
REWRITING

SOLVING

PROVING

January 28, 2006

Claude Kirchner and Hélène Kirchner

2

REWRITING SOLVING PROVING

This is a preliminary version

We begin writing this book in the early 90. By lack of time, we did not really finish it, but since we
were asked by several colleagues who wanted to use some of its contents, we make it available as it is. All
comments on any part of this work are very welcome.

Authors: Claude Kirchner and Hélène Kirchner

LORIA, INRIA & CNRS
Campus scientifique
615, rue du Jardin Botanique
BP 101
54602 Villers-lès-Nancy CEDEX
FRANCE

E-mail: Kirchner@loria.fr
Web: http://www.loria.fr/~ckirchne
Web: http://www.loria.fr/~hkirchne

Copyright c©1994–2006, Claude Kirchner and Hélène Kirchner
Permission is granted to make and distribute verbatim copies of this book provided the copyright notice and
this permission are preserved on all copies.

January 28, 2006 rewriting solving proving

3

Acknowledgments
This document is still under development. It has been used, generaly in part, as a support for D.E.A.

and Master lectures in Nancy and several other national or international schools.
Several parts of the document are based on joined works of the authors with other persons: especially

with Jean-Pierre Jouannaud and Christophe Ringeissen for some chapters on unification, and with Jean-Luc
Rémy for the part on parameterization.

We would like to warmly thank all our colleagues and students for their remarks and constructive criti-
cisms. All remaining flaws remain of course ours.

January 28, 2006 rewriting solving proving

4

January 28, 2006 rewriting solving proving

Contents

1 Introduction 15

I Terms, Logics and Algebras 17

2 First order logic and equational logic 19
2.1 Deduction systems . 19
2.2 First-order terms . 20

2.2.1 Terms as strings . 20
2.2.2 Terms as trees . 20
2.2.3 Terms as mappings . 20
2.2.4 Terms as functions . 21
2.2.5 Infinite terms . 21
2.2.6 Sorted terms . 21

2.3 Substitutions . 21
2.3.1 Definitions and elementary properties . 21
2.3.2 Term subsumption . 23
2.3.3 Substitution subsumption . 24

2.4 Equational logic . 24
2.4.1 Syntax . 24
2.4.2 Deduction system . 24
2.4.3 Models . 25
2.4.4 The subsumption ordering modulo . 27
2.4.5 Satisfiability . 28
2.4.6 Word problem . 29
2.4.7 A theory directory . 29
2.4.8 A morphological classification of theories . 31

2.5 Sorted equational logic . 33
2.5.1 Syntax . 33
2.5.2 Deduction system . 33
2.5.3 Models . 33

2.6 Conditional logic . 34
2.6.1 Syntax . 34
2.6.2 Deduction system . 34
2.6.3 Algebraic semantics and models . 34
2.6.4 Herbrand interpretations . 35
2.6.5 An example . 36

3 Computations in the term algebra 37
3.1 The lattice of terms . 37

3.1.1 Renaming . 37
3.1.2 Matching . 38
3.1.3 Lower semi-lattice . 39
3.1.4 Least generalization . 39
3.1.5 Syntactic unification and least upper bound . 40

3.2 Syntactic unification . 41
3.2.1 Definitions . 41

January 28, 2006 rewriting solving proving

6 CONTENTS

3.2.2 Tree solved forms . 42
3.2.3 Dag solved form . 43
3.2.4 Complete sets of rules for syntactic unification . 44
3.2.5 Complexity of Syntactic Unification . 47

3.3 Unification in infinite rational terms . 49
3.4 Further Readings . 49

II Rewriting 51

4 Abstract reduction systems 53
4.1 Introduction . 53
4.2 Quasi orderings . 53

4.2.1 Basic definitions . 53
4.2.2 Well-founded orderings . 54
4.2.3 Well-quasi orderings . 56

4.3 Abstract reduction systems . 58
4.4 Normalizing abstract reduction systems . 58
4.5 Well-founded ordering and termination . 58
4.6 Abstract Church-Rosser property and confluence . 59

4.6.1 Local confluence . 59
4.6.2 Confluence without termination . 61
4.6.3 Confluence for weakly normalizing systems . 61

5 Definition and properties of rewrite systems 63
5.1 Introduction . 63
5.2 Rewrite systems . 64
5.3 A rewriting logic . 65
5.4 Church-Rosser property . 67
5.5 Reduced systems . 67
5.6 Orthogonal systems . 68
5.7 Decidability results . 68

6 Termination of rewrite systems 69
6.1 Introduction . 69
6.2 Termination . 69
6.3 Reduction orderings . 70

6.3.1 Definition . 70
6.3.2 Building reduction orderings using interpretations . 71

6.4 Simplification orderings . 73
6.4.1 Well-quasi-ordering and general embedding . 73
6.4.2 Basic definitions and properties . 73
6.4.3 Path orderings . 74

6.5 Conclusion . 76

7 Generalizations of rewriting 77
7.1 Introduction . 77
7.2 Ordered rewriting . 77

7.2.1 Ordered rewrite systems . 78
7.2.2 Church-Rosser property for ordered rewriting . 78

7.3 Class rewriting . 79
7.3.1 Class rewrite systems . 79
7.3.2 Church-Rosser results . 81
7.3.3 Termination . 85

7.4 Ordered class rewriting . 89
7.5 Conditional rewriting . 90

7.5.1 Conditional rewrite systems . 90
7.5.2 Decidability results . 93
7.5.3 Ordered conditional systems . 94
7.5.4 Horn clauses versus conditional rewrite rules . 95

January 28, 2006 rewriting solving proving

CONTENTS 7

7.6 Constrained rewriting . 96
7.6.1 Constraints . 97
7.6.2 Constrained equalities and rewrite rules . 98
7.6.3 Rewriting with constraints . 99
7.6.4 Comparison with conditional rewriting . 100
7.6.5 A constrained rewriting logic . 100

7.7 Conclusion . 101

8 Modular properties of rewrite systems 103
8.1 Introduction . 103
8.2 Modularity . 103
8.3 Disjoint systems . 103

8.3.1 Confluence and local confluence . 104
8.3.2 Termination . 104
8.3.3 Simple termination . 105
8.3.4 Normal form and convergence . 105

8.4 Constructor systems . 105
8.5 Non-disjoint systems with commutation properties . 108

8.5.1 Confluence . 108
8.5.2 Termination . 108

8.6 Conclusion . 109

9 Implementing rewriting 111
9.1 Compiling rewriting . 111

9.1.1 Sequentiality . 111
9.1.2 Compilation into a functional language . 111

9.2 Concurrent rewriting . 111

III Solving 113

10 Unification of equational problems 117
10.1 Solutions and unifiers . 117
10.2 Generating sets . 120

10.2.1 Complete sets of unifiers . 120
10.2.2 Abstract properties of generating sets . 122
10.2.3 Application to minimal complete sets of unifiers . 124

10.3 (Un)-Decidability of unification . 125
10.4 A Classification of Theories with Respect to Unification . 126
10.5 Transforming equational problems . 128

10.5.1 A Rule-Based Approach to Unification . 128
10.5.2 Solved forms for Unification Problems . 128
10.5.3 Equivalence . 130
10.5.4 The commutativity example . 130
10.5.5 Complexity of Commutative Unification . 132

11 Modular semantic unification 135
11.1 Combination problem for unification . 135
11.2 Combination of simple theories . 136

11.2.1 Abstraction . 136
11.2.2 Solving in one component . 137
11.2.3 Combination of solutions . 138
11.2.4 Unification algorithm for the union of two regular and collapse-free theories 138

11.3 General combination of unification with disjoint signatures . 139
11.3.1 Properties of the ordered rewrite system . 140
11.3.2 Abstraction . 141
11.3.3 Solving in one component . 141
11.3.4 Combination of solutions . 142
11.3.5 Rules for unification in the combined theory . 144

11.4 Conclusion . 146

January 28, 2006 rewriting solving proving

8 CONTENTS

12 Syntactic theories 147

12.1 Syntacticness . 147

12.1.1 Definitions and basic properties . 147

12.1.2 Undecidability results . 149

12.2 Unification in syntactic theories . 150

12.3 General Equations . 152

12.3.1 Definition . 152

12.3.2 Unifiers of general equations . 153

12.3.3 General equations and syntacticness . 154

12.3.4 Applications . 156

12.4 Λ-confluence . 157

12.4.1 Definitions . 157

12.4.2 Localization of Λ-confluence . 159

12.4.3 A unification completion procedure . 160

12.5 Extended presentations . 161

12.6 Applications . 162

12.6.1 Transitivity . 162

12.6.2 Shallow theories . 162

12.6.3 AC matching . 162

12.6.4 Acyclic theories . 162

12.6.5 Touffues theories . 162

13 Restricted semantic unification 163

13.1 Associative-Commutative unification . 163

13.1.1 Introduction . 163

13.1.2 Preparation and simplification of the problem . 163

13.1.3 Solving strategies for AC problems . 164

13.1.4 Associative-commutative unification . 165

13.1.5 Solving systems of Diophantine equations . 167

13.1.6 Conclusion . 169

13.1.7 Improvements . 169

13.2 Boolean unification . 170

13.2.1 Introduction . 170

13.2.2 Boolean rings . 170

13.2.3 Unification in boolean rings . 171

13.2.4 Boolean algebras . 174

13.2.5 Primal algebras . 175

14 Procedures for semantic unification 181

14.1 A Semidecision procedure . 181

14.1.1 General E-unification . 181

14.2 Narrowing . 181

14.2.1 Narrowing relations . 182

14.2.2 Narrowing versus rewriting . 184

14.2.3 Narrowing for unification . 185

14.2.4 Constraint narrowing for unification . 186

14.2.5 Applications . 189

IV Proving 191

15 Proof reduction 193

15.1 Introduction . 193

15.2 Proof transformation . 193

15.3 Completion procedures . 195

January 28, 2006 rewriting solving proving

CONTENTS 9

16 Completion of rewrite systems 199
16.1 Introduction . 199
16.2 Critical pairs . 199
16.3 Transition rules for completion . 201
16.4 A completion procedure . 206
16.5 Issues of completion . 208
16.6 Conclusion . 212

17 Ordered completion 213
17.1 Introduction . 213
17.2 Ordered critical pairs . 213
17.3 Transition rules for ordered completion . 214
17.4 An unfailing completion procedure . 216
17.5 Construction of canonical systems . 219
17.6 Proofs by refutation . 220
17.7 Conclusion . 222

18 Completion modulo a set of equalities 223
18.1 Introduction . 223
18.2 Completion modulo A for left-linear rules . 223

18.2.1 Critical pairs of rules and axioms . 224
18.2.2 Transition rules for completion modulo A with left-linearity 224
18.2.3 Completion procedure for left-linear rules . 225

18.3 Completion modulo A with extensions . 227
18.3.1 A-Critical pairs of rules . 228
18.3.2 Transition rules for completion modulo A with extensions 229
18.3.3 Completion procedure with extensions . 230

18.4 An alternative to extensions . 231
18.4.1 A-critical pairs of rules on axioms . 232
18.4.2 Transition rules for completion without extensions . 232
18.4.3 Completion modulo A without extensions . 233

18.5 General completion modulo A . 234
18.5.1 Transition rules for completion modulo A . 234
18.5.2 General completion procedure modulo A . 235
18.5.3 Reduced systems . 236

18.6 Comparison between different completion methods . 236
18.7 Ground associative commutative theories . 237
18.8 Conclusion . 239

19 Ordered completion modulo a set of equalities 243
19.1 Introduction . 243
19.2 Ordered completion modulo A . 243

19.2.1 Ordered critical pairs modulo A . 243
19.2.2 Transition rules for ordered completion modulo A . 244
19.2.3 The special case of associativity and commutativity 245
19.2.4 Refutational proofs . 245
19.2.5 Experiments . 247

19.3 Critical pairs criteria . 249
19.4 Conclusion . 251

20 Conditional completion 253
20.1 Introduction . 253
20.2 Conditional critical pairs and local confluence . 254
20.3 Saturated sets of conditional equalities . 256

20.3.1 Superposition, narrowing and reflection . 256
20.3.2 Ordering on conditional equalities . 257
20.3.3 Critical pairs, narrowing and resolvent . 257
20.3.4 Saturated sets . 259

20.4 Completion . 260

January 28, 2006 rewriting solving proving

10 CONTENTS

20.4.1 Transition rules . 260
20.4.2 Refutational completeness proof . 262

20.5 Conclusion . 263

21 Completion with constraints 265
21.1 Introduction . 265
21.2 Constrained rewriting . 266
21.3 Constrained superposition . 266
21.4 Constrained superposition modulo A . 269

21.4.1 Constrained simplification . 269
21.5 Conclusions . 272

22 Proofs by induction 273
22.1 Introduction . 273
22.2 Many-sorted specifications . 273
22.3 Inductive theorems and consistency . 274
22.4 Ground reducibility . 275
22.5 Inductive completion . 277

22.5.1 Transition rules for inductive completion . 278
22.5.2 An inductive completion procedure . 279

22.6 Inductive proof by consistency . 280
22.6.1 Transition rules for proof by consistency . 281
22.6.2 A proof by consistency procedure . 286

22.7 Inductive proofs by rewriting and implicit induction . 289
22.7.1 Selection of induction schemes . 290
22.7.2 Transition rules for rewrite induction . 292

22.8 Conclusion . 294

23 Enrichment proofs 297
23.1 Introduction . 297
23.2 Enrichments . 297

23.2.1 Properties of enrichments . 298
23.2.2 Sufficient completeness . 299
23.2.3 Consistent enrichments . 300
23.2.4 Completion process for consistency proof . 301
23.2.5 An unfailing completion process for consistency proof 302

23.3 Parameterization . 307
23.3.1 Parameterized specifications . 308
23.3.2 Semantics . 308
23.3.3 Parameter passing . 309
23.3.4 Persistency . 311
23.3.5 Generic algebra . 312
23.3.6 Generic theory of a parameterized specification . 312
23.3.7 Generic ground reducibility . 313
23.3.8 Proof of generic sufficient completeness . 314
23.3.9 Proof of generic consistency . 315
23.3.10Proof of a generic theorem . 318

23.4 Conclusion . 319

24 Gröbner bases 321
24.1 Introduction . 321
24.2 Polynomial ideal theory . 321
24.3 Polynomial reduction . 322
24.4 Gröbner bases . 323
24.5 Application to geometrical problems . 326
24.6 Comparison with completion modulo AC . 326
24.7 Conclusion . 327

January 28, 2006 rewriting solving proving

List of Figures

2.1 The rules of equational deduction . 25
2.2 Table of usual equational axioms . 29
2.3 Table of some theories . 30
2.4 The rules of equational conditional deduction . 35

4.1 Definitions of the relations . 59
4.2 Proof diagram . 61

5.1 REW: The rules of rewrite deduction . 66

7.1 CONSREW: Constrained rewrite deduction . 100

10.1 BasicArithmetic: Basic arithmetic axioms. 118
10.2 Simplification: Rules for connectors simplification . 131
10.3 CommutativeUnification: Rules for commutative unification 134

11.1 Set of rules RS for unification in the union of disjoint regular and collapse-free theories . . . 139
11.2 The combination rules for unification in E1 ∪ E2 . 145

12.1 SyntacticMutation: Rules for syntactic mutation . 151
12.2 Completion into a resolvent set of axioms . 160
12.3 UnificationCompletion: Rules for computing unification procedures. 160

13.1 Le circuit CROSS . 179

14.1 Narrowing: Unification via constrained narrowing . 189

16.1 Standard completion rules . 202
16.2 A standard completion procedure . 206

17.1 Ordered completion rules . 215
17.2 An ordered completion procedure . 217

18.1 Completion modulo A for left-linear rules . 225
18.2 A completion procedure modulo A for left-linear rules . 226
18.3 Completion modulo A with extensions . 229
18.4 Completion modulo A with extensions . 230
18.5 Completion modulo A without extensions . 233
18.6 Completion modulo A without extensions . 233
18.7 Completion modulo A . 240
18.8 General completion modulo A . 241

19.1 Ordered completion modulo A . 244
19.2 OCM: Ordered Completion Modulo AC . 245
19.3 Refutational Ordered Completion Modulo AC . 246
19.4 Cancellation Laws . 247

20.1 Inference rules for equational Horn logic . 257
20.2 The set UCOND for unfailing conditional completion . 261

January 28, 2006 rewriting solving proving

12 LIST OF FIGURES

21.1 Basic Superposition Rule with equality and inequality constraints 267
21.2 Propagation Rule . 268
21.3 CCM: Constrained Completion Modulo AC . 270

22.1 Standard inductive completion . 278
22.2 A standard completion procedure . 279
22.3 Optimization rules . 280
22.4 Proof by consistency rules . 282
22.5 A proof by consistency procedure . 287
22.6 Induction by rewriting . 293
22.7 Induction by conditional rewriting . 293
22.8 Refutation rule . 294

23.1 Consistent enrichment by completion . 302
23.2 Unfailing consistency rules . 303
23.3 A consistency completion procedure . 306
23.4 Another consistency completion procedure . 307
23.5 Generic consistency by completion . 316
23.6 Generic proof by consistency rules . 318

24.1 Buchberger’s algorithm . 325

January 28, 2006 rewriting solving proving

List of Tables

10.1 Some results on equational unification . 128

January 28, 2006 rewriting solving proving

14 LIST OF TABLES

January 28, 2006 rewriting solving proving

Chapter 1

Introduction

This is not yet an introduction,
we just give some pointers to related surveys and books

The concept of term rewriting system emerges already half a century ago in the study of computational
processes. The ambda-calculus played a crucial role in mathematical logic for formalizing the computability
notion and can be seen as a first term rewriting system.

Since then it has been used in simplification based theorem proving, constraint solving, study and im-
plementation of sequential or parallel computations, design of functional languages as well as to combine
and integrate logic programming with functional programming, definition of language semantics, as a logical
framework, etc...

The reader could also refer to the following main surveys: Gérard Huet and D. Oppen [HO80], Jan Willem
Klop [Klo90a], Nachum Dershowitz and Jean-Pierre Jouannaud [DJ90a, DJ91] David Plaisted [Pla93] Jürgen
Avenhaus and Klaus Madlener [AM90].

Text books on term rewriting written in English are now available: one by Franz Baader and Tobias
Nipkow [BN98] that makes a nice overview of the main rewrite based techniques, and more recently a very
complete one [“T02], written under the name Terese by Marc Bezem, Jan Willem Klop, Roel de Vrijer, Erik
Barendsen, Inge Bethke, Jan Heering, Richard Kennaway, Paul Klint, Vincent van Oostrom, Femke van
Raamsdonk, Fer-Jan de Vries, Hans Zantema.

January 28, 2006 rewriting solving proving

16 Introduction

January 28, 2006 rewriting solving proving

Part I

Terms, Logics and Algebras

January 28, 2006 rewriting solving proving

Chapter 2

First order logic and equational logic

This chapter contains the main notions from logic and universal algebra which are useful in this book. Since
we are mainly concerned with the logic of equality, we define the relevant notions of formulas, models and
deduction systems.

For an extensive presentation of these notions, the reader can refer to [Bir35, Grä79, BM67, Coh81,
Hen77, Wec92], to [Orc90a, Orc90b] for a good survey of mathematics notions used in theoretical computer
science and [Del86] for an introduction to deduction systems. We assume well known the usual notions of
elementary set theory.

2.1 Deduction systems

In order to define the logics and proof theories we are interested in, we shortly present the notion of deduction
systems that will be intensively used.

Definition 2.1 A Deduction system is a 4-tuple (Σ,Φ, A,R) where:

• Σ is a countable alphabet,

• Φ is a set of formulas {φ0, φ1, . . .} that is a decidable language over Σ,

• A is a set of axioms {a0, a1, . . .} that is a decidable subset of Φ,

• R is a finite set of inference rules {r0, r1, . . . , rn} that are computable predicates over Φ.

Infinite sets of axioms are allowed and specified by axiom schemes. An inference rule is written as:

Name φ0 . . . φn−1 ` φn
if Condition

and means:

“Given φ0 . . . φn−1 deduce φn if Condition holds.”

A derivation d of the conclusion c ∈ Φ from the premises P = {p0, . . . , pn−1} ⊆ Φ is a finite nonempty
sequence (d0, . . . , dm) such that di ∈ Φ, dm = c and either di ∈ A (di is an axiom), or di ∈ P (di is a
premise), or di has been obtained by applying some inference rule in R to a set {dj, . . . , dk} of formulas such
that dj , . . . , dk ∈ d and j, . . . , k < i. This is written as:

p0, . . . , pn−1 ` c.

A theorem th is a derivation from the empty set of premises, written:

` th.

A derivation of a theorem is called a proof.
For a deduction system, the set of all proofs is decidable. If the set of all theorems is decidable, the

deduction system is said decidable. If the set of all theorems is undecidable but semi-decidable, the deduction
system is said semi-decidable. If the set of all theorems is not even semi-decidable, the deduction system is
said undecidable. An algorithm that computes a decidable set of theorems is called a decision procedure for
the deduction system.

January 28, 2006 rewriting solving proving

20 First order logic and equational logic

2.2 First-order terms

We give here various point of views of what terms and their basic operations are.

2.2.1 Terms as strings

First-order terms are built on a vocabulary of function symbols and variable symbols. Let us first consider
them as strings.

Definition 2.2 Let F = ∪n≥0Fn be a set of symbols called function symbols, each symbol f in Fn has an
arity which is the index of the set Fn it belongs to, it is denoted arity(f). Elements of arity zero are called
constants and often denoted by the letters a, b, c, It is always assumed that there is at least one constant.
Occasionally, prefix or postfix notation for F1 and infix notation for F2 may be used. F is often called a
set of ranked function symbols or a (unsorted or mono-sorted) signature. Given a (denumerable) set X of
variable symbols, the set of (first-order) terms T (F ,X) is the smallest set containing X and such that the
string f(t1, . . . , tn) is in T (F ,X) whenever arity(f) = n and ti ∈ T (F ,X) for i ∈ [1..n].

