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This paper is an expository contribution reporting on published work. It focusses on
an approach followed in the rewriting community to formalize the concept of strategy.
Based on rewriting concepts, several definitions of strategy are reviewed and connected: in
order to catch the higher-order nature of strategies, a strategy is defined as a proof term
expressed in the rewriting logic or in the rewriting calculus; to address in a coherent way
deduction and computation, a strategy is seen as a subset of derivations; and to recover
the definition of strategy in sequential path-building games or in functional programs, a
strategy is considered as a partial function that associates to a reduction-in-progress, the
possible next steps in the reduction sequence.

1 Introduction

Strategies frequently occur in automated deduction and reasoning systems and more generally
are used to express complex designs for control inmodeling, proof search, program transforma-
tion, SAT solving or security policies. In these domains, deterministic rule-based computations
or deductions are often not sufficient to capture complex computations or proof developments.
A formal mechanism is needed, for instance, to sequentialize the search for different solutions,
to check context conditions, to request user input to instantiate variables, to process subgoals
in a particular order, etc. This is the place where the notion of strategy comes in.

This paper deliberately focusses on an approach followed in the rewriting community to
formalize a notion of strategy relying on rewriting logic [17] and rewriting calculus [7] that are
powerful formalisms to express and study uniformly computations and deductions in auto-
mated deduction and reasoning systems. Briefly speaking, rules describe local transformations
and strategies describe the control of rule application. Most often, it is useful to distinguish be-
tween rules for computations, where a unique normal form is required and where the strategy
is fixed, and rules for deductions, in which case no confluence nor termination is required but
an application strategy is necessary. Regarding rewriting as a relation and considering abstract
rewrite systems leads to consider derivation tree exploration: derivations are computations and
strategies describe selected computations.

Based on rewriting concepts, that are briefly recalled in Section 2, several definitions of
strategy are reviewed and connected. In order to catch the higher-order nature of strategies, a
strategy is first defined as a proof term expressed in rewriting logic in Section 3 then in rewriting
calculus in Section 4. In Section 5, a strategy is seen as a set of paths in a derivation tree; then to
recover the definition of strategy in sequential path-building games or in functional programs,
a strategy is considered as a partial function that associates to a reduction-in-progress, the
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possible next steps in the reduction sequence. In this paper, the goal is to show the progression
of ideas and definitions of the concept, as well as their correlations.

2 Rewriting

Since the 80s, many aspects of rewriting have been studied in automated deduction, program-
ming languages, equational theory decidability, program or proof transformation, but also in
various domains such as chemical or biological computing, plant growth modelling, etc. In all
these applications, rewriting definitions have the same basic ingredients. Rewriting transforms
syntactic structures that may be words, terms, propositions, dags, graphs, geometric objects
like segments, and in general any kind of structured objects. Transformations are expressed
with patterns or rules. Rules are buit on the same syntax but with an additional set of variables,
say X, and with a binder ⇒, relating the left-hand side and the right-hand side of the rule,
and optionally with a condition or constraint that restricts the set of values allowed for the
variables. Performing the transformation of a syntactic structure t is applying the rule labelled
ℓ on t, which is basically done in three steps: (1) match to select a redex of t at position p
denoted t|p (possibly modulo some axioms, constraints,...); (2) instantiate the rule variables by
the result(s) of the matching substitution σ; (3) replace the redex by the instantiated right-hand
side. Formally: t rewrites to t′ using the rule ℓ : l⇒ r if t|p = σ(l) and t′ = t[σ(r)]p. This is denoted
t−→p,ℓ,σ t

′.

In this process, there aremanypossible choices: the rule itself, the position(s) in the structure,
the matching substitution(s). For instance, one may choose to apply a rule concurrently at
all disjoint positions where it matches, or using matching modulo an equational theory like
associativity-commutativity, or also according to some probability.

