (→ f (a,b)}
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Equational rewrite systems Matching modulo

Matching modulo C : A rule based description

Delete t *? t ∧ P

(→(→ P

Decomposition f (t1, . . . , tn) *? f (t ′1, . . . , t
′
n) ∧ P

(→(→
∧
i=1,...,n ti *? t ′i ∧ P

SymbolClash f (t1, . . . , tn) *? g(t ′1, . . . , t
′
m) ∧ P

(→(→ Fail if f ,= g

SymbolVariableClash f (t1, . . . , tn) *? x ∧ P

(→(→ Fail if x ∈ X

MergingClash x *? t ∧ x *? t ′ ∧ P

(→(→ Fail if t ,= t ′
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Equational rewrite systems Matching modulo

Assume + commutative

C−Dec t1 + t ′2 *?
C t

′
1 + t ′2 ∧ P

(→(→ (t1 *?
C t

′
1 ∧ t2 *?

C t
′
2 ∧ P) ∨ (t1 *?

C t
′
2 ∧ t2 *?

C t
′
1 ∧ P)
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Equational rewrite systems Matching modulo

Find a match

x∗(3+y) *?
C 1∗(4+3)

⇒Decomposition x *?
C 1 ∧ 3+ y *?

C 4+ 3

⇒C(+)−Decomposition x *?
C 1 ∧ ((3*?

C 4 ∧ y *
?
C 3) ∨ (3*?

C 3 ∧ y *
?
C 4))

⇒MergingClash x *?
C 1 ∧ (Fail ∨ (3*?

C 3 ∧ y *?
C 4))

⇒Delete x *?
C 1 ∧ (Fail ∨ (y *?

C 4))

⇒Bool x *?
C 1 ∧ y *?

C 4
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Equational rewrite systems Matching modulo

Matching rules

Does it terminate ?

Do we always get the same result ?

Theorem The normal form by the rules in Commutative −Match, of

any matching problem t *? t ′ such that Var(t) ∩ Var(t ′) = ∅, exists
and is unique.

1 If it is Fail , then there is no match from t to t ′.

2 If it is of the form
∨
k∈K

∧
i∈I x

k
i *?

C t
k
i with I,K ,= ∅, the

substitutions σk = {xki (→ tki }i∈I are all the matches from t to t ′.

3 If it is empty then t and t ′ are identical : t = t ′ .
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Equational rewrite systems Matching modulo

Matching modulo associativity-commutativity (1)

∪ is assumed to be an associative commutative (AC) symbol :

∀x , y , z, ∪(x ,∪(y , z)) = ∪(∪(x , y), z) and ∀x , y , ∪(x , y) = ∪(y , x) .

{i} ∪ s *?
AC {1} ∪{ 2} ∪{ 3} ∪{ 4} ∪{ 5}

{1} ∪{ 2} ∪{ 3} ∪{ 4} ∪{ 5} =AC

{2} ∪{ 3} ∪{ 4} ∪{ 5} ∪{ 1} =AC

. . .

{5} ∪{ 1} ∪{ 2} ∪{ 3} ∪{ 4}

5 different and non AC-equivalent matches.
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Equational rewrite systems Matching modulo

Matching modulo AC : examples

Solve the following problems :

f (x , y) *?
AC f (a,b)

σ = {x (→ a, y (→ b}
σ = {x (→ b, y (→ a}

f (y , f (x , x)) *?
AC f (f (f (a,b), f (b,a)), f (b,a))

σ = {x (→ f (a,b), y (→ f (a,b)}
σ = {x (→ a, y (→ f (f (b,b), f (b,a))}
σ = {x (→ b, y (→ f (f (a,a), f (b,a))}
. . .
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Equational rewrite systems Rewriting modulo

Rewriting modulo : definition

A class rewrite system R/A is composed of a set of rewrite rules R
and a set of equalities A, such that A and R are disjoint sets.

x + 0 ! x

x + (0+ y) ! x + y

x + (−x) ! 0

x + ((−x) + y) ! y

−− x ! x

−0 ! 0

−(x + y) ! (−x) + (−y)

x + y = y + x

(x + y) + z = x + (y + z)
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Equational rewrite systems Rewriting modulo