The set of variable-free terms, called ground terms, is denoted T (F). Terms that contain variables are
said open. A term is linear if each of its variable occurs only once in it.

Example 2.1 Assume that F = {f, a} with arity(f) = 2 and arity(a) = 0. The term f(a, a) is ground,
f(x, f(a, x)) is not linear but f(x, f(y, z)) is.

Notation: Variables are denoted by the letters x, y, z, terms by the letters l, r, g, d, p, q, s, t, u, v, w.

2.2.2 Terms as trees

A term t may be viewed also as a finite labeled tree, the leaves of which are labeled with variables or constants,
and the internal nodes of which are labeled with symbols of positive arity.

Definition 2.3 A position (also called occurrence) within a term t is represented as a sequence ω of positive
integers describing the path from the root of t to the root of the subterm at that position, denoted by t|ω. A
term u has an occurrence in t if u = t|ω for some position ω in t.

The notation t[s]ω emphasizes that the term t contains s as subterm at position ω. In some cases, ω may be
omitted.

We use Λ for the empty sequence (denoting the empty path to the root) and υ, ω for others. Positions
are ordered in the following way: ω1 ≤ ω2 if there exists ω3 such that ω1ω3 = ω2. If two positions ω1 and ω2

are incomparable, this is denoted ω1 1 ω2.

2.2.3 Terms as mappings

A term can also be viewed as a partial mapping from the monoid of positive naturals (N∗, .) with neutral
element Λ to the set of ranked function symbols F . Dom(t) the domain of such a mapping, is the set of
positions in t, also called domain of t; it should be non empty and closed under prefix, i.e. if ω ∈ Dom(t),
then all prefixes of ω are belonging to Dom(t). The size |t| of the term t is the cardinal of Dom(t). The
number of nodes in the term t labeled with the symbol f is denoted |t|f . Var(t) denotes the set of variables
in t. Grd(t) is the set of non-variable positions in t. By extension, the mapping of empty domain is called
the empty term and denoted Λ.

Example 2.2 The term t = f(a+ x, h(f(a, b))):
— is the following mapping:

Λ 7→ f
1 7→ +
1.1 7→ a
1.2 7→ x
2 7→ h
2.1 7→ f
2.1.1 7→ a
2.1.2 7→ b

— and is represented under a tree
form as follow:

f

rrrrrrrr

KK
KKK

KKK

+

��
�� ::

::
h

a x f

��
�� 88

88

a b

January 28, 2006 rewriting solving proving

2.3 Substitutions 21

Exercice 1 — Define the notions of subterm and replacement on terms using their definition based on mapping.

Answer: a faire

In order to emphasize that t[s]ω has been obtained by subterm replacement, the notation t[ω ←↩ s] is also
used sometimes to denote that in t the subterm t|ω has been replaced by s.

Definition 2.4 The subterm relationship, denoted by �sub, is defined by s�sub t if s is a subterm of t. The
term s is a proper subterm also called a strict subterm of t if s�sub t and s 6= t, which is denoted �sub.

2.2.4 Terms as functions

To any term t and to any subset V = {x1, . . . , xn} of Var(t) we can associate a function denoted t(x1, . . . , xn)
from T (F ,X)n to T (F ,X) such that:

t(x1, . . . , xn) : T (F ,X)
n → T (F ,X)

t1, . . . , tn 7→ t[xi ←↩ ti]i=1,...,n

In particular, taking V = Var(t) shows that any term t can be considered as a function.

Two extensions of the concept of term are useful: infinite terms and sorted terms.

2.2.5 Infinite terms

Infinite terms are simply infinite labeled trees or can be defined, following Section 2.2.3 as partial mappings
having an infinite domain [CR80, AN80, Cou80, Cou83]. Infinite labeled trees with finitely many different
subtrees are called rational trees.

2.2.6 Sorted terms

Sorted terms are obtained when function symbols, variables and terms are categorized into classes, called
sorts.

Definition 2.5 A many-sorted signature denoted by Σ is given by a (denumerable) set of sorts S and a
(denumerable) set of ranked function symbols F . A function symbol f with arity w = s1, . . . , sn ∈ S∗ and
co-arity (or value sort) s is written f : w 7→ s.

Variables are also sorted and x : s means that variable x has sort s. The set Xs denotes a set of variables
of sort s generally supposed to be denumerable and X =

⋃
s∈S Xs is the set of many-sorted variables.

Many-sorted terms are built on many-sorted signatures and classified according to their sorts.

Definition 2.6 The set of terms of sort s, denoted T (Σ,X)s is the smallest set containing Xs and any
constant a : s such that f(t1, . . . , tn) is in T (Σ,X)s whenever f : s1, . . . , sn 7→ s and ti ∈ T (Σ,X)si

for
i ∈ [1..n].

The set of many-sorted terms T (Σ,X) is the family {T (Σ,X)s|s ∈ S}.

2.3 Substitutions

2.3.1 Definitions and elementary properties

A substitution is an application on T (F ,X) uniquely determined by its image of variables. It is thus written
out as {x1 7→ t1, . . . , xn 7→ tn} when there are only finitely many variables not mapped to themselves. The
application of a substitution σ = {x1 7→ t1, . . . , xn 7→ tn} to a term is recursively defined as follows:

1. if t is a variable xi for some i = 1, . . . , n, then σ(t) = ti,

2. if t is a variable x 6= xi for all i = 1, . . . , n, then σ(t) = t,

3. if t is a term f(u1, . . . , uk) with u1, . . . , uk ∈ T (F ,X) and f ∈ F , then σ(t) = f(σ(u1), . . . , σ(uk)).

Example 2.3 For example, applying σ = {(x 7→ f(a, z))} on the term t = g(a, g(x, x)) results in the term
σ(t) = g(a, g(f(a, z), f(a, z))).

Notation: We are mainly denoting substitutions by the Greek letters α, β, γ, σ.

January 28, 2006 rewriting solving proving

22 First order logic and equational logic

Definition 2.7 The domain of a substitution σ is the set of variables that are not trivially mapped to
themselves:

Dom(σ) = {x|x ∈ X and σ(x) 6= x}
and the set of variables introduced by σ is called its range, defined by:

Ran(σ) =
⋃

x∈Dom(σ)

Var(σ(x))

When Ran(σ) = ∅, σ is called a ground substitution. When ρ(s) is an instance of s that belongs to T (F), ρ
is called a ground instantiation of s. The substitution whose domain is empty is denoted Id.

We denote by σ|W the restriction of the substitution σ to the subset W of X , defined as follows:

σ|W (x) = σ(x) if x ∈W
= x else.

Restrictions extend to sets: if S is a set of substitutions, then:

S|W = {σ|W |σ ∈ S}.

The composition of substitutions α and β is denoted by ◦ or . or simply by the juxtaposition βα and
defined as usual for mapping as βα(x) = β(α(x)). The set of all substitutions of T (F ,X) is denoted SubstFX

or Subst when F and X are clear from the context.
The addition of two substitutions σ and ρ can also be defined when their domains are disjoint (Dom(σ)∩

Dom(ρ) = ∅):
(σ + ρ)(x) = σ(x) if x ∈ Dom(σ)

ρ(x) if x ∈ Dom(ρ)

The following elementary properties of substitutions are both basic and useful.

Proposition 2.1

1. The composition of substitutions is associative.

2. For all subset of variables V of X , for all term t and for all substitution σ:

Var(t) ⊆ V ⇒ σ(t) = σ|V (t).

3. For all substitutions σ and σ′ and for all term t,

σ(t) = σ′(t)⇔ σ|Var(t) = σ′|Var(t).

Idempotent substitutions are quite important since they enjoy useful properties that make the definition
of concepts much simpler and proofs easier. In particular we will see that for unification one can restrict
without loss of generality to idempotent unifiers.

Definition 2.8 A substitution σ is idempotent if σ.σ = σ.

The idempotent substitutions can be characterized nicely from their domain.

Lemma 2.1 The following properties are equivalent:

1. σ is idempotent,

2. Ran(σ) ∩ Dom(σ) = ∅.

Proof: If the range and the domain of a substitution are disjoint then clearly the substitution is idempotent.
Conversely, assume the σ is idempotent. Then suppose that there exists x ∈ Ran(σ) ∩ Dom(σ). By
definition of the range, there exists y such that σ(y) = t[x] for some context t[]. Then we have
σσ(y) = σ(t[x]) 6= t[x] since x ∈ Dom(σ), and this contradicts the hypothesis that σ is idempotent. 2

Definition 2.9 Let ξ be the finite substitution {x1 7→ y1, . . . , xn 7→ yn} where y1, . . . , yn are distinct
variables. Then ξ is called a permutation if Ran(ξ) = Dom(ξ) and a renaming if Ran(ξ) ∩ Dom(ξ) = ∅.

We can now prove that permutations are invertible substitutions i.e. satisfy ξ.ξ−1 = Id = ξ−1.ξ.

January 28, 2006 rewriting solving proving

2.3 Substitutions 23

Lemma 2.2 A substitution is invertible iff it is a permutation.

Proof: If ξ = {x1 7→ y1, . . . , xn 7→ yn} is a permutation then µ = {y1 7→ x1, . . . , yn 7→ xn} is clearly its
inverse, ie. ξ.µ = µ.ξ = Id.
Assume now that ξ = {x1 7→ t1, . . . , xn 7→ tn} is a bijective substitution. If there exists x ∈ Dom(ξ)
such that ξ(x) = f(. . .) then x = ξ−1(f(. . .)) which is impossible. Thus Ran(ξ) ⊆ X and ξ should be
of the form ξ = {x1 7→ y1, . . . , xn 7→ yn}. Since ξ is injective, all the yi are distinct. Finally note that
if x 7→ y ∈ ξ then y 7→ x belongs to ξ−1 and thus Ran(ξ) ⊆ Dom(ξ−1) ⊆ Ran(ξ), which proves that ξ
is a permutation. 2

Example 2.4 The substitution σ = {(x 7→ f(a, z))} is not a renaming, but ξ = {(x 7→ y1), (z 7→ y2)}
is one. The substitution µ = {(x 7→ y), (y 7→ x)} is a permutation, but not a renaming. Note that
ξ′ = {(y1 7→ x), (y2 7→ z)} is not the inverse of ξ since ξ.ξ′(x) = ξ(ξ′(x)) = ξ(x) = y1.

Lemma 2.3 If a finite substitution σ is injective and maps variables to variables then it is bijective.

Exercice 2 — Show that the last result is false if the substitution is not finite (i.e. Dom(σ) is not finite).

Answer: Take X = {xi}i∈N and σ(xi) = x2i. This substitution is injective but not surjective.

Representing term by trees leads to the following result of the application of a substitution.

σ : x 7→ σ

x x

=

When using a dag representation for terms, the substituted term may have a more compact form when
it is not linear. In the previous example we get:

σ : x 7→ σ

x

=

2.3.2 Term subsumption

Definition 2.10 A term t is an instance of a term s if t = ρ(s) for some substitution ρ; in that case we
write s ≤ t and say that s is more general than t or that s subsumes t. We call ρ a match from s to t.
The relation ≤ is a quasi-ordering1 on terms called subsumption, whose associated equivalence ≡ and strict
ordering < are respectively called subsumption equivalence and strict subsumption.

Notice that the subsumption ordering is not stable by context: s ≤ t 6⇒ f(t1, . . . , s, . . . , tn) ≤
f(t1, . . . , t, . . . , tn), as shown by the following example: x ≤ a but f(x, x) 6≤ f(x, a). It is not stable by
substitution too: s ≤ t 6⇒ σs ≤ σt since x ≤ a but (x 7→ b)x 6≤ (x 7→ b)a.

Example 2.5 One can check that f(x, y) ≤ f(f(a, b), h(y)).

Another useful ordering on terms is obtained as the combination of the subterm and the subsumption
orderings.

Definition 2.11 The encompassment ordering denoted v is defined by s v t if a subterm of t is an instance
of s i.e.

s v t⇔ ∃σ ∈ Subst, ∃p ∈ Dom(t), σ(s) = t|p

The associated strict ordering is denoted by @.

The main properties of the subsumption on terms are studied in Chapter 3. In particular, up to renaming,
the subsumption ordering is well founded as we will show in Chapter 3.

1see definition on page 53

January 28, 2006 rewriting solving proving

24 First order logic and equational logic

2.3.3 Substitution subsumption

Subsumption extends to substitutions as follows:

Definition 2.12 A substitution τ is an instance on V ⊆ X of a substitution σ, written σ ≤V τ , read σ is
more general over V than τ , when:

σ ≤V τ ⇔ ∃ρ, ∀x ∈ V, τ(x) = ρ(σ(x)).

This is also denoted τ =V ρσ. The relation ≤V is a quasi-ordering on substitutions, also called subsumption.
V is omitted when equal to X .

Exercice 3 — Compare the substitutions σ = {(x 7→ z), (y 7→ z)} and α = {(x 7→ y)} respectively on X the set of

all variables and on {x}.

Answer: We have α ≤X σ as well as α ≤{x} σ, since {y 7→ z}α = {x 7→ z, y 7→ z} either on X or {x}.

But σ ≤{x} α since (z 7→ y).σ = α only on {x} and not on X .

Exercice 4 — Compare the substitutions {(x 7→ f(y, a))} and {(x 7→ f(a, a))} on X and {x}.

Answer: On X they are not comparable. On {x} we have {(x 7→ f(y, a))} ≤{x} {(x 7→ f(a, a))}.

In comparing substitutions, the restriction to the right set of variables is a quite important condition which
has been sometime forgotten. The previous exercises show its importance. It is also emphasized in [SL90]
and [Baa91].
Exercice 5 — Prove that when there is at least a symbol of arity two, the above definition of the subsumption
ordering on substitutions is equivalent to the following one:

σ ≤V τ ⇔ ∀x ∈ V σ(x) ≤ τ (x).

Answer: See [Hue76].

Similarly to terms, the equivalence ≡V and the strict ordering <V on substitutions are respectively called
subsumption equivalence and strict subsumption. It is easily seen that σ and τ are subsumption equivalent
on V iff ρ is a one to one mapping from Ran(σ|V) to Ran(τ|V).

Example 2.6 Note that {x 7→ z, y 7→ succ(z)} and {y 7→ succ(x)} are subsumption equivalent on {x, y}
under the renaming {x 7→ z}.

The following main property is a consequence of the well-foundedness of the subsumption ordering on
terms. It does not hold in general for equational theories.

Theorem 2.1 Up to renaming, the subsumption ordering on substitutions is well-founded.

Proof: [Ede85] 2

Extensive studies of substitutions can be found in [Hue76] and [Ede85].

2.4 Equational logic

2.4.1 Syntax

In the logic of equality, formulas are built from first-order terms and the equality predicate.

Definition 2.13 A pair of two terms {l, r} is called an equational axiom or equality and denoted (l = r), or
an equation in which case it is denoted by l =? r. The variables of an equational axiom are assumed to be
universally quantified. When quantification must be explicit, it is written (∀X, l = r) where Var(l)∪Var(r) ⊆
X .

2.4.2 Deduction system

From a set of axioms, new equalities can be deduced via inference rules. A deduction system for equational
deduction is given in Figure 2.1.

Definition 2.14 Given a set of equational axioms E and a set of terms T (F ,X), the equational theory of
E, denoted T H(E), is the set of equalities that can be obtained, starting from E, by applying the inference
rules given in Figure 2.1.

January 28, 2006 rewriting solving proving

2.4 Equational logic 25

1. Reflexivity ` (t = t)
2. Symmetry (t = t′) ` (t′ = t)
3. Transitivity (t = t′), (t′ = t′′) ` (t = t′′)
4. Congruence {(ti = t′i)|i = 1, . . . , n} ` (f(t1, . . . , tn) = f(t′1, . . . , t

′
n))

if f ∈ Fn
5. Substitutivity (t1 = t2) ` (σ(t1) = σ(t2))

if σ ∈ Subst

Figure 2.1: The rules of equational deduction

Notation: We write
E ` s = t if (s = t) ∈ T H(E).

Exercice 6 — With the signature F = {a, b, f, h} where the arity are respectively 0, 0, 2, 1, describe the equational

theory of E = {a = b}.

Answer: {a = a, b = b, a = b, h(a) = h(a), h(b) = h(b), h(a) = h(b), . . . }

A more compact inference system is the so-called replacement of equals by equals:

Definition 2.15 Given a set E of axioms, we write s←→E t if s|ω = σ(l) and t = s[σ(r)]ω for some position
ω in Dom(s), substitution σ and equality l = r (or r = l) in E.

Example 2.7 If E = {a = b} then h(a)←→E h(b).
For E = {f(x, x) = x} then f(a, b)←→E f(f(a, a), b).

The provability relation of E is the reflexive transitive closure of the above symmetric relation, and is
denoted

∗←→E . It is a congruence relation.
Notation: The quotient of the set of terms T (F ,X) by

∗←→E is denoted by T (F ,X)/E.
The following theorem states the equivalence between the two inference systems for equality deduction.

Theorem 2.2 (Birkhoff) [Bir35]

E ` s = t iff s
∗←→E t.

2.4.3 Models

The models we are interested in are non-empty sets with operations, called algebras. In this section, and in
most of this work, we only consider mono-sorted algebras which consist in only one sort: they are also called
unsorted algebras.

Definition 2.16 For a given unsorted signature F , for a set A and for a function symbol f of arity n ≥ 0, an
interpretation ι of f in A is a function ι(f) from An to A. For a set of function symbols F , an interpretation
ι of F in the set A is a mapping associating to each function symbol in F an interpretation in A.

For example if A = N and taking F = {+, ∗, 0} with arity(+) = arity(∗) = 2 and arity(0) = 0 the
following mappings are two interpretations:

ι1 =






+ 7→ +N

∗ 7→ ∗N
0 7→ 0N

ι2 =






+ 7→ ∗N
∗ 7→ +N

0 7→ 1N

Definition 2.17 For a set F of function symbols, an F-algebra A is given by a non-empty set A (called the
carrier of the algebra) together with an interpretation ι of F . It is denoted A = (A, ι(F)) and ι(F) is often
written FA and the interpretation of a function symbol f written fA.

Example 2.8 A set may be regarded as an algebra with no operation.

Example 2.9 Let F = {0, s,+} with arities 0, 1, 2 respectively. Let us choose as carrier the set of natural
numbers N and for interpretation of the functions: 0N which is the natural 0, sN which is the successor
function in the naturals and +N which is the usual addition on naturals. Then (N, {0N, sN,+N}) is an
{0, s,+}-algebra.

January 28, 2006 rewriting solving proving

26 First order logic and equational logic

For a set of function symbols F and a set a variable X , take as carrier T (F ,X) and for interpretation
of each symbol in F the symbol itself i.e. fT (F ,X)(t1, . . . , tn) = f(t1, . . . , tn). Then (T (F ,X),F) is clearly a
F -algebra.

Definition 2.18 Given two F -algebras A = (A,FA) and B = (B,FB), a mapping θ from A to B such that:

∀f ∈ F , ∀a1, . . . , an ∈ A, θ(fA(a1, . . . , an)) = fB(θ(a1), . . . , θ(an))

is called an homomorphism (an endomorphism if A = B). A bijective endomorphism is an isomorphism.

Example 2.10 A trivial algebra is an algebra (A,FA) whose carrier has only one element. Then there is
only one mapping from An to A for arbitrary n. Therefore all trivial F -algebras are isomorphic.

Substitution on T (F ,X) are endomorphisms of T (F ,X), which justifies their fundamental property: for
any terms t1, . . . , tn ∈ T (F ,X) and symbol f ∈ F :

σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

Definition 2.19 Let A be an algebra with carrier A and X a set whose elements are called variables. An
assignment from X to A is a mapping ν from X to A.

An assignment ν from X to A extends to a morphism also denoted ν from T (F ,X) to A by inductively
defining the image by ν of a non-variable term t by: ν(f(t1, . . . , tn)) = fA(ν(t1), . . . , ν(tn)).

A non-empty class C of F -algebras is called a variety when it is closed under the operations of sub-algebra,
homomorphic image, and direct product. A variety has the nice property of have a canonical representant
called the free algebra.

Definition 2.20 Let C be a non-empty class of F -algebras and X a set of variables. A C-free F-algebra
(also simply called free algebra) over X is any F -algebra L = (L,FL) such that:

• L ∈ C,

• X ⊆ L,

• for any F -algebra A in C and any assignment ν : X → A, there exists a unique homomorphism
φ : L → A such that φ and ν agree on X , i.e. are such that ∀x ∈ X , φ(x) = ν(x).

This can be pictured as follows:

X ⊆ //

ν

��

L

φ��
A

It is easy to see that, when it exists, a free algebra over a set X is unique up to an isomorphism.

Definition 2.21 An algebra I in a class C of F -algebras is C-initial (also simply called initial algebra) if for
any algebra A in C, there exists a unique homomorphism φ : I → A.

Note that by definition, the initial algebra can also be seen as the free algebra over the empty set of
variables. When it exists, it is of course unique up to an isomorphism.

The first well known result of G. Birkhoff on this topics is that the free (and thus also initial) algebra of
a variety always exists:

Theorem 2.3 [Bir35] For any set of variable X , the free algebra of any variety C always exists.

Proposition 2.2 The F -algebra T (F ,X) is the free algebra over X of the class of all the F -algebras.

Varieties can also be characterized by a set of axioms. Let us now introduce the notion of model and
validity in the particular case of equality axioms i.e. universaly quantified equalities of the form ∀Var(l, r), l =
r and existentially quantified axioms i.e. ∀(Var(l, r) \ V), ∃V, l = r where V ⊆ Var(l, r). Notice that by
skolemization, the latter can always be reduced to the former. The universal quantifier is often not explicitly
mentioned.