3 Rewriting logic

The Rewriting Logic is due to J. Meseguer and N. Martí-Oliet [17].
As claimed on http://wrla2012.lcc.uma.es/:

Rewriting logic (RL) is a natural model of computation and an expressive semantic framework for
concurrency, parallelism, communication, and interaction. It can be used for specifying a wide range
of systems and languages in various application fields. It also has good properties as a metalogical
framework for representing logics. In recent years, several languages based on RL (ASF+SDF, CafeOBJ,
ELAN, Maude) have been designed and implemented.

In Rewriting Logic, the syntax is based on a set of terms T (F ) built with an alphabet F
of function symbols with arities, a theory is given by a set R of labeled rewrite rules denoted
ℓ(x1, . . . ,xn) : l⇒ r, where labels ℓ(x1, . . . ,xn) record the set of variables occurring in the rewrite
rule. Formulas are sequents of the form π : t→ t′, where π is a proof term recording the proof
of the sequent: R ⊢ π : t→ t′ if π : t→ t′ can be obtained by finite application of equational
deduction rules given below. In this context, a proof term π encodes a sequence of rewriting
steps called a derivation.

Reflexivity For any t ∈ T (F ):

t : t→ t
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Congruence For any f ∈ F with arity( f ) = n:

π1 : t1→ t′
1
. . . πn : tn→ t′n

f(π1, . . . ,πn) : f (t1, . . . , tn)→ f (t′
1
, . . . , t′n)

Transitivity
π1 : t1→ t2 π2 : t2→ t3

π1;π2 : t1→ t3

Replacement For any ℓ(x1, . . . ,xn) : l⇒ r ∈ R,

π1 : t1→ t′
1
. . . πn : tn→ t′n

ℓ(π1, . . . ,πn) : l(t1, . . . , tn)→ r(t′
1
, . . . , t′n)

The ELAN language, designed in 1997, introduced the concept of strategy by giving explicit
constructs for expressing control on the rule application [5]. Beyond labeled rules and con-
catenation denoted “;”, other constructs for deterministic or non-determinitic choice, failure,
iteration, were also defined in ELAN. A strategy is there defined as a set of proof terms in
rewriting logic and can be seen as a higher-order function : if the strategy ζ is a set of proof
terms π, applying ζ to the term t means finding all terms t′ such that π : t→ t′ with π ∈ ζ.
Since rewriting logic is reflective, strategy semantics can be defined inside the rewriting logic
by rewrite rules at the meta-level. This is the approach followed by Maude in [8, 18].

4 Rewriting Calculus

The rewriting calculus, also called ρ-calculus, has been introduced in 1998 by Horatiu Cirstea
and Claude Kirchner [7]. As claimed on http://rho.loria.fr/index.html:

The rho-calculus has been introduced as a general means to uniformly integrate rewriting and λ-
calculus. This calculus makes explicit and first-class all of its components: matching (possibly modulo
given theories), abstraction, application and substitutions.

The rho-calculus is designed and used for logical and semantical purposes. It could be used with
powerful type systems and for expressing the semantics of rule based as well as object oriented paradigms.
It allows one to naturally express exceptions and imperative features as well as expressing elaborated
rewriting strategies.

Some features of the rewriting calculus are worth emphasizing here: first-order terms and
λ-terms are ρ-terms (λx.t is (x⇒ t)); a rule is a ρ-term as well as a strategy, so rules and
strategies are abstractions of the same nature and “first-class concepts”; application generalizes
β−reduction; composition of strategies is like function composition; recursion is expressed as
in λ calculus with a recursion operator µ.

In order to illustrate the use of ρ-calculus, let us consider the Abstract Biochemical Calculus
(or ρBio-calculus) [3]. This rewriting calculus models autonomous systems as biochemical pro-
gramswhich consist of the following components: collections of molecules (objects and rewrite
rules), higher-order rewrite rules over molecules (that may introduce new rewrite rules in the
behaviour of the system) and strategies for modelling the system’s evolution. A visual rep-
resentation via port graphs and an implementation are provided by the PORGY environment
described in [1]. In this calculus, strategies are abstract molecules, expressed with an arrow
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constructor (⇒ for rule abstraction), an application operator • and a constant operator stk for
explicit failure.