!R/A

t (R/A)-rewrites to t ′ if t =A t1 !R t2 =A t
′

To be more effective, consider any relation !RA such that :

!R ⊆ !RA ⊆ !R/A
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Equational rewrite systems Rewriting modulo

!R,A

A term rewrite system R (a set of rewrite rules) determines a relation

on terms denoted −→R,A [Peterson & Stickel,81]

u !R,A v

iff

there exist l ! r ∈ R, an occurrence ω in t , such that

u|ω =A σ(l)

and

v = u[σ(r)]ω

USUALLY, when defining the rewriting relation, one requires the all

rewrite rules satisfy Var(r) ⊆ Var(l).
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Equational rewrite systems Rewriting modulo

For example

Let ∪ be an AC symbol, such that

{i} ∪ x ! i

{1} ∪{ 2} ∪{ 3} ∪{ 4} ∪{ 5} =AC

{2} ∪{ 3} ∪{ 4} ∪{ 5} ∪{ 1} =AC

. . .
{5} ∪{ 1} ∪{ 2} ∪{ 3} ∪{ 4}

Since this term matches the lefthand side of the rewriting rule in 5

different and non AC-equivalent ways, the rewrite rule applies in 5

different ways.
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Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R = {a+ a ! a}

R/E -rewrite the term (a+ c) + a a+c

R,E -rewrite the term (a+ c) + a

R = {a+ a ! a (a+ a) + x ! a+ x}

R/E -rewrite the term (a+ c) + a a+c

R,E -rewrite the term (a+ c) + a a+c
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Equational rewrite systems Rewriting modulo

!RA

Huet’s approach [JACM80] uses standard rewriting !R but is

restricted to left-linear rules.

Peterson and Stickel’s approach [JACM81] uses rewriting modulo

A, denoted !R,A, and requires matching modulo A.

Pedersen’s approach [Phd84] uses a restricted version of

matching modulo A, confined to variables.

Jouannaud and Kirchner’s method [SIAM86] uses standard

rewriting with left-linear rules and rewriting modulo A with

non-left-linear rules, mixing advantages of the two first methods.
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Equational rewrite systems Rewriting modulo

Definitions

The rewriting relation RA is

Church-Rosser modulo A if

=R∪A ⊆
∗−→RA ◦ =A ◦ RA

∗←− .

confluent modulo A if

RA
∗←− ◦ ∗−→RA ⊆ ∗−→RA ◦ =A ◦ RA

∗←−

locally coherent with R modulo A if

RA ←− ◦−→R ⊆ ∗−→RA ◦ =A ◦ RA
∗←−

locally coherent with A modulo A if

RA ←− ◦ =A ⊆
∗−→RA ◦ =A ◦ RA

∗←−
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Equational rewrite systems Rewriting modulo

Good news

If R/A is terminating, the following properties are equivalent :
1 !RA is Church-Rosser modulo A.

2 !RA is confluent modulo A and !RA is coherent modulo A.

3 !RA is locally confluent with R modulo A and locally coherent with

A modulo A.

4 ∀t , t ′, t =R∪A t
′ iff t ↓RA=A t

′ ↓RA.
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Equational rewrite systems Rewriting modulo

Rewriting and theorem proving, a few examples

Boolean algebras and rings Applications to proof search in first

order logic (Hsiang, 1985).

Proof of commutativity in specific rings

(∀x , xn = x) ⇒ ∀x , y , (x ∗ y = y ∗ x)

n = 3 (Stickel, 1984), n pair (Kapur,Zhang, 1991).

The Robbins conjecture (McCune, 1996)

In a Boolean algebra

x + y + x + y = y

implies

x + y + x + y = y

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 155 / 178



Equational rewrite systems Rewriting modulo

References on rewriting modulo

G. Huet. Confluent reductions : Abstract properties and

applications to term rewriting systems. Journal of the ACM,

27(4) :797–821, October 1980.

G. Peterson and M. E. Stickel. Complete sets of reductions for

some equational theories. Journal of the ACM, 28 :233–264, 1981.