January 28, 2006 rewriting solving proving

2.4 Equational logic 27

Definition 2.22 An algebra A is a model of an axiom s = t, if for any assignment ν of the variables in s
and t, ν(s) = ν(t).

An algebra A is a model of an axiom ∃V, s = t, if for any assignment ν of the variables in s and t except
those in V , there exists an assignment µ such that µν(s) = µν(t).

Let E be a set of equality axioms. An algebra A is a model of E if it is a model of all the axioms in E.
We also say that the equality s = t is valid in A, and this is denoted by A |= s = t.

Mod(E) denotes the set of models of E. The class of models of a set of equalities E is characterized by
the notion of variety, as follow:

Theorem 2.4 A class C of algebras is the class of models of a set of equalities E iff it is a variety, i.e. when
it is closed under direct product, homomorphic image and sub-algebra.

It can be proved that T (F ,X)/E is a model of E. Moreover,

Theorem 2.5 (Birkhoff) [Bir35] For any set of axioms E, for any terms s, t ∈ T (F ,X),

Mod(E) |= s = t iff T (F ,X)/E |= s = t iff E ` s = t

Notation:
We write s =E t iff Mod(E) |= s = t. Thanks to Theorems 2.2 and 2.5, the notations s =E t and

s
∗←→E t may be used interchangeably.
In the class of algebras that are models of E, the free algebra over X is (isomorphic to) the algebra

T (F ,X)/E. In the class of algebras that are models of E, the initial algebra is (isomorphic to) the algebra
T (F)/E.

Example 2.11 Let (G,+) be a commutative semi-group (see 2.4.7) and define for g ∈ G:

g1 = g

gn+1 = g + gn.

Then for arbitrary, but fixed, natural number n,

fn : g 7→ gn

is an endomorphism of G.

Term algebras are specially interesting because of their large representativity, but this is still limited to
the class of term generated algebras:

Definition 2.23 A F -algebra A = (A, ι(F)) is term generated when for all elements a in A there exists a
term t in T (F) such that ι(t) = a.

All algebras are not term generated, for example if we consider F = {+, ∗, succe, 0}, then the F -algebra
of the reals R where +, ∗, succe, 0 are interpreted with their usual meaning and which domain is the set
of all reals R is not term generated since e.g.

√
2 can not be finitely expressed using only the operators

+, ∗, succe, 0.

2.4.4 The subsumption ordering modulo

Definition 2.24 For a set of equational axioms A, the subsumption ordering modulo A on terms, denoted
≤A, is defined as:

t ≤A t′ ⇔ ∃η ∈ Subst, η(t) =A t
′.

Exercice 7 — Prove, as asserted in the last definition, that ≤A is a preorder for any set of equational axioms A.

Answer: It is enough to check that ≤A is a transitive and reflexive relation.

As a particular case of this definition we get:

t ≤∅ t′ ⇔ ∃η ∈ Subst, η(t) = t′.

When there is no ambiguity, ≤∅ is also denoted ≤ since in this case we get the same definition as previously
(Definition 2.10).

January 28, 2006 rewriting solving proving

28 First order logic and equational logic

This preorder ≤A is not compatible with the term structure: namely it is false in general that if t ≤A t′
and f ∈ Fn then f(t1, . . . , t, . . . , tn) ≤A f(t1, . . . , t

′, . . . , tn) for any terms t1, . . . , tn.
We should also notice that substitutions are not monotonic mapping for the subsumption ordering:

t ≤A t′ 6⇒ σ(t) ≤A σ(t′).

Exercice 8 — Illustrate with some examples the two remarks above.
Answer:

• x ≤∅ a but f(x, x) 6≤∅ f(x, a).

• x ≤∅ a but x.(x 7→ b) 6≤∅ a.(x 7→ b).

This preorder can be extended to substitutions in the following way; suppose that V is a subset of the
set of variables X then:

σ ≤VA σ′ ⇔ ∃µ ∀x ∈ V µ.σ(x) = σ′(x)

In this case the substitution σ is said more general modulo A than σ′ on the set of variables V .
Exercice 9 — For the empty theory we have seen that σ(t) = σ′(t) ⇔ σ|Var(t) = σ′

|Var(t). (see Proposition 2.1).

Give an example of an equational theory A such that this property is not satisfied when = is replaced by =A.

Answer: Assume that A = {f(y) = 0} then the substitutions σ = {(x 7→ a)}andσ′ = Id makes the term f(x)

A-equal: σ(f(x)) = f(a) =A f(x) = σ′(f(x)).

Proposition 2.3

1. For all equational theory A, for all term t and for all substitution σ:

Dom(σ) ∩ Var(t) = ∅ ⇒ σ(t) =A t.

The converse is true if A = ∅.

2. For all substitutions α, β and for all set of variables V1 and V2, if α ≤V1

A β and if V2 ⊆ V1 then α ≤V2

A β

And idempotent substitutions have a simple interesting duplication property:

Lemma 2.4 If σ is an idempotent substitution then for all substitution α,

σ ≤A α⇔ α.σ =A α.

Proof: The implication ⇐ is clear. Conversely, if σ ≤A α then there exists ρ such that ρ.σ =A α and thus:

α.σ =A ρ.σ.σ =A ρ.σ =A α.

2

Exercice 10 — Give an example of an infinite strictly decreasing sequence of substitutions in an equational theory.

Answer: A faire

One should not confuse the subsumption equivalence modulo and equality modulo as shown as follows:

Example 2.12 Let f be an idempotent symbol, A = {x = f(x, x)} then we have: x ≤A f(y, z) (using
substitution η = {(x 7→ f(y, z)}) and f(y, z) ≤A x (using substitution η′ = {(y 7→ x), (z 7→ x)}), so that
x ≡A f(y, z) but of course x 6=A f(y, z).

2.4.5 Satisfiability

Following the mathematical usage, we use the words “equational axiom” or “equality” when the formula is
supposed true. In this case, we are in particular interested in either:

1. specifying the properties that an algebra or class of algebras should satisfy, or

2. solving the problem of the validity of an equality formula in an algebra or class of algebras.

We use the word “equation” instead when we are interested in the problem of finding values to be given
to the free variables appearing in the terms of the equation in such a way that the substituted equation
becomes a valid equality.

January 28, 2006 rewriting solving proving

2.4 Equational logic 29

Short name Name Definition
A(f) Associativity f(f(x, y), z) = f(x, f(y, z))
C(f) Commutativity f(x, y) = f(y, x)
Dr(f, g) Right Distributivity f(g(x, y), z) = g(f(x, z), f(y, z))
Dl(f, g) Left Distributivity f(z, g(x, y)) = g(f(z, x), f(z, y))
D(f, g) Distributivity Dl(f, g) ∪Dr(f, g)
E(h, ∗) Endomorphism h(x ∗ y) = h(x) ∗ h(y)
UE(h, e) Unit Endomorphism h(e) = e
AE(h, ∗) Anti-endomorphism h(x ∗ y) = h(y) ∗ h(x)
H(h, ∗,+) Homomorphism h(x ∗ y) = h(x) + h(y)
I(f) Idempotency f(x, x) = x
Iv(h) Involution h(h(x)) = x
InvR(∗, e) Right Inverse x ∗ i(x) = e
InvL(∗, e) Left Inverse i(x) ∗ x = e
Sr(f, g, h) Right Simplification f(g(x, y), h(y)) = x
Sl(f, g, h) Left Simplification f(h(y), g(y, x)) = x
Ur(∗, e) Right Unit x ∗ e = x
Ul(∗, e) Left Unit e ∗ x = x
Ar(∗, e) Absorb Right x ∗ e = e
Al(∗, e) Absorb Left e ∗ x = e
Cr(f) Right Commutativity f(f(x, y), z) = f(f(x, z), y)
Cl(f) Left Commutativity f(x, f(y, z)) = f(y, f(x, z))
F (f, g) Factorize f(x, f(y, z)) = f(g(x, y), z)
L(∗) Lie brackets (x ∗ y) ∗ z = z ∗ (y ∗ x)
T (f, g) Transitivity f(g(x, y), g(y, z)) = f(g(x, y), g(x, z))

Figure 2.2: Table of usual equational axioms

Definition 2.25 An equation s =? t is satisfiable in an algebra A if there exists an assignment ν of values
to the variables of s and t for which ν(s) = ν(t).

This definition is a particular case of the more general definition of an equational problem.

Definition 2.26 Let F be a set of function symbols, X be a set of variables, and A be an F -algebra. An
(< F ,X ,A >-)equational problem is any set P = {si =?

A ti}i∈I of equations, such that si and ti are terms
in T (F ,X). A solution of P is any homomorphism h from T (F ,X) to A such that ∀i ∈ I, h(si) = h(ti), i.e.
si and ti are mapped to the same value in A by the homomorphism h.
Two equational problems P and P ′ are said to be equivalent if they have the same set of solutions.

We will investigate two cases, when A is the term algebra T (F ,X) (syntactic unification) and when A is
the quotient algebra T (F ,X)/E (semantic unification), for some a priori given set E of equational axioms.
As usual, we reserve the word “unification” for these two cases, and speak of “equations solving” otherwise.

2.4.6 Word problem

One of the simplest problem concerning equational logic is to decide, for a given equational theory T H(E),
if two terms are E-equal or not.

Definition 2.27 Let T H(E) be an equational theory built on the term algebra T (F ,X) and t, t′ be two
terms. The word problem consists to decide if the equality t = t′ holds in T H(E), that is if E |= t = t′.

If the equational theory is recursive, i.e. if one can decide if a given pair of terms is an axiom or not, then
the word problem is semi-decidable.

2.4.7 A theory directory

Let us first give in Table 2.2 the usual definition of commonly used equational axioms. Combination of these
axioms give well known theories described in Table 2.3.
Here are some others well-known equational theories:

January 28, 2006 rewriting solving proving

30 First order logic and equational logic

Name Definition
AG Abelian Group A(∗), C(∗), InvR(∗, e), Ul(∗, e)
QG Quasi group Sl(., \, h), Sl(., \, h), Sr(., /, h), Sr(., /, h) with

h(x) = x.
BR Boolean Ring A(+), C(+), Ur(+, 0), InvR(+, 0),

A(∗), C(∗), Ur(∗, 1), I(∗), Dr(∗,+)
PA Primal Algebras Algebras such that every finitary function on the

algebra can be expressed as a term [Grä79, Nip88]
Minus AE(−,+), Iv(−)

BST Binary signed trees AE(−,+), Iv(−), Sr(+,+,−), Sl(+,+,−)
FH Fages & Huet Ul(∗, e), f(x ∗ y) = f(y)
DlAU Arnborg & Tiden Dl(f, g), A(g), Ur(f, e), Ul(f, e)
CCC Cartesian Closed Category A(∗), C(∗), Ur(∗, 1), Ul(⇒, 1), Ar(⇒, 1), F (⇒

, ∗), Dl(⇒, ∗)

Figure 2.3: Table of some theories

Semi-groups: A semi-group is an algebra (S,+) with a binary operation + which is associative, i.e. satisfies:

(x+ y) + z = x+ (y + z).

A semi-group is Abelian or commutative if it satisfies in addition

x+ y = y + x.

Monoids: A monoid is an algebra (M,+, 0) with a binary operation + and a nullary operation 0 that
satisfies

(x+ y) + z = x+ (y + z)

x+ 0 = x

0 + x = x

where x, y, z are universally quantified variables.

Groups: A group (G,+, i, 0) is an algebra with a binary operation +, a unary operation i and a nullary
operation 0 that satisfies

(x+ y) + z = x+ (y + z)

x+ 0 = x

0 + x = x

x+ i(x) = 0

i(x) + x = 0

where x, y, z are universally quantified variables. A group is Abelian or commutative if it satisfies in
addition

x+ y = y + x.

Rings: A ring is an algebra with binary operations + and ∗, a unary operation i and nullary operations 0
and 1, such that (R,+, i, 0) is an Abelian group, (R, ∗, 1) is a semi-group, and

x ∗ (y + z) = (x ∗ y) + (x ∗ z)
(x + y) ∗ z = (x ∗ z) + (y ∗ z)

where x, y, z are universally quantified variables. A ring is Abelian or commutative if it satisfies in
addition

x ∗ y = y ∗ x.

January 28, 2006 rewriting solving proving

2.4 Equational logic 31

Lattices: A lattice is an algebra (L,∧,∨), with binary operations ∧ and ∨, such that

x ∨ y = y ∨ x
x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z
x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ x = x

x ∧ x = x

x = x ∨ (x ∧ y)
x = x ∧ (x ∨ y)

where x, y, z are universally quantified variables. The lattice is said distributive if it satisfies in addition

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Boolean Algebras: A boolean algebra is an algebra (B,∧,∨,¬, 0, 1), with binary operations ∧ and ∨, a
unary operation ¬ and two nullary operations 0 and 1, such that (B,∧,∨) is a distribute lattice and
in addition

x ∨ 1 = 1

x ∧ 0 = 0

x ∨ (¬x) = 1

x ∧ (¬x) = 0.

Boolean Rings: A boolean ring (B,∧,⊕,¬, 0, 1) is a commutative ring with identity such that

x⊕ x = 0

x ∧ x = x

where x is a universally quantified variable.

2.4.8 A morphological classification of theories

As one may have remarked in the section above, many theories share common properties based on the form
of their axioms. We will now review the most commonly used classes of equational theories.

Let s = t be an axiom of T (F ,X). It is:

• collapsing if s ∈ Var(t) and t is a proper term,

• regular if Var(s) = Var(t),

• subterm collapsing if s is a proper subterm of t,

• Permutative if for all symbol f in X ∪ F : |s|f = |t|f ,

• variable permutative if it is a permutative axiom such that ∀m ∈ Dom(s) s(m) 6∈ X ⇒ s(m) = t(m),
i.e. only variables are permuted.

Example 2.13 Idempotency (f(x, x) = x) is a classical example of collapse and regular axiom. The right
inverse axiom (x ∗ i(x) = e) is not regular and not collapse.

Now, an equational theory T H(E) is:

• finitely presented (also called finitely generated) if it admits a finite axiomatization,

• finite if all classes of terms under
∗←→E are finite,

• permutative if every valid equality is permutative,

January 28, 2006 rewriting solving proving

32 First order logic and equational logic

• variable permutative if all valid equality is variable permutative,

• regular if any presentation of T H(E) contains only regular axioms,

• collapse-free if no presentation of T H(E) contains a collapsing axiom,

• Noetherian (relatively to a quasi-ordering>) if all strictly decreasing chain of substitution σ1 > σ2 > . . .
is finite,

• almost-free (P. Szabo [Sza82] call them Ω-free) if

f(t1, . . . , tn) =E f(t′1, . . . , t
′
n)⇒ ∀i ∈ [1..n] ti =E t′i,

• simple if no valid equality in T H(E) is subterm collapsing,

• monadic if all the symbols involved in the theory are of arity one.

The equational theory of a finite number of associative and commutative symbols is collapse-free, regular,
permutative and finite but not variable permutative. Commutativity alone is variable permutative. Of course
there exists theories that are finite but not permutative, take for example E1 = {f(a) = g(b)}.

Let us give now the main characterizations of these theory classes.

Proposition 2.4 [BHSS90] An equational theory T H(E) is:

• permutative iff there exists a presentation of T H(E) consisting only of permutative axioms,

• regular iff there exists a presentation of T H(E) consisting only of regular axioms,

• collapse-free iff there exists a presentation of T H(E) without collapse axioms.

The main relations between the above theory classes are the following.

Proposition 2.5 [BHSS90]

1. Every permutative theory is finite.

2. Every finite theory is simple.

3. Every simple theory is regular and collapse-free.

4. Every almost-free theory is regular.

5. Every finite theory is Noetherian.

6. The converse of the above properties are false.

Given a class of equational theories C, the class problem is to determine if a theory belongs to this class
or not. The next results summarize the status of the class problems for the classes that we just have defined.

Theorem 2.6

1. The class problem for permutative theories is decidable.

2. The class problem for regular theories is decidable.

3. The class problem for collapse free theories is decidable.

4. The class problem for finite theories is not decidable.

5. The class problem for almost-free theories is not decidable.

6. The class problem for simple theories is not decidable.

Proof: The properties 1, 2 and 3 are an immediate consequence of Proposition 2.4.
Point 4 has been proved in [Rao81]. It is also a consequence of the fact, proved in [NOR85], that it is
undecidable if a theory T H(E), such that E is a finite Church-Rosser semi-Thue system, admits any
infinite congruence class.
The points 5 and 6 are proved in [BHSS90]. 2

January 28, 2006 rewriting solving proving

2.5 Sorted equational logic 33

Exercice 11 — [BHSS90] Let E be the theory defined by the following monadic term rewriting system:

g1(f1(k(g3(x)))) → f1(h(x)) g2(k(x)) → k(g3(x))
h(f2(x)) → f(f2(x)) h(g3(x)) → g2(h(x))

Show that this term rewriting system is convergent (see chapter16). Then prove successively that E is simple, almost-

free and Noetherian but not finite.

Answer: This is fully described in [citeBurckertHS-LU90] page 27, lemma 3.3.8

2.5 Sorted equational logic

2.5.1 Syntax

In sorted equational logic, equalities are built from many-sorted terms and universally quantified. Sorted
presentations specify the sorted signature and the axioms of a given theory.

Definition 2.28 A presentation, also called specification, and denoted SP = (Σ, E), is given by a many-
sorted signature Σ, and a set E of universally quantified equalities (∀X, t = t′) where Var(t) ∪ Var(t′) ⊆ X .
(The quantification may be omitted when X = Var(t) ∪ Var(t′)).

Example 2.14 Consider a presentation of lists with two sorts List for lists and Elt for elements. Lists are
built with two constructors nil for the empty list and push that concatenate an element to a list. Moreover
let us define an operation alter on lists that shuffles two lists and produces a third one. The list structure
and the alter operation are described by the following presentation, where the two-sorted signature Σ gives
sorts and ranges of operations:

sorts : Elt, List

nil : 7→ List

push : Elt List 7→ List

alter : List List 7→ List

and equalities define the alter operation:

∀z : List alter(nil, z) = z
∀x : Elt, y : List, z : List alter(push(x, y), z) = push(x, alter(z, y))

Substitutions are defined as mappings σ from sorted variables to sorted terms such that if x : s then
σ(x) ∈ T (Σ,X)s.

2.5.2 Deduction system

The deduction rules for equational deduction, given in Figure 2.1 of Section 2.4, generalize to the many-
sorted framework provided there is no empty sort. A precise analysis of the possible problems that may arise
when this hypothesis is not satisfied can be found in [MG85].

2.5.3 Models

Many-sorted algebras have carriers corresponding to each sort and operations with sorted arguments.

Definition 2.29 Given a many-sorted signature Σ, a Σ-algebra A consists of a family {As|s ∈ S} of subsets
of A, called the carriers of A, and a family of operations fA : As1 × . . . × Asn

7→ As, associated to each
function f ∈ Σ such that f : s1, . . . , sn 7→ s.

Substitutions, defined as mappings σ from sorted variables to sorted terms such that if x : s then
σ(x) ∈ T (Σ,X)s, induce Σ-homomorphisms on the Σ-algebra of many-sorted terms.

In the following, only models with non-empty sorts are considered. This means that for any model A
and any s ∈ S, As is a non-empty set.

A presentation SP = (Σ, E) actually describes a class of algebras, namely the class of Σ-algebras satisfying
the equalities E, denoted Mod(E) or ALG(SP). ALG(SP) with SP -homomorphisms is a category also
denoted by ALG(SP).

January 28, 2006 rewriting solving proving

34 First order logic and equational logic

Let
∗←→E denote the replacement of equals by equals on T (Σ,X) which is correct and complete for

deduction in ALG(SP):

t
∗←→E t′ iff ∀A ∈ ALG(SP),A |= (∀X, t = t′).

The class ALG(SP) has an initial algebra denoted by T (Σ)/E or by TSP . T (Σ)/E is built as the quotient

algebra of the ground term algebra T (Σ) by the congruence
∗←→E generated by E.

2.6 Conditional logic

2.6.1 Syntax

The formulas being considered are conditional equalities, written “l = r if Γ”, where Γ is a conjunction
of equalities. The meaning of such a formula is that l and r are equal if the condition Γ is satisfied. A
conditional equality is nothing but an equational Horn clause.

Definition 2.30 An equational clause is a clause built with the only equality predicate, and denoted Γ⇒ ∆
where Γ is the antecedent and ∆ the succedent.

An equational Horn clause is an equational clause whose succedent is reduced to one equality. A condi-
tional equality is an equational Horn clause s = t if Γ, also denoted

l = r if (s1 = t1 ∧ · · · ∧ sn = tn).

when conditions need to be explicite. Γ = (s1 = t1 ∧ · · · ∧ sn = tn) and l = r are respectively called the
condition and the conclusion of the conditional equality.

A conditional system is a set of conditional equalities.

In the following, we most often omit the word ”equational” but restrict our approach to this kind of
clauses. This is actually not a real restriction, since up to an encoding of predicates with boolean functions,
any general clause can be translated to an equational clause.

2.6.2 Deduction system

For any set of conditional axioms E, conditional equalities s = t if Γ, can be deduced via inference rules.

A deduction system for conditional equational deduction is given in Figure 2.4. In this system, when
Γ =

∧
i=1,...,n ui = vi with n ≥ 0, σ(Γ) =

∧
i=1,...,n σ(ui) = σ(vi).

Definition 2.31 Given a set of conditional axioms E and a set of terms T (F ,X), the conditional theory of
E, denoted T H(E), is the set of conditional equalities that can be obtained, starting from E, by applying
the inference rules given in Figure 2.4.