Below are examples of useful strategies in ρBio-calculus:

id , X⇒ X

fail , X⇒ stk
seq(S1,S2) , X⇒ S2•(S1•X)

first(S1,S2) , X⇒ (S1•X) (stk⇒ (S2•X))•(S1•X)

try(S) , first(S, id)
not(S) , X⇒ first(stk⇒ X,X′⇒ stk)•(S•X)

ifTE(S1,S2,S3) , X⇒ first(stk⇒ S3•X,X
′⇒ S2•X)•(S1•X)

repeat(S) , µX.try(seq(S,X))

Based on such constructions, the ρBio-calculus allows failure handling, repair instructions,
persistent application of rules or strategies, and more generally strategies for autonomic com-
puting, as described in [2]. In [3], it is shown how to do invariant verification in biochemical
programs. Thanks to ρBio-calculus, an invariant property can in many cases, be encoded as
a special rule in the biochemical program modelling the system and this rule is dynamically
checked at each execution step. For instance, an invariant of the system is encoded by a
rule G⇒ G and the strategy verifying such an invariant is encoded with a persistent strategy
first(G⇒ G,X⇒ stk). In a similar way, an unwanted occurrence of a concrete molecule G
in the system can be modeled with the rule (G⇒ stk). And instead of yielding failure stk, the
problem can be “repaired” by associating to each property the necessary rules or strategies to
be inserted in the system in case of failure.

5 Abstract Reduction Systems

Another view of rewriting is to consider it as an abstract relation on structural objects. An
Abstract Reduction System (ARS) [19, 15, 6] is a labelled oriented graph (O,S) with a set of labels

L. The nodes in O are called objects. The oriented labelled edges in S are called steps: a
φ
−→ b or

(a,φ,b), with source a, target b and label φ. Derivations are composition of steps.

For a given ARSA, anA-derivation is denotedπ : a0
φ0
−−→ a1

φ1
−−→ a2 . . .

φn−1
−−−→ an or a0

π
−→ an, where

n ∈ N. The source of π is a0 and its domain Dom(π) = {a0}. The target of π is an and applying π to
a0 gives the singleton set {an}, which is denoted π•a0 = {an}.

Abstract strategies are defined in [15] and in [6] as follows: for a given ARS A, an abstract
strategy ζ is a subset of the set of all derivations (finite or not) ofA. The notions of domain and

application are generalized as follows: Dom(ζ)=
⋃

π∈ζDom(π) and ζ•a= {b | ∃π ∈ ζ such that a
π
−→

b}= {π•a |π ∈ ζ}. Playingwith thesedefinitions, [6] explored adequatedefinitions of termination,

normal form and confluence under strategy.
Since abstract reduction systems may involve infinite sets of objects, of reduction steps and

of derivations, we can schematize them with constraints at different levels: (i) to describe the
objects occurring in a derivation (ii) to describe, via the labels, requirements on the steps of
reductions (iii) to describe the structure of the derivation itself (iv) to express requirements on
the histories. The framework developed in [16] defines a strategy ζ as all instances σ(D) of a
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derivation schema D such that σ is solution of a constraint C involving derivation variables,
object variables and label variables. As a simple example, the infinite set of derivations of length
one that transform a into f (an) for all n ∈N, where an = a ∗ . . . ∗a (n times), is simply described by:
(a→ f (X) |X ∗a=A a∗X), where=A indicates that the constraint is solvedmodulo associativity of
the operator ∗. This very general definition of abstract strategies is called extensional in [6] in the
sense that a strategy is defined explicitly as a set of derivations of an abstract reduction system.
The concept is useful to understand and unify reduction systems and deduction systems as
explored in [15].