J.-P. Jouannaud and Hélène Kirchner. Completion of a set of rules

modulo a set of equations. SIAM Journal of Computing,

15(4) :1155–1194, 1986.

Enno Ohlebusch. Church-Rosser Theorems for Abstract

Reduction Modulo an Equivalence Relation RTA, pages 17-31,

LNCS 1379, 1998.

Claude and Hélène Kirchner. Rewriting Solving Proving
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Strategies

1 A smooth introduction

2 Defining term rewriting

Terms and Substitutions

Matching

Rewriting

More on rewriting

3 Properties of rewrite systems

Abstract rewrite systems

Termination

Confluence

Completion of TRS

4 Equational rewrite systems

Matching modulo

Rewriting modulo

5 Strategies

Why strategies ?

Abstract strategies

Properties of rewriting under strategies

Strategy language
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Strategies Why strategies ?

Rewrite rules ...

Rewrite rules describe local transformations

Rewrite derivations are computations

Normal forms are the results

t is in normal form if it cannot be reduced anymore : result of

terminating computations

t has a unique normal form if the rewrite system is terminating and

confluent.

Paradigm of computation in algebraic languages : ASF+SDF, OBJ,

Maude,...

and in functional languages : ML, Haskell,...
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Strategies Why strategies ?

... and Strategy

Strategies describe the control of rewrite rule application

traversals : innermost, outermost, lazy... (Stratego)

higher-order functions with choice and iteration (ELAN, TOM)
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Strategies Why strategies ?

Strategies are ALWAYS needed

1- Even for “good” TRSs

leftmost innermost strategy

i.e. to make clear how the computation is performed

2- To describe the way deduction should be done

Lazy evaluation

Search plans

Action plans

Tactics

User interaction

3- This requires to search for a particular derivation

corresponding to the desired strategy.
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Strategies Why strategies ?

rewrite rewrite rewrite rewrite rewrite rewrite rewrite rewrite

Logic Programming, Theorem Proving, Constraint Solving are

instances of the same deduction schema :

Apply rewrite rules (may be modulo) on formulas with some strategy,

until getting specific forms

— Rewrite blindly : implements computations

— Rewrite wisely : implements deduction
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Strategies Abstract strategies

Back to Abstract rewrite systems

An Abstract Rewrite System (ARS) is a labelled oriented graph

(O,S).
The nodes in O are called objects

The oriented labelled edges in S are called steps .

1 Alc = a

φ1
..

φ2
((

b
φ3

//

φ4
((

c d

2 Ac = a

φ1

00

φ2
11
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Strategies Abstract strategies

Reductions

For a given ARS A :

1 A reduction step is an oriented labelled edge φ together with its

source a and target b, written a→φ
A b.

2 A-derivation : π : a0 →φ0 a1 →φ1 a2 . . . →φn−1 an or a0 →π an.

The source of π is a0 and dom(π) = {a0}.
The target of π is an and πa0 = {an}.

3 A derivation is empty when its source and target are the same.

The empty derivation issued from a is denoted by ida. The set of

all derivations is denoted D(A).
4 The concatenation of two derivations π1;π2 is defined as
a→π1

A b →π2
A c if {a} = dom(π1) and π1a = dom(π2) = {b}.

Then π1;π2a =π2π1a = {c}
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Strategies Properties of rewriting under strategies

Properties : Termination

For a given ARS A = (O,S) :
A is terminating (or strongly normalizing ) if all its derivations are

of finite length ;

An object a in O is normalized when the empty derivation is the

only one with source a (e.g., a is the source of no edge) ;

A derivation is normalizing when its target is normalized ;

An ARS is weakly terminating if every object a is the source of a

normalizing derivation.

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 164 / 178



Strategies Properties of rewriting under strategies

Properties : Termination

For a given ARS A = (O,S) :
A is terminating (or strongly normalizing ) if all its derivations are

of finite length ;

An object a in O is normalized when the empty derivation is the

only one with source a (e.g., a is the source of no edge) ;

A derivation is normalizing when its target is normalized ;

An ARS is weakly terminating if every object a is the source of a

normalizing derivation.