2.6.3 Algebraic semantics and models

From the algebraic point of view, conditional systems and equational systems have very similar kinds of
results.

Definition 2.32 Let E be a set of conditional axioms. An algebra A is a model of E if for any axiom
l = r if (s1 = t1 ∧ · · · ∧ sn = tn) in E, for any assignment ν of variables in A,

if ∀i ∈ [1, . . . , n], ν(si) = ν(ti) then ν(l) = ν(r).

We also say that the axiom l = r if (s1 = t1 ∧ · · · ∧ sn = tn) is valid in A, or that A satisfies l =
r if (s1 = t1 ∧ · · · ∧ sn = tn), and this is denoted by A |= s = t.

Given a set of conditional axioms E, A is a model of E if A satisfies all the conditional axioms in E.

Definition 2.33 A set of conditional axioms E is called consistent if it has a model, and inconsistent or
unsatisfiable otherwise.

E implies C (written as E |= C) if every model of E satisfies C.

January 28, 2006 rewriting solving proving

2.6 Conditional logic 35

1. Reflexivity
`
(t = t)

2. Symmetry (t = t′)
`
(t′ = t)

3. Transitivity (t = t′), (t′ = t′′)
`
(t = t′′)

4. Congruence {(ti = t′i)|i = 1, . . . , n}
`
(f(t1, . . . , tn) = f(t′1, . . . , t

′
n))

if f ∈ Fn
5. Substitutivity t1 = t2 if Γ

`
σ(t1) = σ(t2) if σ(Γ)
if σ ∈ Subst

6. XXX t1 = t2 if (Γ ∧ t′1 = t′2), t
′
1 = t′2 if Γ′

`
t1 = t2 if (Γ ∧ Γ′)

Figure 2.4: The rules of equational conditional deduction

LetMod(E) denote the set of models of E. It can be proved that there exists a smallest congruence on
T (F ,X) generated by E. This congruence is obtained as the least fixpoint of a continuous function defined
on the complete lattice of congruences built on T (F ,X). For more details, see [GTW78, Kap83, Rém82].

The quotient algebra T (F ,X)/E of T (F ,X) by the congruence generated by E is a model of E. Moreover
the initial model is the quotient algebra T (F)/E of ground terms by the congruence generated by E.

Following earlier work, a Birkhoff-like theorem establishes the completeness of conditional replacement
of equals by equals [Sel72](see also [BDJ78, BK86]).

The deduction system for conditional equational deduction given in Figure 2.4 is sound and complete
with respect to this notion of models.

Theorem 2.7 [Kap83] For any set of conditional axioms E, for any conditional equality s = t if Γ,

Mod(E) |= s = t if Γ iff E ` s = t if Γ.

2.6.4 Herbrand interpretations

Considering a conditional axiom as an equational Horn clause leads to the consideration of another kind of
semantics, through Herbrand interpretations.

Definition 2.34 An equality Herbrand interpretation ≡ is a congruence on ground terms.

Definition 2.35 An interpretation ≡ is said to satisfy a ground equational axiom C = (l = r if Γ) if either
Γ 6⊆≡ or (l = r) ⊆≡. Then C is said true in ≡, otherwise C is false

An interpretation ≡ is said to satisfy a non-ground equational axiom C = (l = r if Γ) if it satisfies all its
ground instances.

Of course, the congruence generated by a set of conditional axioms E on T (F) is an equality Herbrand
interpretation. The relation between the two proposed semantics is summarized in the following proposition.

Proposition 2.6 A ground equational axiom C = (l = r if Γ) holds in the initial model T (F)/E iff the
equality Herbrand interpretation generated by E satisfies C.

Proof: Let C be l = r if
∧
i=1,...,n si = ti. The result is due to the equivalence of the two propositions:

• ∀σ ground substitution on TF/E, if ∀i = 1, . . . , n, σ(si) =E σ(ti) then σ(l) =E σ(r).

January 28, 2006 rewriting solving proving

36 First order logic and equational logic

• ∀σ ground substitution on TF/E, either σ(Γ) 6⊆=E, or (σ(l) = σ(r)) ⊆=E.

2

Definition 2.36 A conditional axiom satisfied by any interpretation is called a tautology.
A conditional axiom satisfied by no interpretation is said unsatisfiable and is called a contradiction. A

contradiction is denoted by the empty clause ⇒ .

Example 2.15 A conditional axiom of the form Γ ∧ s = t⇒ s = t or Γ⇒ t = t are tautologies.

2.6.5 An example

The interest on conditional equalities can by justified by an example due to Bergstra and Meyer [BM84]
of a conditional specification whose initial algebra cannot be specified (in the same signature) by means of
equations.

Example 2.16 [BM84] The following specification describes finite sets of natural numbers, with a counting
function card yielding the number of elements in a set. There are two sorts, natural numbers and sets of
natural numbers. • denotes the insertion operation of a natural number in a set.

sort Nat, SetOfNat

0 : 7→ Nat

succ : Nat 7→ Nat

∅ : 7→ SetOfNat

• : Nat, SetOfNat 7→ SetOfNat

card : SetOfNat 7→ Nat

∀x : Nat, s : SetOfNat, x • (x • s) = x • s
∀x, y : Nat, s : SetOfNat, x • (y • s) = y • (x • s)

card(∅) = 0
∀x : Nat, card(x • ∅) = succ(0)

∀x : Nat, card(0 • (succ(x) • ∅)) = succ(succ(0))
∀x, y : Nat, card(succ(x) • (succ(y) • ∅)) = card(x • (y • ∅))

∀x, y : Nat, ∀s : SetOfNat,
(card(x • (y • ∅)) = succ(0)∧
card(x • s) = succ(card(s))∧
card(y • s) = succ(card(s))) if

card(x • (y • s)) = succ(succ(card(s)))

In [BM84], it is proved that the corresponding initial algebra cannot be specified with finitely many equations
in the given signature. Of course a finite equational specification can be obtained if auxiliary functions are
allowed.

January 28, 2006 rewriting solving proving

Chapter 3

Computations in the term algebra

This chapter deals with specific computations in the term algebra: matching, generalisation and unification.
It enlights the lattice structure of the free algebra.

3.1 The lattice of terms

The set of terms can be seen as a lattice for the subsumption ordering. We now describe this structure.

3.1.1 Renaming

The relation ≤ is a quasi-ordering on terms whose associated equivalence ≡ and strict ordering < are
respectively called subsumption equivalence and strict subsumption.

In case s and t are subsumption equivalent, the following result shows that σ is a one to one mapping
from Var(s) to Var(t), called a conversion or more often a renaming.

Lemma 3.1 For all terms t and t′,

t ≡ t′ ⇔ ∃ξ ∈ Perm, t = ξ(t′)

Proof: It relies on the classical lemma stating that for two mappings f : E → F and g : F → G, if g.f is
injective then f is injective too and, if g.f is surjective then g is surjective too.

If t = ξ(t′), since ξ is a permutation, it has an inverse, which prove that t ≡ t′.
Conversely, there exist σ and σ′ such that

σ(t) = t′ and σ′(t′) = t.

and it is not restrictive to assume their domains such that:

Dom(σ) ⊆ Var(t) and Dom(σ′) ⊆ Var(t′).

We then have σ(σ′(t′)) = t′ and σ′(σ(t)) = t. By the proposition 2.1 we can write

Dom(σ.σ′) ∩ Var(t′) = Dom(σ′.σ) ∩ Var(t) = ∅

This implies that ∀x ∈ Var(t), σ′σ(x) = x and thus σ′σ is injective. The same symmetrically hold for
σσ′. Thus σ and σ′ are both injective because of the result recalled above.

Now let us prove that σ′σ is bijective. Assume that there exists x such that |σ′σ(x)| ≥ 1. This will
contradict the fact that σ′σ is the identity on t and thus σ′σ is a finite substitution that maps variables
to variables and thus which is bijective by application of lemma 2.3. The same holds symmetrically
for σσ′ and thus both σ and σ′ are permutations.

2

It should be emphasized that this result is not true anymore in an arbitrary equational theory:

January 28, 2006 rewriting solving proving

38 Computations in the term algebra

Example 3.1 If we assume the operator + idempotent and thus satisfying x+x = x, there exist substitutions
σ and σ′ such that:

σ((x+ y) + z) =E u+ v
σ′(u + v) = (x+ y) + z

(take for example σ = {(x 7→ u)(y 7→ u)(z 7→ v)} and σ′ = {(u 7→ x + y), (v 7→ z)}) where σ should identify
x and y and thus can not be a permutation.

The previous lemma extends easily to substitutions:

Lemma 3.2 For all substitutions σ and σ′,

σ ≡ σ′ ⇔ ∃ξ ∈ Perm ξ.σ = σ′.

This last result is no more true if substitutions with infinite domains are considered as shown by the
following example.

Example 3.2 [Hue76] Let σ1 = {xi 7→ x2i}i∈N and σ2 = {x2i 7→ xi}i∈N. Then σ2.σ1 = Id and σ1.Id = σ1

thus Id ≡ σ1 but obviously there does not exist any permutation ξ such that ξ.Id = σ1.

We are denoting (T̂ ,≤) the ordered set obtained as the quotient of the pre-ordered set T (F ,X) by the

subsumption equivalence ≡. Since the subsumption equivalence is not a congruence T̂ is not an algebra.

3.1.2 Matching

The matching substitution from t to t′, when it exists, is unique and can be computed by a simple recursive
algorithm given for example by G. Huet [Hue76] and that we are describing now.

Definition 3.1 A match-equation is any formula of the form t�? t′, where t and t′ are terms. A substitution
σ is solution of the match-equation t�? t′ if σt = t′. A matching system is a conjunction of match-equations.
A substitution is solution of a matching system P if it is solution of all the match-equations in P . We denote
by F a matching system without solution.

We are now ready to describe the computation of matches by the following set of transformation rules
Match where the symbol ∧ is assumed to be associative, commutative and idempotent.

Delete t�? t ∧ P
7→7→ P

Decomposition f(t1, . . . , tn)�? f(t′1, . . . , t
′
n) ∧ P

7→7→ ∧
i=1,...,n ti �? t′i ∧ P

SymbolClash f(t1, . . . , tn)�? g(t′1, . . . , t
′
m) ∧ P

7→7→ F if f 6= g
MergingClash x�? t ∧ x�? t′ ∧ P

7→7→ F if t 6= t′

SymbolVariableClash f(t1, . . . , tn)�? x ∧ P
7→7→ F if x ∈ X

Match: Rules for syntactic matching

Theorem 3.1 The normal form by the rules in Match, of any matching problem t�? t′ such that Var(t)∩
Var(t′) = ∅, exists and is unique.

1. If it is F, then there is no match from t to t′.

2. If it is of the form
∧
i∈I xi �? ti with I 6= ∅, the substitution σ = {xi 7→ ti}i∈I is the unique match

from t to t′.

3. If it is empty then t and t′ are identical: t = t′.

January 28, 2006 rewriting solving proving

3.1 The lattice of terms 39

Proof: Termination of the set of rules is clear since each application of a rule strictly decreases the size of
a term in the system.
Let us now prove that each of the above rule preserves the set of solutions.
Delete: Since the property that Var(t) ∩ Var(t′) = ∅ is preserved by rule application, t �? t ⇒
Var(t) = ∅. It is thus clear that Delete preserves the solutions.
Decomposition: If σ(f(t1, . . . , tn)) = f(t′1, . . . , t

′
n), then f(σ(t1), . . . , σ(tn)) = f(t′1, . . . , t

′
n) and since

f is a free symbol, σ is a solution of all match-equations ti �? t′i.
For the remaining rules, the proof is clear. 2

Exercice 12 — Write a program, in the language of your choice, implementing a matching algorithm derived from

the Match set of rules.

Answer:

Exercice 13 — Compute the match from the term f(g(z), f(y, z)) to the term f(g(f(a, x)), f(g(c), f(a, x))).

Answer: {z 7→ f(a, x), y 7→ g(c)}

It should be noted that the rule Delete in the previous set of rule is not correct when the two members
of the match equation t �? t′ share variables. This can be seen on the following example. The matching
problem f(x, x) �? f(x, a) has no solution but we have the following set of transformations: f(x, x) �?

f(x, a) `Decomposition {x�? x, x�? a} `Delete {x�? a} which has an obvious solution.

3.1.3 Lower semi-lattice

Definition 3.2 Let E be a set, ≤ be a binary relation on E and ∧ be a binary operation on E. The
structure (E,≤,∧) is a well-founded lower semi-lattice if:

1. the relation ≤ is an ordering

2. all elements (t1, t2) of E admit a greatest lower bound denoted t1 ∧ t2 and defined by:

t1 ∧ t2 ≤ ti for i = 1, 2
∀t ∈ E, t ≤ t1 and t ≤ t2 ⇒ t ≤ t1 ∧ t2

3. the ordering ≤ is well-founded.

The next property is a well-known result of lattice theory [Bir67, Hue76]:

Proposition 3.1 If (E,≤,∧) is a well-founded lower semi-lattice then:

1. every non-empty subset F of E admits a greatest lower bound denoted ∧F or glb(F),

2. every subset F of E, bounded from above, admits a least upper bound denoted ∨F ou lub(F).

3.1.4 Least generalization

The next result, despite of its elementary appearance, requires a technical proof [Hue76] based on the size
of the terms and on the number of their variables.

Lemma 3.3 For any finite term t, the set {t′ ∈ T̂ |t′ ≤ t} is finite.

If the ordering considered on the set of terms T (F ,X) is ≤, then a set of terms is bounded from above
if these terms have a common instance (may be using different substitutions), and bounded from below if
there exists a term that can be instanciated in every term of the set.

In order to show that two terms t and t′ always have a greatest lower bound for ≤, we adopt the
presentation of [DJ90a].

We consider the following transformation rules, taking a pair of the form (w,E) where w is a greatest
lower bound of the initial set of terms and E is the set of pairs to be generalized.

GeneDecompose (w; f(t1, . . . , tn) =x f(s1, . . . , sn) ∧ E)
7→7→
((x 7→ f(x1, . . . , xn)).w; {t1 =x1 s1 ∧ . . . ∧ tn =xn

sn} ∧ E)
if x1, . . . , xn are new variables

GeneMerging (w; s =x t ∧ s =y t ∧ E)
7→7→
((x 7→ y).w; s =y t ∧ E)

Generalization: Rules computing the least generalization

January 28, 2006 rewriting solving proving

40 Computations in the term algebra

Lemma 3.4 For all terms t and t′ and any variable x not appearing in t and t′, the normal form of
(x; {s =x t}) for the set of rules Generalization exists and is called the least generalization of t and t′.

Exercice 14 — Compute the least generalization of f(g(a), f(a, x)) and f(y, f(h(z), v)). Same question for

f(a, g(a, z)) and f(x, g(x, c)).

Answer: The least generalization are respectively: f(x1, f(x2, x3)) and f(x1, x2).

Lemma 3.5 The least generalization of any two terms t and t′ is the greatest lower bound of these two
terms for ≤.

Theorem 3.2 (T (F ,X)/ ≡,≤,∧) is a well-founded lower semi-lattice.

Proof: This is an immediate consequence of the previous lemmas. 2

A consequence of the last result and of the Proposition 3.1, is the following:

Corollary 3.1 Any subset of terms bounded from above have a least upper bound.

This last result can be depicted as follow:

σ µ

α β

t t’

glb

lub

Exercice 15 — Let F{f, g, a} where f, g, a are respectively of arity 2, 1, 0. Build the graph of the relation ≤ on

T (F ,X) for the terms of size less than 4.

Answer:

Exercice 16 — Compute the least upper bound of f(a, b) and f(c, d). Same question for f(g(z), a) and f(z, y).

Answer: f(a, b) and f(c, d) are not bounded from above (i.e. there is no term which is a common instance of this

two terms) thus they do not have a least upper bound. The least upper bound of f(g(z), a) and f(z, y) is f(g(x), a).

3.1.5 Syntactic unification and least upper bound

Obviously there is a relationship between unification and the notion of least upper bound, but both notions
do not coincide in general. In this section, inspired from [Hue76], we study the relationship between these
two concepts.

Lemma 3.6 If two term t1 and t2 are unifiable then t1 and t2 are bounded from above.

The converse is true only for terms that do not share variables. This can be examplified with the two
terms f(a, x) and f(x, b), whose least upper bound is f(a, b) but that are clearly not unifiable.

Indeed the computation of the unified term is equivalent to the computation of the least upper bound.
This is because every common instance σ1(t1) = σ2(t2) determines a unifier σ1|V ar(t1) + (σ2ξ

−1)|V ar(t2) of t1
and ξ(t2). One can thus compute the common instances of t1 and t2 using unification of t1 and ξ(t2).

Conversely, let us show how to compute unifiers from majorant. Let t, t′ be two terms to be unified and
V = Var(t) ∪ Var(t′). Let us call x1, . . . , xn the variables of V and consider the terms

t1 = f(x1, f(x2, . . . , f(xn, t))) and t′1 = f(x1, f(x2, . . . , f(xn, t
′)))

January 28, 2006 rewriting solving proving

3.2 Syntactic unification 41

If u is a common instance of t1 and t′1, then necessarily we have u = σ1(t1) = σ2(t2) with σ1|V = σ2|V =
{xi 7→ ui|1 ≤ i ≤ n}. σ1 and σ2 coincide on the common variables of t and t′, and we can define the
substitution η = σ1|V ar(t) + σ2|V ar(t′) for which η(t) = η(t′). Thus t and t′ are unifiable. This allows us to
state the following result:

Lemma 3.7 When there exists at least one symbol f of arity at least two in F , then two terms
t and t′ sharing the variables {x1, . . . , xn} are bounded from above iff f(x1, f(x2, . . . , f(xn, t))) and
f(x1, f(x2, . . . , f(xn, t

′))) are unifiable.

Exercice 17 — Use the previous study to prove that the terms f(a, x) and f(x, b) are not unifiable.

Answer: One has only to build the terms f(x, f(a, x)) and f(x, f(x, b)) and to check that they have no common

instance.

3.2 Syntactic unification

Syntactic unification is the process of solving equations in the free algebra T (F ,X). In this section, unifica-
tion problems are assumed to be unquantified conjunctions of equations. This is so because there is no need
for new variables to express the (unique) most general unifier.

3.2.1 Definitions

Let us first precise the definition of unification in the term algebra. The following definitions are in fact
instances of the general definitions given before.

Definition 3.3 An equation is an unquantified formula of the form s =? t where s and t are terms. We
also consider unification problems that are conjunction of equations and that are denoted either P = (s1 =?

t1∧ . . .∧sn =? tn) or P = {s1 =? t1, . . . , sn =? tn}. Syntactic unification is the problem of solving unification
problems in the free algebra T (F ,X). A solution or unifier of an equation s =? t is a substitution σ such
that σ(s) = σ(t). A substitution is solution of a unification problem P if it is solution of every equation
in P . Thus if P is empty, any substitution unifies it. The set of all unifiers of a unification problem P is
denoted U(P). A most general unifier of a unification problem P , denoted mgu(s, t), is a minimal element σ
of U(P) with respect to the subsumption strict ordering i.e. for any solution α of the system P , σ ≤Var(P) α.
A variable x in Var(P) is a solved variable for the system P when P = (Q ∧ x =? t) and x /∈ Var(Q) and
x /∈ V art.
Example 3.3 The equation f(x, a) =? f(b, y) has the unifier σ = {x 7→ b, y 7→ a} in the term algebra
T ({f, a, b}, {x, y}). It is a most general unifier, since it is the unique solution.

Example 3.4 Let us now consider the equation e = (x + y =? u + h(x)). It has an infinite number of
unifiers, for example:

µ1 = {x 7→ a, u 7→ a, y 7→ h(a)}
µ2 = {x 7→ z, u 7→ z, y 7→ h(z), z 7→ u}
µ3 = {x 7→ u, y 7→ h(u)}
µ4 = {x 7→ z, u 7→ z, y 7→ h(z)}.

We can notice that µ1 = {z 7→ a}.µ2, and thus µ2 is more general than µ1. But we also have µ2 = {u 7→
z, z 7→ u}.µ3 and µ3 = {u 7→ z, z 7→ u}.µ2 and thus µ2 ≤ µ3 and µ3 ≤ µ2. What looks curious is that
µ4 = {u 7→ z}.µ3 but µ4 is not smaller than µ3. Similarly µ2 is smaller than µ4 but the converse is false!
But if one considers the ordering restricted to the variable of interest (in this case W = V (e) = {x, y, u}) we
get µ4 ≤W µ2 and µ2 ≤W µ4. Note finally that µ3 is idempotent.

The previous example illustrates two points:

• First, equivalent unifiers (for example µ2 and µ3) can have in general an arbitrary large size, since they
differ by a permutation which can be chosen arbitrary large. Thus in most applications, one would like
to find “the best most general unifier”, for example the idempotent one.

• Second, unifiers can involve variables that are in some sense unnecessary to consider, since they are
not in the set of variables of the terms to be unified.

Thus we will see in this section that all most general unifiers are equivalent up to permutation and that the
subsumption pre-order ≤ can be usefully restricted to consider only the variables of the terms to be unified.

January 28, 2006 rewriting solving proving

42 Computations in the term algebra

3.2.2 Tree solved forms

For our purpose, we use variations of two different kinds of solved forms:

Definition 3.4 A tree solved form for a unification problem P is any conjunction of equations:

x1 =? t1 ∧ · · · ∧ xn =? tn

equivalent to P such that ∀i, xi ∈ X and:

(i) ∀1 ≤ i ≤ n, xi ∈ Var(P),
(ii) ∀1 ≤ i, j ≤ n, i 6= j ⇒ xi 6= xj ,
(iii) ∀1 ≤ i, j ≤ n, xi /∈ Var(tj).