But abstract strategies do not capture another point of view, also frequently adopted in
rewriting: a strategy is a partial function that associates to a reduction-in-progress, the possible
next steps in the reduction sequence. Here, the strategy as a function depends only on the
object and the derivation so far. This notion of strategy coincides with the definition of strategy
in sequential path-building games, with applications to planning, verification and synthesis of
concurrent systems [9]. This remark leads to the following intensional definition given in [6].
The essence of the idea is that strategies are considered as a way of constraining and guiding
the steps of a reduction. So at any step in a derivation, it should be possible to say whether a
contemplated next step obeys the strategy ζ. In order to take into account the past derivation
steps to decide the next possible ones, the history of a derivation has to be memorized and

available at each step. Through the notion of traced-object [α]a =
[

(a0,φ0), . . . , (an,φn)
]

a in O[A],

each object amemorizes how it has been reached with the trace α.

An intensional strategy forA = (O,S) is a partial function λ fromO[A] to 2S such that for every
traced object [α]a, λ([α]a) ⊆ {π ∈ S | Dom(π) = a}. If λ([α]a) is a singleton, then the reduction

step under λ is deterministic.

As described in [6], an intensional strategy λ naturally generates an abstract strategy, called
its extension: this is the abstract strategy ζλ consisting of the following set of derivations:

∀n ∈ N, π : a0
φ0
−−→ a1

φ1
−−→ a2 . . .

φn−1
−−−→ an ∈ ζλ iff ∀ j ∈ [0,n], (a j

φ j
−→ a j+1) ∈ λ([α]a j).

This extension may obviously contain infinite derivations; in such a case it also contains all the
finite derivations that are prefixes of the infinite ones, and so is closed under taking prefixes.

A special case are memoryless strategies, where the function λ does not depend on the
history of the objects. This is the case of many strategies used in rewriting systems, as shown
in the next example. Let us consider an abstract reduction systemA where objects are terms,
reduction is term rewriting with a rewrite rule in the rewrite system, and labels are positions
where the rewrite rules are applied. Let us consider an order < on the labels which is the prefix
order on positions. Then the intensional strategy that corresponds to innermost rewriting is

λinn(t) = {π : t
p
−→ t′ | p =max({p′ | t

p′

−→ t′ ∈ S})}. When a lexicographic order is used, the classical
rightmost-innermost strategy is obtained.

Another example, to illustrate the interest of traced objects, is the intensional strategy that
restricts the derivations to be of bounded length k. Its definition makes use of the size of the
trace α, denoted |α|: λltk([α]a) = {π | π ∈ S, Dom(π) = a, |α| < k− 1}. However, as noticed in [6],

the fact that intensional strategies generate only prefix closed abstract strategies prevents us
from computing abstract strategies that look straightforward: there is no intensional strategy
that can generate a set of derivations of length exactly k. Other solutions are provided in [6].
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6 Conclusion

A lot of interesting questions about strategies are yet open, going from the definition of this
concept and the interesting properties we may expect to prove, up to the definition of domain
specific strategy languages. As further research topics, two directions seem really interesting
to explore:
- The connection with Game theory strategies. In the fields of system design and verification,
games have emerged as a key tool. Such games have been studied since the first half of
20th century in descriptive set theory [14], and they have been adapted and generalized for
applications in formal verification; introductions can be found in [13, 20]. It is worthwondering
whether the coincidence of the term “strategy” in the domains of rewriting and games is more
than a pun. It should be fruitful to explore the connection and to be guided in the study of the
foundations of strategies by some of the insights in the literature of games.
- Proving properties of strategies and strategic reductions. A lot of work has already begun in
the rewriting community and have been presented in journals, workshops or conferences of
this domain. For instance, properties of confluence, termination, or completeness for rewriting
under strategies have been addressed, either based on schematization of derivation trees, as
in [12], or by tuning proof methods to handle specific strategies (innermost, outermost, lazy
strategies) as in [10, 11]. Other approaches as [4] use strategies transformation to equivalent
rewrite systems to be able to reusewell-knownmethods. Finally, properties of strategies such as
fairness or loop-freeness could beworthfully exploredbymaking connections betweendifferent
communities (functional programming, proof theory, verification, game theory,...).
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