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 164 / 178



Strategies Properties of rewriting under strategies

Properties : Termination

For a given ARS A = (O,S) :
A is terminating (or strongly normalizing ) if all its derivations are

of finite length ;

An object a in O is normalized when the empty derivation is the

only one with source a (e.g., a is the source of no edge) ;

A derivation is normalizing when its target is normalized ;

An ARS is weakly terminating if every object a is the source of a

normalizing derivation.

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 164 / 178



Strategies Properties of rewriting under strategies

Properties : Termination

For a given ARS A = (O,S) :
A is terminating (or strongly normalizing ) if all its derivations are

of finite length ;

An object a in O is normalized when the empty derivation is the

only one with source a (e.g., a is the source of no edge) ;

A derivation is normalizing when its target is normalized ;

An ARS is weakly terminating if every object a is the source of a

normalizing derivation.

Horatiu CIRSTEA, Hélène KIRCHNER Rewriting - Computation and Deduction 164 / 178



Strategies Properties of rewriting under strategies

Properties : Confluence

An ARS A = (O,S) is confluent if

for all objects a, b, c in O, and all A-derivations π1 and π2,
when a→π1 b and a→π2 c,

there exist d in O and two A-derivations π3,π4 such that
c →π3 d and b →π4 d .
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Strategies Properties of rewriting under strategies

Abstract strategies

For a given ARS A :

1 An abstract strategy ζ is a subset of the set of all derivations
(finite or not) of A.

2 ζa = {b | ∃π ∈ ζ such that a→π b} = {πa | π ∈ ζ}.
When no derivation in ζ has for source a, we say that the strategy
application on a fails.

3 dom(ζ) =
⋃

δ∈ζ dom(δ)
4 The strategy that contains all empty derivations is

Id = {ida | a ∈ O}.
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Strategies Properties of rewriting under strategies

Examples

1 Alc = a

φ1
..

φ2
((

b
φ3

//

φ4
((

c d
D(Alc) ⊃ {ida,φ1,φ1φ3,φ1φ4,φ1φ3φ1, (φ1φ3)n, (φ1φ3)ω, . . .}, where
φn denotes the n-steps iteration of φ and φω denotes the infinite

iteration of φ ;

2 Ac = a

φ1

00

φ2
11

D(Ac) ⊃ {φ1,φ2,φ1φ2, . . . , (φ1)ω, (φ2)ω, . . .}.
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Strategies Properties of rewriting under strategies

Examples

Alc = a

φ1
..

φ2
((

b
φ3

//

φ4
((

c d
A few strategies :

1 ζ1 = D(Alc), ζ1a = {a,b, c,d}.

2 ζ2 = ∅, for all x in Olc , ζ2x = ∅.
3 ζ3 = {(φ1φ3)∗φ2},
a always converges to c : ζ3a = {c} ;
b is not transformed (as well as c and d) : ζ3b = ∅.

4 The result of ((φ1φ3)ω a) is the empty set.
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Strategies Properties of rewriting under strategies

Termination under strategy

For a given ARS A = (O,S) and strategy ζ :

A is ζ-terminating if all derivations in ζ are of finite length ;

An object a in O is ζ-normalized when the empty derivation is the
only one in ζ with source a ;

A derivation is ζ-normalizing when its target is ζ-normalized ;

An ARS is weakly ζ-terminating if every object a is the source of

a ζ-normalizing derivation.
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Strategies Properties of rewriting under strategies

Example

Given the strategy ζ defined as

a→φ1 b →φ4 d

b is ζ-normalized since there is no derivation in ζ with source b.
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Strategies Properties of rewriting under strategies

Confluence under strategy (1)

Weak Confluence under strategy

An ARS A = (O,S) is weakly confluent under strategy ζ if

for all objects a, b, c in O, and all A-derivations π1 and π2 in ζ,
when a→π1 b and a→π2 c

there exists d in O and two A-derivations π′3,π
′
4 in ζ such that

π′3 : a→ b → d and π′4 : a→ c → d .
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Strategies Properties of rewriting under strategies

Confluence under strategy (2)

Strong Confluence under strategy

An ARS A = (O,S) is strongly confluent under strategy ζ if

for all objects a, b, c in O, and all A-derivations π1 and π2 in ζ,
when a→π1 b and a→π2 c

there exists d in O and two A-derivations π3,π4 in ζ such that :
1 b →π3 d and c →π4 d ;

2 π1;π3 and π2;π4 belong to ζ.
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Strategies Properties of rewriting under strategies

Example

Alc = a

φ1
..