Notice that the variables xi (i = 1..n) are solved. The other variables in P are called parameters.

We may speak of a tree solved form without any reference to P , in case P is the tree solved form itself.
We may also require that all variables in the solved form are variables of P .

Example 3.5 The unification problem {x =? f(y, a), z =? g(w)} is in tree solved form but {x =?

f(y, z), z =? a} or {x =? f(y, a), x =? a} are not in tree solved forms.

Tree solved forms have the following straightforward but useful property:

Lemma 3.8 A unification problem P with tree solved form:

P = (x1 =? t1 ∧ · · · ∧ xn =? tn)

has, up to subsumption equivalence, a unique most general idempotent unifier {x1 7→ t1, · · · , xn 7→ tn}
denoted µP .

This is an immediate consequence of the following result:

Lemma 3.9 If x is a variable that does not occur in the term t, then the equation x =? t has σ = {x 7→ t}
as most general idempotent unifier.

Proof: σ is obviously a solution.
Conversely, let θ be a solution, then θσx = θt = θx. If y ∈ Var(t) then θσy = θy.
Thus σ ≤Var(t)∪{x} θ. The idempotency of σ is an immediate consequence of the fact that x 6∈ Var(t).
2

Note that these two results remain valid in any equational theory E.

It is clear that in general a unification problem has not a unique tree solved form: for example the
problem P = {x =? y} is itself a tree solved form but {y =? x} is also such a solved form for P . This is
of course related to the (stricto-sensus non-) unicity of most general unifiers. Let us look at that problem
from the point of view of solved forms. As quoted first in [LMM88], for a given solvable unification problem
P , the number of equations of tree solved forms of P does not depend on the computing strategy of the
unification algorithm but is a natural invariant of the unification problem.

Theorem 3.3 Let S be a solvable unification problem and P,Q be two of its tree solved forms. Then
|P | = |Q| and the number of solved variables and parameters of P and Q are the same.

By analogy with linear algebra, the number of solved variables of a tree solved form is called in [LMM88]
its rank and the number of parameters, which is also an invariant, is called the dimension of the equational
problem.

This result is a consequence of the following lemmas where we first prove that two equivalent tree solved
forms have the same set of variables.

Lemma 3.10 In any regular theory, if P and Q are two equivalent tree solved forms then Var(P) = Var(Q).

January 28, 2006 rewriting solving proving

3.2 Syntactic unification 43

Proof: By contradiction. Assume that x is a solved variable in P but is not a variable of Q. If x is solved
in P then µP = {x 7→ t} + µ for some term t and substitution µ. Since x is not a variable of Q and
assuming the theory regular, µ is solution of Q but not of P , contradicting the fact that P and Q are
equivalent.

If x is a parameter in P but is not a variable of Q. Then µP = {y 7→ t[x]} + µ for some term t, some
variable y and a substitution µ. Since µP is an idempotent unifier, we have following Lemma 2.4:

µQµP =Var(P)∪Var(Q) µQ.

But since x 6∈ Var(Q), we have:
µQµP (y) = µQ(t[x]) = r[x]

for some term r. On the other side µQ(y) = s where s does not contain any x because x is assumed
not to be a variable of Q. Assuming the theory regular, which is the case of the empty theory, it is not
possible to have r[x] = s and thus x should also be a variable of Q. 2

Lemma 3.11 If P and Q are two equivalent tree solved forms then |P | = |Q|.

Proof: The principle of the proof is to establish an injection π between the solved variables of P and of Q.
Let x be a solved variable in P , i.e. P = {x =? s} ∪ P ′}.
If x is a solved variable of Q then we define π(x) = x.
If x is not a solved variable of Q then there exists a variable y such that y =? t[x] ∈ Q. And since x is
not solved in Q:

x = µQ(x) = µQ(s).

But this is possible only if s is a variable z and µQ(s) is also a variable. And because of the last
equality, this variable should be x. In this situation we necessary have:

P = {x =? z} ∪ P ′} and Q = {z =? x} ∪Q′}

In this case, let us define π by π(x) = z.

We have now to prove that π is an injection.
Let us assume that this is not true. In which case:

P = {x =? s, z =? t} ∪ P ′} and Q = {y =? u} ∪Q′}

such that (1) : π(x) = y and (2) : π(z) = y. By definition of π, there are two possible cases for each
of the equalities (1) and (2). We summarize all the possible cases in the following table:

x = y x = u, y = s
z = y x = y = z z = y = s

z = u, y = t x = y = t x = z = u

But all these cases are clearly impossible since P and Q are tree solved forms (and thus x and z, x and
t, z and s must be different variables).
This prove that π is injective and thus that |P | ≤ |Q|. But we can in the same way define an injection
from Q to P and thus prove that |Q| ≤ |P | which terminates the proof. 2

The reader may had noticed that the previous proof can be extended to the case of regular collapse free
theories.

3.2.3 Dag solved form

We now define another kind of solved form, which is important for complexity (and efficiency) reasons, by
relaxing the third condition defining tree solved forms:

Definition 3.5 A dag solved form for a unification problem P is any system of equations:

x1 =? t1 ∧ · · · ∧ xn =? tn

equivalent to P such that ∀i, xi ∈ X and:

(i) ∀1 ≤ i ≤ n, xi ∈ Var(P),
(ii) ∀1 ≤ i, j ≤ n, i 6= j ⇒ xi 6= xj ,
(iii) ∀1 ≤ i ≤ j ≤ n, xi /∈ Var(tj).

January 28, 2006 rewriting solving proving

44 Computations in the term algebra

Notice that a tree solved form is a dag solved form and than the two definitions differ only in item (iii).
Of course, dag solved forms save space, since the value of the variable xj may not be duplicated in the t′is
for j ≥ i (see section 3.2.5).

Example 3.6 The equational problem {x =? f(y, z) ∧ y =? a} is a dag solved form but {y =? a ∧ x =?

f(y, z)} is not and {x =? f(x, y)} is of course not, because of the cycle on the variable x.

Lemma 3.12 A unification problem:

P = (x1 =? t1 ∧ · · · ∧ xn =? tn)

in dag solved form has, up to subsumption equivalence, a unique most general idempotent unifier σ =
σn · · ·σ2σ1, where σi = {xi 7→ ti}.

Proof: First, σ is a solution of P , since

∀j σxj = σn . . . σ2σ1xj = σn . . . σj+1tj = σtj

by the above conditions on the variables.
Second, σ is idempotent by definition of a dag solved form.
Last, in order to prove that σ is most general it is enough to prove θσ =Var(P) θ (see Lemma 2.4).
Let us prove this by induction on n. The base case (j = 0): the system of equation is empty and the
substitution is the identity which is most general.
Let n be at least 1, and θ be an arbitrary solution.

• for y different from all the xi:
θσn · · ·σ2σ1(y) = θ(y)

• for xn:
θσn · · ·σ2σ1(xn) = θ(tn) = θ(xn)

• for xi s.t. i < n:
θσn · · ·σ2σ1(xi) by definition of the σj we get:
= θσn · · ·σi−1σi(xi) by definition of the σi we get:
= θσn · · ·σi−1(ti) by application of the induction hypothesis on

the system P without the first i equations we
get:

= θ(ti) = θ(xi)

which concludes the proof. 2

Dag solved forms relate to the so-called occur-check ordering on X :

Definition 3.6 Given a unification problem P , let ∼P be the equivalence on X generated by the pairs (x, y)
such that x =? y ∈ P . The occur-check relation ≺oc on X defined by P is the quasi-ordering generated by
the pairs (x′, y′) such that x′ ∼P x, x =? f(s1, ..., sn) ∈ P, y ∈ Var(f(s1, ..., sn)), y ∼P y′.

Example 3.7 For the following system P = x =? f(u, a) ∧ u =? g(f(a, x)) ∧ x =? y ∧ x =? z we have
x ∼P y ∼P z and y ≺oc u ≺oc x.

In a dag solved form, any two variables are not in the equivalence of the occur-check ordering. Conversely,
a system of equations of the form x =? t with x ∈ X and such that ≺oc is acyclic, can be ordered (using
topological sort) so as to meet the above condition. Accordingly, such a set of equations will be considered
in dag solved form.

3.2.4 Complete sets of rules for syntactic unification

We are now giving transformation rules for computing solved forms of unification problems. They use a
constant F which denote a unification problem without solution.
Notation: Given a set of equations P , {x 7→ s}P denotes the conjunction of equations obtained from P by
replacing all the occurrences of the variable x by the term s.

Let SyntacticUnification be the following set of transformation rules:

January 28, 2006 rewriting solving proving

3.2 Syntactic unification 45

Delete P ∧ s =? s
7→7→ P

Decompose P ∧ f(s1, . . . , sn) =? f(t1, . . . , tn)
7→7→ P ∧ s1 =? t1 ∧ . . . ∧ sn =? tn

Conflict P ∧ f(s1, . . . , sn) =? g(t1, . . . , tp)
7→7→ F if f 6= g

Coalesce P ∧ x =? y
7→7→ {x 7→ y}P ∧ x =? y if x, y ∈ Var(P) and x 6= y

Check* P ∧ x1 =? s1[x2] ∧ . . .
. . . ∧ xn =? sn[x1]

7→7→ F if si /∈ X for some i ∈ [1..n]
Merge P ∧ x =? s ∧ x =? t

7→7→ P ∧ x =? s ∧ s =? t if 0 < |s| ≤ |t|
Check P ∧ x =? s

7→7→ F if x ∈ Var(s) and s /∈ X
Eliminate P ∧ x =? s

7→7→ {x 7→ s}P ∧ x =? s if x /∈ Var(s), s /∈ X , x ∈ Var(P)

SyntacticUnification: Rules for syntactic unification

The transformation rules Conflict and Decompose must be understood as schemas, f and g being
quantified over the signature. We avoid merging Coalesce and Eliminate into a single rule on purpose,
because they do not play the same role. Coalesce takes care of variable renaming: this is the price to pay
for alpha-conversion. Eliminate is quite different from Coalesce because it makes terms growing, thus we
will see how to avoid applying it.

First of all let us prove that all these rules are sound i.e. preserve the set of unifiers.

Lemma 3.13 All the rules in SyntacticUnification are sound.

Proof: Let us prove that Delete is sound: If σ is a solution of P then it is also solution of P ∧ s =? s and
the converse is also obvious. Notice that this will also hold in any equational theory.

A more interesting case is Decompose: If σ is solution of P ∧ s1 =? t1 ∧ . . . ∧ sn =? tn then
clearly by congruence σ is solution of P ∧ f(s1, . . . , sn) =? f(t1, . . . , tn). Conversely, when σ is
solution of P ∧ f(s1, . . . , sn) =? f(t1, . . . , tn) then it should be solution of P and f(σ(s1), . . . , σ(sn)) =
f(σ(1), . . . , σ(tn)). Since this equality is syntactic, this implies that σ is solution of P ∧ s1 =?

t1 ∧ . . . ∧ sn =? tn. Notice that this cannot be extented as such to an equational theory (imagine for
example f commutative). 2

Definition 3.7 A syntactic unification procedure is any sequence of application of the transformation rules
in SyntacticUnification on a finite set of equations P .

In fact a strategy of application of the rules in SyntacticUnification determines a unification procedure.
Some are complete, some are not. Let us first show that a brute force fair strategy is complete.

Theorem 3.4 Starting with a unification problem P and using the above rules repeatedly until none is
applicable results in F iff P has no solution, or else it results in a tree solved form of P :

x1 =? t1 ∧ · · · ∧ xn =? tn.

Moreover

σ = {x1 7→ t1, . . . , xn 7→ tn}

is a most general unifier of P .

Proof: By Lemma 3.13, all the considered rules preserve the set of solutions. We shall now prove that the
process stops and that the normal forms are indeed tree solved forms.

This last point follows immediately from a step by step inspection of the different cases, left as exercise
to the reader.

January 28, 2006 rewriting solving proving

46 Computations in the term algebra

The most difficult point is to prove that the process terminates. This is not completely obvious, since
the rule Eliminate makes terms bigger but Decompose decrease their size. The type of an equation
is a positive integer defined by:

type(x, y)=2 if x, y,∈ X
type(x, t)=1 if x ∈ X , t /∈ X
type(s, t) =0 if s, t /∈ X

the complexity of one equation is:

I(s =? t) = (max(|s|, |t|), type(s, t))

and the complexity of a system is defined as:

I(F) = (0, ∅)
I(s1 =? t1 ∧ . . . ∧ sn =? tn) = (N, {I(s1 =? t1), . . . , I(sn =? tn)})

where N is the number of non-solved variables. We compare the complexities lexicographically, using
the standard ordering on naturals for the first component and the multiset ordering for the second
component (for a definition of the multiset ordering see section 4.2.2).

We will now check that each application of the rule in SyntacticUnification decreases the complexity
of the system on which it is applied.

Delete decreases the second component.

Decompose may increase the number of solved variables but in any case it decreases the second
component since it replaces an equation by stricly smaller ones.

Conflict obviously decreases I.

Coalesce stricly increases the number of solved variables since y ∈ Var(P).

Check obviously decreases I.

Eliminate increases by one the number of solved variable since x ∈ Var(P) and x /∈ s and s /∈ X .

Check* obviously decreases I.

Merge may increase the number of solved variables, but in any case it decreases the type of the
equation considered. Let us detail this in the last case. Let S = (P ∧ x =? s ∧ x =? t). Then

I(S) = (ξ, {I(P), I(x =? s), I(x =? t)})

and
I(P ∧ x =? s ∧ s =? t) = (ξ, {I(P), I(x =? s), I(s =? t)}).

So because we impose 0 < |s| ≤ |t|, max(|s|, |t|) = max(|x|, |t|) and type(x =? t) > type(s =? t),
thus I as decreased.

Finally, σ is a mgu of P since it is a mgu for a tree solved form of P by Lemma3.8. 2

As shown by the previous proof, the condition 0 < |s| ≤ |t| is fundamental in the Merge rule.
Exercice 18 — Give a unification problem P such that without that condition Merge does not terminate

Answer: Take P = {x =? f(x) ∧ x =? f(f(x))}

Now that we have proved that the whole set of rule terminates, we can envisage complete restrictions of
it. Let us first define useful subsets of the rules in SyntacticUnification. We introduce the set of rules:
TreeUnify={Delete, Decompose, Conflict, Coalesce, Check, Eliminate}
and =
DagUnify ={Delete, Decompose, Conflict, Coalesce, Check*, Merge}.

Corollary 3.2 Starting with a unification problem P and using the rules TreeUnify repeatedly until none
is applicable, results in F iff P has no solution, or else in a tree solved form:

{x1 =? t1 ∧ . . . ∧ xn =? tn}

such that σ = {x1 7→ t1, . . . , xn 7→ tn} is a most general unifier of P .

January 28, 2006 rewriting solving proving

3.2 Syntactic unification 47

Proof: This is a clear consequence of Theorem 3.4. In fact Merge and Check* are useless for getting the
tree solved forms. Termination is of course not affected when the set of rules is restricted. 2

Exercice 19 — Apply the set of rules TreeUnify to the following unification problems:

f(g(h(x), a), z, g(h(a), y)) =? f(g(h(g(y, y)), a), x, z)

f(g(h(x), a), z, g(h(a), y)) =? f(a, x, z)

Answer:

We can also forbid the application of the Eliminate rule, in which case we get dag solved forms:

Corollary 3.3 Starting with a unification problem P and using the rules DagUnify repeatedly until none
is applicable, results in F iff P has no solution, or else in a dag solved form

x1 =? t1 ∧ . . . ∧ xn =? tn

such that σ = {xn 7→ tn} . . . {x1 7→ t1} is a most general unifier of P .

Proof: This is also a clear consequence of Theorem 3.4. One can check easily that the normal forms are
indeed dag solved forms and termination is not affected. 2

Exercice 20 — Apply the set of rules DagUnify to the following unification problem:

f(g(h(x), a), z, g(h(a), y)) =? f(g(h(g(y, y)), a), x, z)

Compare with what you get using the set of rules TreeUnify.

Answer:

3.2.5 Complexity of Syntactic Unification

Designing an algorithm for syntactic unification involves implementing the above rules, with appropriate
data structures for representing terms and storing equations, as well as a specific search plan. Terms can be
represented as labeled trees without sharing, or as dags. Equations can be stored in a queue or a stack, or in
a more elaborated data structure in order to speed up Merge, Eliminate or Check*. The search can be
driven by the data structure storing the equations, or it can again contribute to the speed-up by performing
Eliminate and Check efficiently. We review some of these issues in turn.

Syntactic unification can be polynomial or exponential in space and time according to the data structure
of terms representation. If terms are represented by labeled trees, then unification is exponential in the worst
case. If terms are represented by labeled dags, then unification can be linear. One reason is the following:
given two unifiable terms s and t with most general unifier σ, then the size of σ(s) depends on the data
structure of terms.

Example 3.8 Consider for instance the terms:

s = f(xn, f(xn−1, · · · , f(x2, f(a, a)) · · ·))
t = f(f(xn−1, xn−1), · · · , f(f(x2, x2), f(f(x1, x1), x1)) · · ·).

that can be represented as follows:

f

��
��

��
66

66
6 =? f

rrrrrrrrrrr

IIIIIIIII

xn f

��
��

�

11
11

11
f

��
��

�
66

66
6

f

��
��

�

66
66

66

xn−1 xn−1 xn−1 f

��
��

�
66

66
6

f

��
��
�

..
..

.
xn−2 xn−2 f

��
��
�

33
33

3

x2 f

��
��
�

//
//

/
f

��
��

�
11

11
1

x1

a a x1 x1

January 28, 2006 rewriting solving proving

48 Computations in the term algebra

then the most general unifier is given by the substitution

σ = {x1 7→ f(a, a), x2 7→ f(f(a, a), f(a, a)), · · · , xn 7→ f(f(· · · , · · ·), f(· · · , · · ·))}

and the size of σ(xi) for i ∈ [1..n] is exactly 2i+1 − 1. This can be depicted by:

f

kkkkkkkkkkkkkkkk

UUUUUUUUUUUUUUUUUUU

xn
� // f

uuuuuuuuu

FFFFFF
FF f

xxx
xxxxx

IIIIIIIII

f f xn−1
� // f f

f

		
		
	

88
88

8
f

		
		
	

55
55

5
f

��
��

��

55
55

5
x1

� // f

��
��

�
55

55
5

a a a a a a a a

This substitution can be kept in the form:

σ = {x1 7→ f(a, a), x2 7→ f(x1, x1), · · · , xn 7→ f(xn−1, xn−1)}.

In which case the size needed for the storage of xi is now equal to 3 × i, since it implies the storage of
x1, · · · , xi−1. This can be represented as follows:

f

}}
}}

}}
}

<<
<<

<<

xn
� // f

AA
AA

AA
A

AA
AA

AA
A f

��
��

��

<<
<<

<<
<

xn−1
� // f

<<
<<

<<
<

<<
<<

<<
<

f

��
��

��

--
--

--
--

--
--

x2
� // f

MMMMMMMMMMM

MMMMMMMMMMM

x1
� // f

��
��

��

;;
;;

;;

a a

The first version corresponds to a tree representation, whereas the second corresponds to a dag repre-
sentation. This shows that a tree representation may require exponential storage, while the corresponding
dag representation requires only linear space. Note that a dag representation is actually described by a dag
solved form.

Proposition 3.2 The dag solved form of a unification problem P contains distinct subterms of P only and
hence has a size of at most |P |2.

A quadratic size is obtained for example when solving the equation

x1 + (x2 + · · · (xn + a) . . .) =? ((. . . (x+ xn) + · · ·) + x2) + x1.

It is actually possible to obtain a linear size dag solved form at the price of a slight complication in the
expression of Merge. This can be done by taking the common part of s and t as the value of x, and adding
the frontier to the transformed problem, more sharing is allowed. What is important, however, is that all
terms in the dag solved form are subterms of the terms in the starting unification problem. Hence, the dag
solved form can be represented in linear space (actually within the space of the starting problem) by sharing
common subterms. It does not follow, however, that the dag solved form can be obtained in linear time.

January 28, 2006 rewriting solving proving

3.3 Unification in infinite rational terms 49

This is indeed not true in general, since an arbitrary use of the above rules may do useless work, resulting
in a non-linear complexity. Linear complexity algorithms are due to Paterson and Wegman [PW78] (see
also [dC84]) and H. Zhang [Zha92] using the following control principles:

1. Apply Decompose whenever possible, hereby decreasing the size of the dag representation of the
terms in the problem. Each application of Decompose can be done in constant time.

2. Choose a maximal variable x with respect to the occur-check ordering. This can be simply built in
the data structure of equations, by using variable counters as in [MM82], so as to use constant time.
Another technique is described in [PW78]. Note that Check* can be applied if no such variable exists.

3. Apply Coalesce to all variables y equivalent to x. Note that each application of Coalesce eliminates
a variable, hereby decreasing the size of the problem. Coalesce can be efficiently implemented by
using pointers from each variable to the father nodes of its occurrences.

4. Apply Merge to all equations x =? s. This can be simply done by replacing all pointers to x by
pointers to s and generating the appropriate equations between the different values of x. Note that
this actually corresponds to a specific instance of Eliminate.

This principles ensures that the resulting set of equations is a solved form without ever explicitly applying
Check*. Moreover, it yields a linear algorithm, since each step either decreases the size of the problem or
moves (once and for all) an arc in the dag data structure of terms.

The crux of this linear complexity algorithm is that all Merges on the variables x belonging to the same
equivalence class are performed “at the same time”: pointers to all occurrences of all these variables are
moved once and for all to their common value. Repeated updatings, as in [Hue76], in an equation of the
form

f(x1, x3, x5, x7, x1, x5, x1) =? f(x2, x4, x6, x8, x3, x7, x5)

results in a complexity at least of the order of O(n ∗ G(n)), where G(n) is an extremely slowly growing
function related to the inverse of the Ackerman function. So are the algorithms by [Hue76, MM82]. The
linear time algorithm was discovered independently by [PW78, MM76]. The almost linear algorithm was
discovered independently by several people, including A. Robinson and [RP89]. The first written version
appeared in [Hue76].

One may ask whether syntactic unification can be speeded up by using massive parallelism. It is somewhat
surprising that this is not the case, due to the non-linearity of terms. Dwork et al. [DKM84] show that
unification of terms is logspace complete for P : unless P ⊂ NC, no parallel algorithm for unifying s and t
will run in a time bounded by a polynomial in the logarithm of |s|+ |t| with a number of processors bounded
by a polynomial in P .

3.3 Unification in infinite rational terms

Eliminating Check* from DagUnify yields a unification algorithm for infinite rational terms. Infinite
rational terms are infinite terms with finitely many different subterms only, i.e., they are the unifiers of
equations of the form {x1 =? t1, · · · , xn =? tn} such that xi 6= xj when i 6= j and ∀ j 6= i, xi 6∈ Var(tj) if
ti ∈ X . Of course, finite terms are particular infinite rational terms. Infinite rational terms are represented by
finite directed graphs, with possibly cycles. Unification for infinite rational terms was first solved in [Hue76]
(see also [Col84]). The above results and proofs extend to infinite rational terms, except the complexity
analysis, which relies on the acyclicity of the occur-check ordering. Actually no linear time unification
algorithm is known for infinite rational terms, the problem is open.

3.4 Further Readings

Most unification algorithms described in the literature are reviewed in [Kni89] which also includes interesting
historical remarks. The notion of dimension is explored in [LMM88]. A thorough study of unification as a
Gentzen’s style deduction system is done in [LC89]. Unification in rational trees is studied in [Hue76, Fag83,
Col84, Jaf84]. The relationship between congruence closure and unification is studied in [KR89a] and is
applied to give some parallelizable case of unification. A general survey on unification, including equational
and higher-order unification is [JK91].

January 28, 2006 rewriting solving proving

50 Computations in the term algebra

January 28, 2006 rewriting solving proving

Part II

Rewriting

January 28, 2006 rewriting solving proving

Chapter 4

Abstract reduction systems

4.1 Introduction

This chapter is mainly devoted to the study of the reflexive and transitive closure of a binary relation defined
on a set that becomes then a quasi-ordered set. Quasi orderings of special interest are well-founded orderings
and well-quasi orderings whose properties are studied in the first part of this chapter. Such relations are
then used to define abstract reduction systems and to prove their termination.

Several examples of abstract reduction systems are presented in the following chapters: term rewriting
systems are one of the most prominent examples, but also class rewriting on a quotient term algebra,
ordered rewriting on the set of ground terms, different notions of conditional rewriting and rewriting with
constraints, and polynomial reduction illustrate this concept. Abstract reduction systems usefully abstract
the usual “concrete” notion of term rewriting systems and provide a better understanding of the common
properties of such relations.

4.2 Quasi orderings

Let us first set the formal background concerning orderings that are needed in this work.

4.2.1 Basic definitions

Definition 4.1 A binary relation R on a set T is:

• reflexive if ∀x ∈ T , x R x,

• antisymmetric if ∀x, y ∈ T , x R y and y R x⇒ x = y,

• transitive if ∀x, y, z ∈ T , x R y and y R z ⇒ x R z,

• a quasi ordering if it is reflexive and transitive and in this case, (T , R) is called a quasi-ordered set,

• an ordering if it is reflexive, antisymmetric and transitive, such an ordering is also called a partial
ordering and (T , R) is called a poset,

• a total (quasi) ordering if it is a (quasi) ordering and ∀x, y ∈ T x R y or y R x.

A quasi ordering is sometimes called a pre ordering. An ordering on a set T is often denoted ≥, its
symmetric relation is denoted by ≤. When ≥ is a quasi ordering on T , we say that (T ,≥) is a quasi-ordered
set.

The equivalence relation associated to a quasi ordering ≥ on a set T is denoted �≥ and defined as usual
as the intersection of ≥ and its symmetric relation ≤, i.e.

∀x, y ∈ T , x �≥ y ⇔ x ≥ y and y ≥ x.

The associated strict ordering > is defined by:

t > t′ if t ≥ t′ and t 6�≥ t′.

Definition 4.2 Given a poset (T ,R), and a subset T of T ,

January 28, 2006 rewriting solving proving

54 Abstract reduction systems

• an element lb ∈ T is a lower bound of T if ∀y ∈ T, lb ≤ y.

• an element ub ∈ T is a upper bound of T if ∀y ∈ T, y ≤ ub.

• an element le ∈ T is the least element of T if ∀y ∈ T, le ≤ y.

• an element ge ∈ T is the greatest element of T if ∀y ∈ T, y ≤ ge.

• an element lub ∈ T is the least upper bound of T if the set of upper bounds of T is nonempty and lub
is the least element of this set.

• an element glb ∈ T is the greatest lower bound of T if the set of lower bounds of T is nonempty and
glb is the greatest element of this set.

• an element x ∈ T is minimal in T if ∀y ∈ T, y ≤ x⇒ x = y.

• an element x ∈ T is maximal in T if ∀y ∈ T, x ≤ y ⇒ x = y.

• T is a Chain when all the elements in T are comparable, i.e., ∀x, y ∈ T, x ≤ y or y ≤ x.

It can be easily shown that least and greatest elements are unique when they exist and thus so are greatest
lower bound and least upper bound. On the contrary, lower and upper bounds as well as minimal and
maximal elements are not necessary unique.

Exercice 21 — For a given poset, give examples of all elements presented in the last definition.

Answer: Just do it!

We will need the following well known result:

Theorem 4.1 (Zorn’s lemma) Given a poset (T ,R), if every nonempty chain in T has an upper bound,
then T has a maximal element.

4.2.2 Well-founded orderings

Definition 4.3 A quasi-ordered set (T ,≥) is well-founded or Noetherian if there exists no infinite decreasing
sequence t1 > t2 > . . . of elements of T . In this case ≥ is called a well-founded ordering.

This can be equivalently stated by: a quasi ordering ≥ is well-founded if every infinite sequence t1 ≥ t2 ≥
. . . is stationary, i.e. there exists n such that ∀i ≥ n, ti �≥ tn.

Well-founded sets are especially interesting because they enjoy a very powerful induction principle, called
Noetherian induction principle.

Given a quasi-ordered set (T ,≥), a predicate Pred is said complete on (T ,≥) if:

∀t ∈ T , [∀t′ ∈ {t′|t > t′}, P red(t′)]⇒ Pred(t).

Noetherian induction principle: Let (T ,≥) be a well-founded set. If Pred is a predicate complete
on (T ,≥) such that Pred(t) is true for every minimal element t, then ∀t ∈ T , P red(t).

Lexicographic extension

A new ordering can be built from elementary ones by combining them lexicographically. Tuples of same
length can be ordered by a so-called lexicographic extension as follows.

Definition 4.4 Consider n quasi-ordered sets (Ti, >i)i=1,...,n. The lexicographical extension of (>i)i=1,...,n,
denoted (>lex), is defined on the product

∏
i=1,..,n Ti by:

(s1, . . . , sn) >
lex (t1, . . . , tn)

if there exists i, 1 ≤ i ≤ n such that:

• si >i ti,

• and ∀j, 1 ≤ j < i, sj = tj .

Proposition 4.1 Consider n quasi-ordered sets (Ti, >i)i=1,...,n. If for every i = 1, . . . , n, >i is well-founded
on Ti, then >lex is well-founded on

∏
i=1,..,n Ti.

January 28, 2006 rewriting solving proving

4.2 Quasi orderings 55

Note that this result would not extend to an infinite product of ordered sets: Take for example T = {a, b}
with a < b, then we have:

b >lex ab >lex aab >lex aaab >lex . . .

An important particular case is when all the ordered sets are the same set T . The previous definition
then allows defining the lexicographic extension of any well-founded ordering > on T , which is well-founded
on T n. Note also that, given n totally ordered sets (Ti, >i)i=1,...,n, >

lex is then total on
∏
i=1,..,n Ti.

Tuples of possibly different but bounded length can also be ordered by a lexicographic extension extending
the previous one.

Definition 4.5 Consider n quasi-ordered sets (Ti, >i)i=1,...,n. The lexicographical extension of (>i)i=1,...,n,
denoted (>lexe), is defined on the sum of products

⊕
j=1,...,n

∏
i=1,..,j Ti by:

(s1, . . . , sm) >lexe (t1, . . . , tp) with m, p ≤ n
if (s1, . . . , sk) >

lex (t1, . . . , tk) where k is the minimum of m and p.

Proposition 4.2 Consider n quasi-ordered sets (Ti, >i)i=1,...,n. If for every i = 1, . . . , n, >i is well-founded
on Ti, then >lexe is well-founded on

⊕
j=1,...,n

∏
i=1,...,j Ti.

Proof: Assume that there exists an infinite decreasing sequence for >lexe,

(s1, . . . , sm) >lexe . . . >lexe (t1, . . . , tp) >
lexe . . .

Since the length of tuples is bounded by n, there exists some element, say (s′1, . . . , s
′
k) of maximal

length in the sequence. Complete other tuples of length less than k with elements of (s′1, . . . , s
′
k). This

allows building an infinite sequence:

(s1, . . . , sm, s
′
m+1, . . . , s

′
k) >

lex . . . >lex (t1, . . . , tp, s
′
p+1, . . . , s

′
k) >

lex . . . ,

which contradicts the fact that >lex is well-founded. 2

Multiset extension

Lexicographic extensions compare tuples built on components having a natural ordering. But for collections
of arbitrary size, in which no such component ordering exists, the notion of multiset is useful. A multiset is
a finite collection of elements in which the number of occurrences of identical elements is significant, unlike
sets.

Formally, a multiset can be defined through a mapping on the set of natural numbers that counts how
many times the element occurs in the multiset:

Definition 4.6 A multiset M on a set T is given by a map from T to the set of natural numbers. M(T)
denotes the set of multisets of elements of T .

Notation: A multiset on a set T is denoted in extension using a set-like notation { , . . . , } when its element
need to be precised, as in the following example.

Example 4.1 Let T = {a, b, c}. The finite multisetM = {a, a, a, b, b} is defined by the mappingM(a) = 3,
M(b) = 2,M(c) = 0.

An element t of T belongs to the multisetM ifM(t) > 0. M is a sub-multiset ofM′ writtenM⊆M′,
ifM(t) ≤M′(t) for all t ∈ T . The union and intersection of multisets are defined by the identities:

∀t ∈ T ,M1 ∪M2(t) =M1(t) +M2(t),
∀t ∈ T ,M1 ∩M2(t) = min(M1(t),M2(t)).

In what follows, we only consider finite multisets and call them simply multisets for short.

Definition 4.7 If > is a quasi ordering on T , its (strict) multiset extension >mult is defined by: M >mult N
if:

• M 6= N , and

• N (t) >M(t) implies ∃t′ ∈ T such that t′ > t andM(t′) > N (t′).

January 28, 2006 rewriting solving proving

56 Abstract reduction systems

This means that a multiset becomes smaller when we replace one of its elements by a multiset (possibly
empty) of smaller elements. An equivalent statement of this definition is the following (notice the limit case
k = 0):

Definition 4.8 If > is a quasi ordering on T , its (strict) multiset extension denoted >mult is defined by:

M = {s1, . . . , sm} >mult N = {t1, . . . , tn}

if there exist i ∈ {1, . . . ,m} and 1 ≤ j1 < . . . < jk ≤ n with k ≥ 0, such that:

• si > tj1 , . . . , si > tjk and,

• eitherM−{si} >mult N − {tj1 , . . . , tjk} or the multisetsM−{si} and N − {tj1 , . . . , tjk} are equals.

A more operational definition of the multiset extension >mult can be proved equivalent to the previous
one:

Proposition 4.3 If > is a quasi ordering on T , its strict multiset extension >mult is the transitive closure
of the following relation:

{s1, . . . , si−1, si, si+1, . . . , sn} >mult {s1, . . . , si−1, t1, . . . , tk, si+1, . . . , sn}

if k ≥ 0 and si > tj for j = 1, . . . , k.

Even more operational, the following set of deduction rules describe the multiset extension:

Bigger M∪ {t} >mult N ∪ {s} 7→7→ M∪ {t} >mult N
if t > s

Erase M∪ {t} >mult N ∪ {t} 7→7→ M >mult N
Success M∪ {t} >mult ∅ 7→7→ T

in the sense that M >mult N if and only if this formula can be reduced to T by the rules above using the
strategy consisting to first normalize with Erase and then apply the other rules.

Proposition 4.4 [DM79] If > is well-founded on T , its multiset extension >mult is well-founded on finite
multisets of T .

Example 4.2 The multisets of natural numbers {1, 1, 2, 3, 3, 3} and {3, 1, 2, 3, 3, 1} are equal, but are distinct
from {1, 2, 3}.
{3, 3, 1, 2} >mult {3, 1}, {3, 3, 1, 2} >mult {3, 2, 2, 2, 2}, {3, 3, 1, 2} >mult {3, 0} >mult {3} >mult {}.
Using the rules above we get for example:
{3, 2, 2, 1} >mult {3, 2, 1} 7→7→∗Erase{2} >mult {} 7→7→Success T.

4.2.3 Well-quasi orderings

Definition 4.9 [Kru60] A quasi ordering ≥ on a set T is a well-quasi ordering if every infinite sequence
t1, t2, . . . of elements of T contains two elements tj and tk such that j < k and tj ≤ tk.

Every total order is a well-quasi ordering, as for example N with its natural ordering ≥. An example
of a Noetherian ordering that is not a well-quasi ordering is the following. Consider the divisibility relation
on N (i.e. x ≥ y ⇔ y divises x) then the set of prime numbers is an infinite subset of N contradicting the
previous definition.

Embedding

In fact a very natural example of well-quasi ordering is given by the embedding relation on the set of terms
T (F). It is defined as follows:

Definition 4.10 The homeomorphic embedding is a well-quasi ordering on T denoted �emb and defined as
the smallest reflexive transitive monotonic relation containing the following relation:

∀1 ≤ i ≤ n, f(s1, . . . , sn) �emb si.

January 28, 2006 rewriting solving proving

4.2 Quasi orderings 57

An intuitive idea of the method to build a term t embedded in a term s is to get t by “removing some
nodes” to s. The following equivalent definition gives a more procedural point of view:

Definition 4.11 The homeomorphic embedding on T is defined by:

s = f(s1, . . . , sm) �emb t = g(t1, . . . , tn)

if:

• either f = g and si �emb tji for all i, 1 ≤ i ≤ m and 1 ≤ j1 < . . . < jm ≤ n,

• or s�emb tj for some j, 1 ≤ j ≤ n.

Example 4.3 f(h(g(a, h(b))), h(c)) �emb f(g(a, b), c)
−−−(0 +−− 1) �emb −− (0 + 1).

When F is finite, Kruskal [Kru54, Kru60] has shown that �emb is a well-quasi ordering. We will see in
section 6.4.1 that this can be extended to a similar result on a more general notion of embedding.

Properties of well-quasi ordering

G. Higman has studied equivalent properties of the above definition of well-quasi orderings. The following
result gives the most useful ones for our purpose.

Proposition 4.5 [Hig52] Let ≥ a quasi ordering on a set T . The following properties are equivalent:

1. ≥ is a well-quasi ordering on T ,

2. ≥ is well-founded and all T subsets of pairwise incomparable elements is finite,

3. every infinite sequence t1, t2, . . . of elements of T contains an infinite increasing subsequence u1 ≤ u2 ≤
. . .

Proof: 3⇒ 1 is clear.
1⇒ 3: Consider an infinite sequence Seq = {t1, t2, . . .} of elements of T and call maximal elements of
Seq the ti such that ∀j > i, we do not have ti ≤ tj . The set M of maximal elements cannot be infinite,
otherwise this would contradict the definition of a well-quasi ordering. Since M is finite, let n be the
greatest index such that tn ∈ M . Then ∃j > n, such that tj is not a maximal element. Let tn1 = tj .
Since ∀ni > n, tni

is not a maximal element, there exists ni+1 > ni such that tni
≤ tni+1 . Thus it is

possible to construct an infinite increasing sequence tn1 ≤ . . . ≤ tni
≤ . . . for n1 < . . . < ni <

1 ⇒ 2: Consider an infinite sequence t1 > t2 > . . ., it contains an infinite increasing subsequence
u1 ≤ u2 ≤ Let ti = u1. Then ∀j > i, there exists k such that uk = tj+l, otherwise this would
contradicts the fact that the sequence of uk is infinite. Since u1 ≤ uk and u1 = ti ≥ tj ≥ tj+l = uk,
then u1 ' uk and tj ' ti. 2

Well-quasi ordering are especially important in the context of incrementally building well-founded order-
ings. As pointed out in [Les89], from a practical point of view, the problem that often arises is the following
question: can a well-founded ordering be extended by adding pairs (possibly an infinite number) that are
currently incomparable, and still remain well-founded? The point is to forbid the possibility of adding an
infinite decreasing chain, therefore an incremental ordering is exactly a well-quasi ordering:

Proposition 4.6 If ≥ is a well-quasi ordering on T then any extension of ≥ which is a quasi ordering is
also a well-quasi ordering on T .

Further Readings: The reader will find in the paper of J. Kruskal [Kru72] an history of the notion of
well-quasi orderings.

January 28, 2006 rewriting solving proving

58 Abstract reduction systems

4.3 Abstract reduction systems

Many of the basic definitions and properties of rewrite systems can be stated abstractly, namely via binary
relations on sets.

Definition 4.12 An abstract reduction system is a structure 〈T , (→i)i∈I〉 consisting of a set T and a se-
quence of binary relations →i on T indexed by some set I. In the case of only one relation, the index is
omitted.

For each binary relation →, on a set T whose elements are denoted by t, t′, . . ., we also define:

t← t′ iff t′ → t
t←→ t′ iff t→ t′ or t← t′

t
∗←− t′ iff t′

∗−→ t

t
+←− t′ iff t′

+−→ t

For any natural number n, the composition of n steps of → or ←→ is denoted by
n−→ or

n←→ respectively.

Note that
0−→ and

0←→ are nothing else but syntactic equality. As usual,
+←→ and

∗←→ denote respectively
the transitive and the reflexive transitive closure of ←→.

Composition of binary relations →1 followed by →2 will be denoted by →1 ◦ →2.

4.4 Normalizing abstract reduction systems

Definition 4.13 Let 〈T ,→〉 be an abstract reduction system.

• An element t ∈ T is a →-normal form if there exists no t′ ∈ T such that t → t′. Furthermore t ∈ T
has a normal form if t

∗−→ t′ for some normal form t′ which is denoted t↓. A derivation issued from a

term t and leading to one of its normal form is denoted t
!−→ t↓.

• The relation → is terminating (or strongly normalizing, or Noetherian) if every reduction sequence is
finite.

• The relation → is weakly normalizing (or weakly terminating) if every element t ∈ T has a normal
form.

• The relation → has the unique normal form property if for any t, t′ ∈ T , t
∗←→ t′ and t, t′ are normal

forms imply t = t′.

Example 4.4 1. The relation a→ b is terminating, but a→ a is not.

2. The relation defined by a → b, b → a, a → c, b → d is weakly terminating but not terminating. It has
not the unique normal form property.

Exercice 22 — [dV91] Let R0 and R1 be two abstract reduction systems on the same set,→0 and→1 the respective
reduction relations. Let NFi be the set of normal forms of Ri for i = 0, 1. Prove that R0 has the unique normal form
property if each of the following conditions holds:

1.
∗
←→1 contains

∗
←→0,

2.
∗
←→1 ⊆

∗
−→1 ◦

∗
←−1,

3. NF1 contains NF0.

4.5 Well-founded ordering and termination

The termination property of an abstract relation associated to an abstract reduction system 〈T ,→〉 is studied
in the general framework of well-founded orderings on the set T .

The first straightforward idea to prove termination of→ relies on the idea of using a well-founded ordering:

Proposition 4.7 [MN70] Let 〈T ,→〉 be an abstract reduction system. The relation → is terminating on
T iff there exists a well-founded ordering > over T such that s→ t implies s > t.

The problem is now the construction of well-founded orderings. We shall focus later on, in Chapter 6,
on building explicit well-founded orderings on the set of terms.

January 28, 2006 rewriting solving proving

4.6 Abstract Church-Rosser property and confluence 59

Local confluenceConfluenceChurch-Rosser

u v

w

u

t

w

v

t

u v

w

Figure 4.1: Definitions of the relations

4.6 Abstract Church-Rosser property and confluence

In the context of a rewriting relation→R, the Church-Rosser property states the relation between replacement
of equals by equals and rewriting. More generally, the property is expressed as follows:

Definition 4.14 A binary relation → on a set T is Church-Rosser if

∗←→ ⊆ ∗−→ ◦ ∗←− .

A relation is confluent if it satisfies the so called diamond property schematized in Figure 4.1 and formally
defined as follows:

Definition 4.15 The relation → is confluent on T if

∗←− ◦ ∗−→ ⊆ ∗−→ ◦ ∗←− .

Theorem 4.2 The relation → is confluent iff it is Church-Rosser .

Proof: The Church-Rosser property obviously implies the confluence. The converse is shown by induction
on the number of ←→-steps that appear in

∗←→. Assume that it is n, which is denoted by t
n←→ t′.

If n = 0, t and t′ are equal. But
∗−→ and

∗←− contain equality and the composition of equality with
itself is again equality.

Otherwise, let t ←→ t′′
n←→ t′. By induction hypothesis, there exists t′1 such that t′′

∗−→ t′1
∗←− t′.