φ2
((

b
φ3

//

φ4
((

c d
Consider the following various strategies :

1 ζ1 = D(Alc) : Alc is neither weakly nor strongly confluent under ζ1 :
π1 : a→φ1 b →φ4 d and π2 : a→φ2 c.

2 ζ2 = ∅ : Alc is trivially both weakly and strongly confluent under ζ2.
3 ζ3 = {(φ1φ3)∗φ2} : Alc is also weakly and strongly confluent under

ζ3.
4 For a different reason, this is also the case for ζ4 = (φ1φ3)ω whose

result is the empty set.
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Strategies Properties of rewriting under strategies

Example

Let O = {a,b, c,d} and reduction steps φ1,φ2,φ3,φ4,φ
′
1,φ

′
2,φ

′
3,φ

′
4.

This ARS A is weakly and strongly confluent under the strategy ζ =

{a→φ1 b,a→φ2 c,b →φ3 d , c →φ4 d ,a→φ1 b →φ3 d ,a→φ2 c →φ4 d}

but is not under

ζ = {a→φ1 b,a→φ2 c,b →φ3 d , c →φ4 d}

A is weakly but not strongly confluent under the strategy ζ =

{a→φ1 b,a→φ2 c,b →φ3 d , c →φ4 d ,a→φ′
1 b →φ′

3 d ,a→φ′
2 c →φ′

4 d}
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Strategies Properties of rewriting under strategies

Strategic rewriting

Given A = (OR,SR) generated by a rewrite system R, and a strategy ζ
of A,

A strategic rewriting derivation (or rewriting derivation under

strategy ζ) is an element of ζ.

A strategic rewriting step under ζ is a rewriting step t →R t
′ that

occurs in a derivation of ζ.
This is also denoted t →ζ t

′.
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Strategies Strategy language

Strategy language

Elementary strategies : Identity , Fail , R, Sequence(s1, s2) or s2; s1

Choice(s1, s2) selects the first strategy that does not fail ; it fails if
both fail :

Choice(s1, s2)t = s1t if s1t does not fail, else s2t .

On a term t , All(s) applies the strategy s on all immediate
subterms :

All(s)f (t1, ..., tn) = f (t ′1, ..., t
′
n)

if st1 = t ′1, ..., stn = t ′n ; it fails if there exists i such that sti fails.

On a term t , One(s) applies the strategy s on the first immediate
subterm where s does not fail :

One(s)f (t1, ..., tn) = f (t1, ..., t ′i , ..., tn)

if for all j < i , stj fails, and sti = t ′i ; it fails if for all i , sti fails.

Fixpoint : µx .s = s[x ← µx .s]
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Choice(s1, s2)t = s1t if s1t does not fail, else s2t .

On a term t , All(s) applies the strategy s on all immediate
subterms :

All(s)f (t1, ..., tn) = f (t ′1, ..., t
′
n)

if st1 = t ′1, ..., stn = t ′n ; it fails if there exists i such that sti fails.

On a term t , One(s) applies the strategy s on the first immediate
subterm where s does not fail :

One(s)f (t1, ..., tn) = f (t1, ..., t ′i , ..., tn)

if for all j < i , stj fails, and sti = t ′i ; it fails if for all i , sti fails.

Fixpoint : µx .s = s[x ← µx .s]
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Strategy language

Try(s) = Choice(s, Identity)
Repeat(s) = µx .Choice(Sequence(s, x), Identity)
OnceBottomUp(s) = µx .Choice(One(x), s)
BottomUp(s) = µx .Sequence(All(x), s)
TopDown(s) = µx .Sequence(s,All(x))
Innermost(s) = µx .Sequence(All(x),Try(Sequence(s, x)))
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Programming with Rules and Strategies -

TOM
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