Now, either t → t′′ and the Church-Rosser property is satisfied, or t ← t′′ and by confluence, there
exists t′2 such that t

∗−→ t′2
∗←− t′1. Again the Church-Rosser property is satisfied. 2

In the following, t ↓ t′ means that both t and t′ have a common descendant.

Proposition 4.8 If → is confluent, the normal form of any element is unique, provided it exists.

Proof: Assume an element t has two normal forms t1 and t2. Then by confluence t1 ↓ t2 and thus t1 = t2
since both are irreducible. 2

Exercice 23 — Consider a relation → which has the unique normal form property and is weakly normalizing.

Prove that → is confluent.

Answer:

4.6.1 Local confluence

The confluence property has a more local version that only considers two different applications of the relation.

Definition 4.16 The relation → is locally confluent on T if:

←− ◦ −→ ⊆ ∗−→ ◦ ∗←− .

Local confluence is pictured in Figure 4.1.
Confluence clearly implies local confluence but the converse is not true, as shown by the next example:

January 28, 2006 rewriting solving proving

60 Abstract reduction systems

Example 4.5 Consider four distinct elements a, b, c, d of T and the relation defined by a → b, b → a, a →
c, b→ d pictured:

a
GF ED��

��

bBC@AOO
��

c d

The relation, although locally confluent (consider any possible case of ambiguity) and weakly terminating,

is not confluent since c
∗←− a ∗−→ d but neither c nor d can be rewritten.

In this example of course, the relation is not terminating since there exists a cycle a→ b→ a. Provided
the relation terminates, confluence and local confluence are equivalent.

Lemma 4.1 [New42] If → is terminating, then → is confluent iff → is locally confluent.

Proof: Obviously confluence implies local confluence. We prove the converse by Noetherian induction,
following Huet Huet’s elegant and concise proof [Hue80].

Let Pred(t) be the property:

∀t1, t2, t1 ∗←− t ∗−→ t2, ∃t′′, t1 ∗−→ t′′
∗←− t2.

Let us prove that Pred is a predicate complete on the well-founded set (T ,→). For that let us assume

that Pred holds for any t′ such that t
+−→ t′ and prove that it holds for t.

Assume that
t1

m←− t n−→ t2.

If m = 0, then t′′ = t2, if n = 0, then t′′ = t1.
Otherwise, as pictured in the diagram in Figure 4.2, consider t′1 and t′2 in T such that:

t1
∗←− t′1 ← t→ t′2

∗−→ t2.

Using local confluence, there exists an element t′ such that t′1
∗−→ t′

∗←− t′2.
Then since t→ t′1, Pred(t

′
1) holds. So:

∃t′′1 , t1
∗−→ t′′1

∗←− t′.

Also since t→ t′2, Pred(t
′
2) holds. Thus:

∃t′′, t′′1
∗−→ t′′

∗←− t2.

Which proves that Pred(t) holds.
Applying the principle of Noetherian induction, the property of confluence holds on T , which concludes
the proof. 2

This allows show that the Church-Rosser property is equivalent to the local confluence property, under
the termination assumption. These results are summarized by the following theorem.

Theorem 4.3 If the relation → is terminating, the following properties are equivalent:

1. → is Church-Rosser,

2. → is confluent,

3. → is locally confluent,

4. for any t, t′ ∈ T , t ∗←→ t′ iff t ↓= t′ ↓.

Proof: (1) and (2) are equivalent by Theorem 4.2, (2) and (3) are equivalent by Lemma 4.1. (4) clearly
implies (1). Finally (1) implies (4) by applying twice the Church-Rosser property. 2

Definition 4.17 A relation → is convergent if it is confluent and terminating.

Exercice 24 — Prove that the relation → is convergent iff it is terminating and has the unique normal form

property.

Answer: Just apply the result of Exercice 4.6

January 28, 2006 rewriting solving proving

4.6 Abstract Church-Rosser property and confluence 61

t

����
��

��
��

��>
>>

>>
>>

>

t′1
m−1

����
��

��
�� ∗

��>
>>

>>
>>

>
t′2

∗

����
��

��
�

n−1

��>
>>

>>
>>

t1

∗

��?
??

??
??

t′

∗

����
��

��
�

t2

∗

����
��

��
��

��
��

��
��

��
�

t′′1
∗

��?
??

??
??

?

u

Figure 4.2: Proof diagram

4.6.2 Confluence without termination

Other notions of confluence appear in the literature. Let
0,1−→ denote at most one application of a rewriting

step, and
0,1←− the converse relation.

Definition 4.18 Let 〈T ,→〉 an abstract reduction system. The relation → is strongly confluent on T if:

← ◦ →⊆ 0,1−→ ◦ 0,1←− .

Strong confluence implies confluence [New42]. Confluence of→ is exactly strong confluence of
∗−→. This

property is used in classical proofs of the Church-Rosser property for the lambda-calculus [Bar84].
Another result, based on Noetherian induction, makes use of a well-founded ordering that contains the

abstract relation.

Lemma 4.2 [WB83] Let 〈T ,→〉 an abstract reduction system such that there exists a well-founded ordering
> such that for any t, t′ ∈ T , t → t′ implies t > t′. → is confluent iff for any t, t′, t′′ ∈ T , such that t → t′

and t→ t′′, there exist t1, . . . , tn such that n ≥ 1, t > ti for i = 1, . . . , n and t′ = t1 ←→ . . .←→ tn = t′′.

4.6.3 Confluence for weakly normalizing systems

We have seen how the Church-Rosser property can be proved under the (quite strong) hypothesis of local
confluence and termination. This leads to the study of completion algorithms which will be presented in the
last part of this book.

It is of course of main interest to give a method to establish the confluence of systems that are only weakly
normalizing. This has been done in [CG91]. The main idea of the following result is to establish a relation
between two abstract reduction systems in such a way that one will inherit of the confluence property of the
other.

Theorem 4.4 [CG91]
Let 〈T ,→〉 be a weakly terminating abstract reduction system and 〈T ′,→′〉 be a confluent abstract reduc-

tion systems such that there exists a mapping π from T to T ′ satisfying:

1. for all elements r and s in T , if r → s then π(r)
∗←→′ π(s),

2. The image with π of a normal form in 〈T ,→〉 is a normal form in 〈T ′,→′〉.

3. π is injective on the normal forms in 〈T ,→〉.

Under these conditions, 〈T ,→〉 is confluent.

Proof: It is remarquably clear and simple. Let a, b, c elements in T such that

c
∗←− a ∗−→ b

January 28, 2006 rewriting solving proving

62 Abstract reduction systems

Since → is weakly terminating, b and c have normal forms b↓ and c↓. Because of the first condition
on π and since c↓ ∗←− a ∗−→ b↓, we get that π(b↓) ∗←→ π(c↓). Now because of the second condition on
π, π(b↓) and π(c↓) are normal forms. But 〈T ′,→′〉 being confluent, it follows that π(b↓) = π(c↓) and
since π is assumed to be injective on normal forms, b↓= c↓, which prove that 〈T ,→〉 is confluent. 2

This result can be specialized to several cases, in particular when T = T ′ and π = Id. One can also
notice that if 〈T ′,→′〉 has the unique normal form property, then under the previous hypothesis on 〈T ,→〉
and π, 〈T ,→〉 has also the unique normal form property. This can be applied to prove the confluence of the
λβ-calculus following an idea of Pottinger [Pot81] as developed in [CG91].

January 28, 2006 rewriting solving proving

Chapter 5

Definition and properties of rewrite
systems

5.1 Introduction

In order to mechanize as much as possible equational reasoning, the problem is to find a decision procedure
for equational theories. To illustrate the problem, let us consider the example of group theory, defined by
the following axioms, where ∗ follows the associative law, e the identity element and i(x) the inverse of x:

x ∗ e = x

x ∗ i(x) = e

(x ∗ y) ∗ z = x ∗ (y ∗ z)

The proof that e is also a left-identity can be done by equational replacement as follows:

e ∗ x = e ∗ (x ∗ e) = e ∗ (x ∗ (i(x) ∗ i(i(x))))
= e ∗ ((x ∗ i(x)) ∗ i(i(x))) = e ∗ (e ∗ i(i(x)))
= (e ∗ e) ∗ i(i(x)) = e ∗ i(i(x)) = (x ∗ i(x)) ∗ i(i(x))
= x ∗ (i(x) ∗ i(i(x))) = x ∗ e = x.

Automating this proof needs to guess which is the right axiom to be applied at each step, in which
direction, and possibly to backtrack. The idea of rewriting is to suppress the need for backtracking, first by
using (oriented) axioms from left to right only, second by giving enough (oriented) axioms to have the same
deduction power than originally. For instance, deciding equality in group theory needs ten oriented axioms
(equivalent to the three previous ones), first discovered in the pioneer work of Knuth and Bendix [KB70]

x ∗ e → x

e ∗ x → x

x ∗ i(x) → e

i(x) ∗ x → e

i(e) → e

i(i(x)) → x

i(x ∗ y) → i(y) ∗ i(x)
(x ∗ y) ∗ z → x ∗ (y ∗ z)

x ∗ (i(x) ∗ y) → y

i(x) ∗ (x ∗ y) → y

Of course with this system, proving the previous theorem becomes obvious, because of the existence of
the oriented axiom e ∗ x→ x.

In this chapter, rewrite systems are defined, together with properties that rewriting must satisfy in order
to provide a decision procedure for equational theories. Concepts and notations are mostly coherent with
those in [Bac87, DJ90a, DJ91, HO80].

January 28, 2006 rewriting solving proving

64 Definition and properties of rewrite systems

5.2 Rewrite systems

The central idea of rewriting is to impose directionality in the use of equalities.

Definition 5.1 A rewrite rule is an ordered pair of terms denoted l → r. The terms l and r are respectively
called the left-hand side and the right-hand side of the rule.

A rewrite system or term rewriting system is a (finite or infinite) set of rewrite rules.

Example 5.1 Combinatory Logic, originally devised by Schönfinkel in 1924 and rediscovered by Curry, is
an example of a theory with a binary function symbol · (application), constant symbols S,K, I (combinators)
and variables. The theory is defined by three axioms that can be applied as rewrite rules, using the following
rewrite system CL:

((S · x) · y) · z → (x · z) · (y · z)
(K · x) · y → x

(I · x) → x.

The symbol · is often omitted for a better readability.

A rule is applied by replacing an instance of the left-hand side by the same instance of its right-hand
side, but never the converse, contrary to equalities. Note that two rules are considered to be the same if they
only differ by a renaming of their variables. A rewrite system R induces a binary relation on terms called
the rewriting relation or the derivability relation.

Definition 5.2 Given a rewrite system R, a term t rewrites to a term t′, which is denoted by t →R t′ if
there exists

• a rule l→ r of R,

• a position ω in t,

• a substitution σ, satisfying t|ω = σ(l) and called a match from l to t|ω,

such that t′ = t[ω ←↩ σ(r)].

When t rewrites to t′ with a rule l → r and a substitution σ, it will be always assumed that variables
of l and t are disjoint. So Dom(σ) ∩ Ran(σ) = ∅. This is not a restriction, since variables of rules can be
renamed without lost of generality.
Notation: When either the rule, the substitution and/or the position need to be precised, a rewriting step
is denoted by

t→ω,σ,l→r
R t′.

The subterm t|ω where the rewriting step is applied is called the redex. A term that has no redex is said
to be irreducible for R or in R-normal form. The irreducible form of t is denoted by t↓R. A rewrite system
is (weakly) normalizing if any term has a normal form.

When R is a set of rewrite rules {rr}, the abstract reduction system corresponding to the rewriting
relation →R is the structure 〈T (F ,X), (→rr)rr∈R〉.

Definition 5.3 A rewriting derivation is any sequence of rewriting steps

t1 →R t2 →R . . .

The derivability relation
∗−→R is defined on terms by t

∗−→R t
′ if there exists a rewriting derivation from

t to t′. If the derivation contains at least one step, it is denoted by
+−→R.

Example 5.2 In Combinatory Logic (c.f. Example 5.1), we can derive

S(KS)Kxyz →CL KSx(Kx)yz →CL S(Kx)yz →CL Kxz(yz)→CL x(yz),

where the operator · has been omitted. Abbreviating S(KS)K by B, this establishes that Bxyz
∗−→CL x(yz)

and defines Bxy as the composition x ◦ y where x and y are variables representing functions.

January 28, 2006 rewriting solving proving

5.3 A rewriting logic 65

Another interesting combinator is SII often abbreviated as Ω and called self-applicator. This name is
justified by the following derivation

Ωx = SIIx→CL Ix(Ix)→CL Ixx→CL xx.

But the term ΩΩ admits a cyclic derivation:

ΩΩ = SII(SII)→CL I(SII)(I(SII))→CL I(SII)(SII)→CL SII(SII).

It can also be proved that any term F in Combinatory Logic has a fixed point P defined as Ω(BFΩ). Indeed

P = Ω(BFΩ)
∗−→CL (BFΩ)(BFΩ)

∗−→CL F (Ω(BFΩ)) = FP.

Exercice 25 — In Combinatory Logic (c.f. Example 5.1), define C, W,Y as combinators C = S(BBS)(KK), W =
SS(KI), Y = WS(BWB). Develop the following derivations:

Cxyz
∗
−→CL xzy,

Wxy
∗
−→CL xyy,

Y x
∗
−→CL x(Y x).

Answer:

The various relations defined from R have in common to be closed under context and substitution:

Definition 5.4 A binary relation → over a set of terms T (F ,X) is term-closed (also called sometimes
monotonic) if it is closed both under context application:

∀s, t, u ∈ T (F ,X)∀ω ∈ Dom(u), s→ t implies u[s]ω → u[t]ω,

and under substitutions:

∀s, t ∈ T (F ,X), s→ t implies σ(s)→ σ(t) for any substitution σ.

A binary relation → over a set of terms T (F ,X) is a rewrite ordering if it is transitive, irreflexive and
term-closed.

Lemma 5.1 The relations →R,←R,←→R,
∗−→R,

∗←−R, ∗←→R,
+−→R,

+←−R, +←→R are closed under context

and substitutions on T (F ,X). The relation
+−→R is a rewrite ordering.

Definition 5.5 For a rewrite system R = {li → ri}i∈I , we denote =R the equational theory generated by
the set of equational axioms E = {li = ri}i∈I .

An easy characterization of two equivalent terms modulo =R can be given using −→R:

Lemma 5.2 Let R = {li → ri}i∈I a term rewriting system, then for any two terms t, t′, we have t =R t′

iff there exists a finite sequence of terms t = t0, t1, . . . , tn−1, tn = t′ such that for all i ∈ [1..n − 1] either
ti−→R ti+1 or ti+1−→R ti.

5.3 A rewriting logic

We now introduce a logic which allows to build all the elements of a rewriting relation generated by a term
rewriting system R. It has been presented for example in [Mes92]Meseguer and [Hus88]Hussmann.

For a given set of terms T (F ,X) and a set of rules R, we define the sequents as the sentences of the form
t→ t′ where t and t are terms of T (F ,X).

A rewrite theory is a set R of rewrite rules. Each rule (l→ r) has a finite set of variables Var(l)∪Var(r) =
{x1, . . . , xn} which are recorded in the notation (l(x1, . . . , xn) → r(x1, . . . , xn)). A theory R entails the
sequent (t → t′), if it is obtained by the finite application of the deduction rules REW presented in
Figure 5.1.

Lemma 5.3 The rule Substitution can be derived from the four other rules of the rewriting logic.

January 28, 2006 rewriting solving proving

66 Definition and properties of rewrite systems

Reflexivity
7→7→
t→ t
if t ∈ T (F ,X)

Congruence t1 → t′1, . . . , tn → t′n
7→7→
f(t1, . . . , tn)→ f(t′1, . . . , t

′
n)

if f ∈ Fn
Replacement t1 → t′1, . . . , tn → t′n

7→7→
l(t1, . . . , tn)→ r(t′1, . . . , t

′
n)

if l(x1, . . . , xn)→ r(x1, . . . , xn) ∈ R
Transitivity t1 → t2, t2 → t3

7→7→
t1 → t3

Substitution u(x1, . . . , xn)→ v(x1, . . . , xn), t1 → t′1, . . . , tn → t′n
7→7→
u(t1, . . . , tn)→ v(t′1, . . . , t

′
n)

Figure 5.1: REW: The rules of rewrite deduction

If the rule:
Symmetry t1 → t2

7→7→
t2 → t1

is added to the four rules Reflexivity, Congruence, Replacement and Transitivity, we clearly get
equational logic, previously defined in section 2.4. The gap between equational logic and rewriting logic is
actually quite deep because of the very strong requirement for symmetry.

Depending of the use of the previous rules, we can build several rewriting relations.

Definition 5.6 For a given rewrite system R, a sequent t→ t′ is:

• a zero-step R-rewrite, if it can be derived from R by application of the rules Reflexivity and
Congruence. In this case t and t′ coincide.

• a one-step concurrent R-rewrite, if it can be derived from R by application of the rules Reflexivity,
Congruence and at least one application of Replacement. When Replacement is applied exactly
once, then the sequent is called a one-step sequential R-rewriting.

• a concurrent R-rewrite, if it can be derived from R by a finite application of the rules in REW.

The relation between a one step sequential R-rewriting and the rewrite relation previously defined on
terms is made precise in the following lemma.

Lemma 5.4 A sequent t → t′ is a one step sequential R-rewriting iff there exist a rule l → r in R, a
substitution σ and an occurrence ω of t such that t→ω,σ,l→r

R t′.

Proof: Immediate induction on the form of the proof of the sequent t→ t′. 2

This result extends to any concurrent rewriting derivation:

Lemma 5.5 For each sequent t→ t′ computed using the rewriting logic relative to a set of rules R:

• either t = t′,

• or there exists a chain of one step concurrent R-rewrite:

t = t0 → t1 → · · · → tn−1 → tn = t′.

Moreover, in this chain, each step ti → ti+1 can be chosen sequential.

January 28, 2006 rewriting solving proving

5.4 Church-Rosser property 67

Proof: This is also a consequence of the form of the proof of the sequent t→ t′. 2

These last results show the equivalence between the operational definition of rewriting and the sequential
rewriting relation obtained from the rewriting logic. The main advantage of the last one is precisely to get
rid of an operational definition of rewriting that needs to handle the notion of occurrence, matching and
replacement. This allows in particular to get simpler proof.

5.4 Church-Rosser property

Results valid for any abstract reduction system are now specialized to the set of terms T (F ,X) and the
rewriting relation→R. In this context, the Church-Rosser property states the relation between replacement
of equals by equals and rewriting.

The relation →R on T (F ,X) is Church-Rosser if

∀t, t′ ∈ T (F ,X), t
∗←→R t

′ iff ∃t′′ t ∗−→R t
′′ ∗←−R t′.

The confluence property is the key concept to ensure the determinism of the rewriting relation seen as
a computation process. It says that two computations starting from a same term will eventually give the
same result:

∀t, t1, t2 ∈ T (F ,X), t1
∗←−R t ∗−→R t2 implies ∃t′′ t1 ∗−→R t

′′ ∗←−R t2.
A rewrite system R is Church-Rosser, confluent, locally confluent, terminating, convergent on T (F ,X)

if →R is Church-Rosser, confluent, locally confluent, terminating, convergent on T (F ,X).
A rewrite system R is ground Church-Rosser, ground confluent, ground locally confluent, ground termi-

nating, ground convergent if →R is Church-Rosser, confluent, locally confluent, terminating, convergent on
the set of ground terms T (F).

Example 5.3 Right distributivity ({(x+y)∗z→ (x∗z)+(y ∗z) (~Dl)}) or left distributivity ({x∗ (y+z)→
(x ∗ y) + (x ∗ z) (~Dr)}) are confluent rewrite systems. Put together, the set of these two rules defining
distributivity (i.e., {(x + y) ∗ z → (x ∗ z) + (y ∗ z), x ∗ (y + z) → (x ∗ y) + (x ∗ z)}) is terminating but not
confluent since

(x ∗ x) + (x ∗ y) + (y ∗ x) + (y ∗ y) ~Dr
←− ~Dl

←−(x+ y) ∗ (x+ y)−→ ~Dr −→ ~Dl(x ∗ x) + (y ∗ x) + (x ∗ y) + (y ∗ y)

A rewrite system R provides a decision procedure for an equational theory E if R is finite, convergent
and =R coincides with =E. As we have seen in Section 2.4.6, the word problem is the problem to decide
if whether or not an equality s = t between two ground terms follows from E. This is a particular case of
provability in E for arbitrary terms. If R is ground convergent, the word problem is decidable by reducing
both terms s and t to their normal forms and by testing the syntactic equality of the results.

Of course not every equational theory can be decided by rewriting. Some decidable theories are not
finitely presented. Moreover some finitely presented theories are undecidable (the combinatorial logic for
instance). Even some finitely presented and decidable theories are not decidable by rewriting.

Example 5.4 Kapur and Narendran [KN85] found the following finite Thue system, made of the only axiom:

a(b(a(x))) = b(a(b(x))),

with a decidable word problem and without equivalent finite convergent system.

5.5 Reduced systems

Definition 5.7 A rewrite system R is (inter-)reduced if for each rule l → r ∈ R, the right-hand side r is
irreducible by R and no term s strictly less than l in the encompassment ordering v is reducible.

Exercice 26 — If R is convergent, prove that R is reduced iff for any left-hand side l of a rule in R, l is irreducible

by other rules with a different left-hand side.

Answer:

The interest of reduced systems relies on the fact that for a given equational theory, there is only one (up
to variable renaming) convergent and reduced system contained in a given reduction ordering [BL80, Met83].

Definition 5.8 Let R be a set of rewrite rules and > any reduction ordering. > contains R if for any rewrite
rule l → r in R, l > r.

January 28, 2006 rewriting solving proving

68 Definition and properties of rewrite systems

5.6 Orthogonal systems

For non-terminating systems, confluence can be however ensured by adding strong syntactic conditions on
the left-hand sides.

Definition 5.9 A rewrite system that is both left-linear (the left-hand side of each rule is a linear term)
and non-overlapping is called orthogonal.

Example 5.5 The system from Combinatory Logic given in Example 5.1 is orthogonal.

Theorem 5.1 If a rewrite system R is orthogonal, then it is confluent.

Proof: This is proved in [Hue80], using the fact that the parallel reduction (i.e., parallel application of rules
of R at disjoint redexes) is strongly confluent. 2

We should notice that the orthogonality hypothesis cannot be weakened in order to get this result. Non-
overlapping is clearly needed. Linearity is needed as shown by the following (of course non-terminating)
example of rewriting system.

Example 5.6 [Klo80]

d(x, x) → e
c(x) → d(x, c(x))
a → c(a)

The confluence of orthogonal systems establishes the correctness of the operational semantics of recursive
programming language, as [O’D85] for instance.

Several interesting theorems can be proved for orthogonal rewrite systems.
Remind first that a rewrite system is Noetherian or strongly normalizing if every term has no infinite

reductions. A rewrite system is weakly normalizing if every term has a normal form (though infinite reductions
may exists). Moreover,

Definition 5.10 A rewrite system is weakly innermost normalizing if every term has a normal form which
can be reached by innermost reduction (i.e., a reduction in which only redexes are selected that do not
properly contain other redexes).

These properties are equivalent if the rewrite system is orthogonal:

Theorem 5.2 [O’D77] For an orthogonal rewrite system R, R is strongly normalizing iff R is weakly
innermost normalizing.

For orthogonal systems, efficient evaluation strategies of normal forms have been studied. First normal
forms can be computed by a parallel-outermost strategy. With additional sequentiality requirements, normal
forms can be computed without look-ahead.

Theorem 5.3 [Ken89] Every orthogonal rewrite system has a computable, sequential, normalizing reduction
strategy.

But the problem of finding an optimal strategy that avoids all unnecessary rewrites is undecidable in
general.

5.7 Decidability results

Many (most!) properties of rewrite systems are undecidable. For a rewrite system built on a finite signature
with finitely many rewrite rules, it is undecidable whether confluence holds and also whether termination
holds. However for ground rewrite systems (i.e., with no variable), confluence is decidable [DHLT87] and
termination is decidable [HL78b]. But ground confluence is undecidable as shown in [KNO90].

January 28, 2006 rewriting solving proving

Chapter 6

Termination of rewrite systems

6.1 Introduction

This chapter focusses on proving termination of term rewriting systems specifically. An explicit use of term
structure, substitutions and term properties is made here. After stating in general the termination problem,
two methods for proving termination will be considered: the first one based on reduction orderings, the
second one based on simplification orderings. The second approach is quite syntactic and more restrictive
but already powerful enough to deal with a reasonable number of significant examples. Extensions of these
methods to termination of rewriting in equivalence classes is then considered.

6.2 Termination

The (weakly) normalizing property of a rewrite system is not enough if infinite computations of normal forms
must be avoided. Indeed, a term may have a normal form and nevertheless an infinite rewriting derivation.
So a stronger, unfortunately undecidable, property is often needed, namely the termination property.

This termination requirement forbids rewrite rules like f(x, a) → g(y) with a variable in the right-hand
side that does not occur on the left (otherwise f(x, a) → g(f(x, a)) → g(g(f(x, a))) → . . .). Also a rule
like x → g(x) whose left-hand side is a variable, cannot belong to a terminating rewrite system, otherwise
x→ g(x)→ g(g(x))→ . . .
These restrictions will be implicitely assumed in the following when speaking about terminating rewrite
systems.

A less trivial cases of non-termination is given in the next example.

Example 6.1 The following rewrite system T , due to Toyama [Toy86], is not terminating:

f(a, b, x) → f(x, x, x)

g(x, y) → x

g(x, y) → y,

as shown by the cycle:

f(g(a, b), g(a, b), g(a, b)) // f(a, g(a, b), g(a, b)) // f(a, b, g(a, b))

EDGF��

This is also a characteristic example of the non modularity of termination of term rewriting systems (see
Chapter 8).

Example 6.2 The rewrite system restricted to the rule:

f(f(x)) → f(g(f(x)))

is terminating. This can be proved by using the argument that rewriting makes the number of adjacent f ’s
in any term decrease.

January 28, 2006 rewriting solving proving

70 Termination of rewrite systems

In general, it is undecidable whether a rewrite system is terminating. The idea of the proof is the
following: Given any Turing machineM, there exists a rewrite system RM such that RM terminates for all
terms iff M halts for all input tapes. Since it is undecidable if a Turing machine halts uniformly, it is also
undecidable if rewrite systems terminate [Der85b].

This undecidability result holds even for very particular cases: Huet and Lankford examine the case
where both sides of the rules are monadic [HL78b]. Dauchet proved undecidability of one left-linear rule
termination [Dau89], which is quite remarquable. However on the positive side, for ground rewrite systems,
composed of rules without variables, termination is decidable [Tis89, HL78b].

Exercice 27 — Prove that −− x→ x is terminating. Prove that −x→ −−−x is not terminating.

Answer: Trivial in both cases using a size argument.

Example 6.3 A non-trivial example of non-termination is given by the following rule:

−(x+ y)→ (−− x+ y) + y.

There exists an infinite derivation:

−− (x + y)→ −((−− x+ y) + y) → (− − (−− x+ y) + y) + y
→ (−((− −−− x+ y) + y) + y) + y → . . .

Some abstract properties of the rewriting relation →R can be studied in the more general framework of
well-founded orderings on an arbitrary set T as it is done in Chapter 4 on Abstract Reduction Systems.

6.3 Reduction orderings

Proving termination of a rewrite system in full generality requires to look at an infinite set of possible
contexts for each instance of a rule. This motivates the concept of reduction ordering that embodies in its
definition the closure properties by instantiation and by context.

6.3.1 Definition

Definition 6.1 A reduction ordering > is a well-founded ordering closed under context and substitution,
that is such that for any context C[] and any substitution σ, if t > s then C[t] > C[s] and σ(t) > σ(s).

Lemma 6.1 In a reduction ordering > a term is never smaller than one of its subterm, i.e. we never have
t|p > t for p ∈ Dom(t), p 6= Λ.

Proof: Assume t|p > t, then t = t[t|p]p > t[t]p and therefore we can built a sequence of infinitely decreasing
terms:

t|p > t > t[t]p > t[t[t]p]p > t[t[t[t]p]p]p > . . .

contradicting the fact that by definition a reduction ordering is well-founded. 2

Lemma 6.2 When a reduction ordering is total then it contains the subterm ordering.

Proof: As a term and any of its subterm are comparable, because of the previous lemma it could only be
as t > t|p, and therefore the ordering contains the subterm ordering. 2

Using a reduction ordering, termination of rewriting can be proved by comparing left and right-hand
sides of rules.

Theorem 6.1 [Lan77] A rewrite system R over the set of terms T (F ,X) is terminating iff there exists a
reduction ordering > such that each rule l→ r ∈ R satisfies l > r.

Proof: If R is terminating on T (F ,X), define > by s > t if s
+−→

R
t. Then > is clearly a reduction ordering.

Conversely, if there exists a reduction ordering > such that each rule l → r ∈ R satisfies l > r, any
descending chain t1−→R t2−→R . . . correspond to a descending chain t1 > t2 > t3 > . . . and thus R
should be terminating otherwise > would not be well-founded. 2

January 28, 2006 rewriting solving proving

6.3 Reduction orderings 71

6.3.2 Building reduction orderings using interpretations

It is often convenient to build a reduction ordering by using an homomorphism τ from ground terms to
an F -algebra A with a well-founded ordering >. Let fτ denote the image of f ∈ F using τ ; τ and > are
constrained to satisfy the monotonicity condition:

∀a, b ∈ A, ∀f ∈ F , a > b implies fτ (. . . , a, . . .) > fτ (. . . , b, . . .).

Then the ordering >τ defined by:

∀s, t ∈ T (F), s >τ t if τ(s) > τ(t),

is well-founded.
To compare terms with variables, variables are added to A producing A(X) and variables in X are

mapped to distinct variables in A(X). Then the ordering >τ is extended by defining

∀s, t ∈ T (F ,X), s >τ t if ν(τ(s)) > ν(τ(t))

for all assignment ν of values in A to variables of τ(s) and τ(t). Because > is assume to be well-founded, a
rewrite system is terminating if one can find A, τ and > as defined above.

The following examples use as algebra A the natural numbers with the usual ordering >, together with
exponential interpretations and polynomial interpretations [Lan75a, Lan79b].

Example 6.4 Consider the one-rule system i(f(x, y))→ f(f(i(x), y), y) and the following interpretation of
i and f respectively by the square and the sum functions on positive natural numbers:

τ(i(x)) = τ(x)2

τ(f(x, y)) = τ(x) + τ(y)

In addition, let τ(x) = x and τ(y) = y.
The monotonicity condition a > b implies fτ (a) > fτ (b) is clearly satisfied, since each function is

increasing on natural numbers. Now,

τ(i(f(x, y))) = (x + y)2 = x2 + y2 + 2xy

τ(f(f(i(x), y), y)) = x2 + 2y.

and for any assignment of positive natural numbers n andm to the variables x and y, n2+m2+2nm > n2+2m.
So this one-rule system is terminating.

Example 6.5 The following rewrite system

		 x → x

	(x⊕ y) → (x)⊕ (y)
	(x⊗ y) → (x)⊗ (y)

x⊗ (y ⊕ z) → (x⊗ y)⊕ (x ⊗ z)
(x⊕ y)⊗ z → (x⊗ z)⊕ (y ⊗ z)

has been shown terminating in 1978 by Filman [Fil78] with an exponential mapping τ to natural numbers
bigger than 2:

τ(x) = 2τ(x)

τ(x ⊕ y) = τ(x) + τ(y) + 1

τ(x ⊗ y) = τ(x)τ(y)

τ(c) = 3

for all constants c ∈ F .
The first rule for instance always decreases the interpretation of a term, since τ(((x))) = 22τ(x)

, and
for any natural n assigned to the variable τ(x), 22n

> n. The cases of the other rules are left as exercise to
the reader.

January 28, 2006 rewriting solving proving

72 Termination of rewrite systems

Exercice 28 — Let R be the following set of rules that axiomatizes the differentiation operator D with respect to
a “variable” X. X and C are considered in this system as constants, while x and y are variables.

D(X) → 1

D(C) → 0

D(x + y) → D(x) + D(y)

D(x− y) → D(x)−D(y)

D(−x) → −D(x)

D(x ∗ y) → (x ∗D(y)) + (y ∗D(x))

D(x/y) → D(x)/y − ((x ∗D(y))/(y ∗ y))

D(ln(x)) → D(x)/x

Check that the following polynomial interpretation allows proving termination of R:

τ (x + y) = τ (x) + τ (y)

τ (x ∗ y) = τ (x) + τ (y)

τ (x− y) = τ (x) + τ (y)

τ (x/y) = τ (x) + τ (y)

τ (D(x)) = τ (x)2

τ (−x) = τ (x) + 1

τ (ln(x)) = τ (x) + 1

τ (a) = 4

where a is any constant.

As shown by the previous examples this method is quite powerful but in practice the main difficulty
clearly comes from the choice of the interpretation. Some heuristics and methods can be found in [BCL87].

Expressivity of polynomial interpretations

Polynomial interpretations are easy to use but have severe limitations from two point of views. The first one
is that if the termination of a term rewriting system can be proved using a polynomial interpretation, then
the length of the rewriting derivations is bounded by a double-exponential. Formaly:

Proposition 6.1 [HL89, Lau88]
If R can be proved terminating using a polynomial interpretation then there exists a constant κ such

that, for any terms s and t,

s
n−→R

t⇒ n ≤ 22κ.|t|

.

Moreover this bound can be reached as shown by the following example.

Example 6.6 Let R be the following system of rules:

c(0, 0) → 0
c(s(x), 0) → s(c(x, x))
c(x, s(y)) → s(s(c(x, y)))

with the following associated interpretation:

[0] = 2
[s](X) = X + 1

[c](X,Y) = 2X2 + 3Y

Then we have

c(sm(0), sn(0))
K−→

R

with K =
m(n+ 1)

2
+ n+ 1

and thus

ck+1((s(s(0)), 0), . . .)
∗−→R

c(s2
2k

(0), 0)
M−→

R

s2
2k+1

(0) with M = 22k+1

+ 22k−1 + 1.

January 28, 2006 rewriting solving proving

6.4 Simplification orderings 73

The second limitation of polynomial interpretations, already announced in [HO80], concerns the complex-
ity of the function computed with term rewriting systems whose termination is provable using polynomial
interpretation. Assuming the function f completely defined over the natural numbers build on constructors
0 and s by a term rewriting system R, one can define the computed function {f} as follows:

f(sn1(0), . . . , snp(0))
!−→
R

s{f}(n1,...,np)(0).

Then A. Cichon and P. Lescanne have proved that {f} is bounded by a polynomial function [CL91].

6.4 Simplification orderings

6.4.1 Well-quasi-ordering and general embedding

Another approach to prove termination is based on the following remark: given a total rewrite ordering (see
definition 5.4), if it is well-founded, then it contains the proper subterm relation �sub: otherwise, if t|ω > t
for some term t and some position ω, then there is an infinite decreasing sequence t > t[t]ω > t[t[t]ω]ω >
Conversely, it can be proved that for a finite F , if the rewrite ordering contains the subterm relation �sub,
then it is well-founded. This result however needs a stronger notion than well-foundedness, namely well-
quasi-ordering formally introduced in the section 4.2.3.

It is thus important to construct well-quasi-orderings. First, any well-quasi-ordering ≥ on F induces a
well-quasi-ordering on T denoted �≥ and defined as a generalization of the homeomorphic embedding, as
follows:

Definition 6.2 The embedding relation induced by a well-quasi-ordering ≥ on F , denoted �≥, is the tran-
sitive reflexive term-closed closure of the following relation:

f(s1, . . . , sn) �≥ si 1 ≤ i ≤ n
f(s1, . . . , sn) �≥ g(si1 , . . . , sik) f ≥ g, 1 ≤ i1 < . . . < ik ≤ n, k ≤ n.

The first property is called context deletion and the second is called subterm deletion.

The main theorem, generalizing Kruskal’s Tree Theorem [Kru60] and due to Higman [Hig52] for a finite
set of function symbols F and to Nash-Williams [NW63] in the general case, states that this embedding
relation is a well-quasi-ordering:

Theorem 6.2 If ≥ is a well-quasi-ordering on F , then the induced embedding relation �≥ is a well-quasi-
ordering on ground terms.

Note that when F is finite, any quasi-ordering on F , including syntactic equality, is a well-quasi-ordering
and that the homeomorphic embedding is a special case of this definition where the well-quasi-ordering on
the signature is just the equality of symbols.

6.4.2 Basic definitions and properties

Since any rewrite ordering containing the subterm relation �sub also contains the homeomorphic embedding,
the subterm condition suffices for well-foundedness of term orderings, provided that F is finite. This is the
idea that underlies the notion of simplification ordering. In addition to be reduction orderings, simplification
orderings enjoy the so-called subterm property: for any term t and any subterm u of t, then t ≥ u. In other
words:

Definition 6.3 A simplification ordering is a reflexive transitive and term-closed relation ≥ on terms, that
contains the subterm ordering �sub.

Proposition 6.2 A simplification ordering contains the homeomorphic embedding.

Proof: The homeomorphic embedding is the smallest reflexive transitive term-closed relation satisfying the
condition of Definition 4.10. Thus it clearly contains the subterm relation. So it is smaller than any
simplification ordering. 2

The class of rewrite systems whose termination can be proved using a simplification ordering is important
enough to justify a specific terminology and study their properties.

January 28, 2006 rewriting solving proving

74 Termination of rewrite systems

Definition 6.4 A rewrite system R is simply terminating if there exists a simplification ordering ≥ such
that for any rule l → r in R, l > r.

Theorem 6.3 [Der82] Assume that the set F of operator symbols is finite. A rewrite system R is termi-
nating if R is simply terminating.

Proof: If there exists an infinite sequence t1 →R t2 . . . →R ti, then t1 > t2 . . . > ti Since the
homeomorphic embedding is a well-quasi-ordering on terms, there exist a pair of terms ti and tj such
that i < j and ti �emb tj , which implies ti ≤ tj by Proposition 6.2. But this contradicts the fact that
ti > tj . 2

A useful characterization of simple termination is provided by the formalization of embedding with a
rewrite system.

Lemma 6.3 [Zan92] Given a set of operator symbols F , let Emb(F) be the following set of rewrite rules

f(x1, . . . , xn)→ xi

for any f ∈ F of arity n and i ∈ {1, . . . , n} The following statements are equivalent:

• R is simply terminating.

• R ∪Emb(F) is simply terminating.

• R ∪Emb(F) is terminating.

Exercice 29 — Prove that if a rewrite system R contains a rule g → d such that g is embedded in d, there is no

simplification ordering allowing to prove the termination of R. Therefore there is no simplification ordering that

allows proving the termination of the rewrite system f(f(x))→ f(g(f(x))).

Exercice 30 — Prove that there is no total simplification ordering that allows proving the termination of the
following system on the set of ground terms built on the set of operators {a, b, f, g}:

f(a) → f(b)

g(b) → g(a)

6.4.3 Path orderings

Simplification orderings can be built from a well-founded ordering on the function symbols F called a
precedence. A powerful example is the following multiset path ordering also called recursive path ordering:

Definition 6.5 Let >F be a precedence on F . The multiset path ordering >mpo is defined on ground terms
by s = f(s1, .., sn) >mpo t = g(t1, . . . , tm) if one at least of the following conditions holds:

1. f = g and {s1, . . . , sn} >multmpo {t1, . . . , tm}
2. f >F g and ∀j ∈ {1, . . . ,m}, s >mpo tj
3. ∃i ∈ {1, . . . , n} such that either si >mpo t or si ∼ t

where ∼ means equivalent up to permutation of subterms.

The congruence ∼ is precisely defined as:

s = f(s1, .., sn) ∼ t = g(t1, . . . , tm)

if f = g and sj ∼ tπ(j) for some permutation π of [1, . . . , n].
Notice that the precedence on F needs not be total and that the condition f = g could be replaced by

f ∼F g where ∼F is the equivalence induced on F by >F .
Exercice 31 — Assuming − >F +, prove that:

−(1 ∗ (1 + 0)) >mpo (−1) +−(0 + 1).

What is the minimal precedence allowing to prove:

h(f(a, b)) >mpo f(b, a).

January 28, 2006 rewriting solving proving

6.4 Simplification orderings 75

Proposition 6.3 [Der82] The multiset path ordering is a simplification ordering.

The difficulty in establishing this last result mainly relies is the transitivity proof.
The definition of the multiset path ordering can be extended to terms with variables by adding the

following conditions:

1. two different variables are incomparable,

2. a function symbol and a variable are incomparable.

Example 6.7 Clearly by the subterm relation: h(p(x, y)) >mpo p(x, y) >mpo y.
Assuming a >F p, a(p(x, y), z) >mpo p(x, a(z, y)) >mpo y since a >F p and a(p(x, y), z) >mpo x,
a(p(x, y), z) >mpo a(z, y), the latter being true since p(x, y) >mpo y.

Instead of comparing the multisets of subterms, the next ordering compares them lexicographically.

Definition 6.6 Let >F be a precedence on F . The lexicographic path ordering >lpo is defined on terms by
s = f(s1, .., sn) >lpo t = g(t1, . . . , tm) if one at least of the following condition holds:

1. f = g and (s1, . . . , sn) >
lex
lpo (t1, . . . , tm) and ∀j ∈ {1, . . . ,m}, s >lpo tj

2. f >F g and ∀j ∈ {1, . . . ,m}, s >lpo tj
3. ∃i ∈ {1, . . . , n} such that either si >lpo t or si = t.

Again, notice that the condition f = g could be replaced by f ∼F g where ∼F is the equivalence induced
by >F .

Notice also that in contrast with the mpo, the first condition of lpo requires that ∀j ∈ {1, . . . ,m}, s >lpo tj .
This can be weakened as presented for exemple in [“T02, Proposition 6.4.8].

Proposition 6.4 [KL80] The lexicographic path ordering is a simplification ordering.

The lexicographic path ordering is extended to terms with variables as the multiset path ordering does.

Example 6.8 Assuming ack >F succ, it is easy to show that:

ack(0, y) >lpo succ(y)

ack(succ(x), 0) >lpo ack(x, succ(0))

ack(succ(x), succ(y)) >lpo ack(x, ack(succ(x), y)).

This shows the termination of the rewriting system defining the Ackermann’s function.

Exercice 32 — Prove that the associativity rule x ∗ (y ∗ z) → (x ∗ y) ∗ z terminates, using a lexicographic path

ordering.

Answer: Choose the lexicographic ordering in the good direction and apply the definition of the lpo.

Both orderings may be combined to get the recursive path ordering with status. Let us assume that each
symbol f in the signature has a status, Stat(f) which can be either lexicographic (lex) or multiset (mult).

The equality up to multisets, =mult, is defined on terms as follows:

s = f(s1, . . . , sn) =mult t = g(t1, . . . , tm)

if f = g, m = n, and:

• either f is not AC and ∀i = 1, . . . , n, si =mult ti,

• or f is AC and the two multisets {s1, . . . , sn} and {t1, . . . , tm} are equal.

Definition 6.7 Let >F be a precedence on F . The recursive path ordering with status >rpos is defined on
terms by s = f(s1, .., sn) >rpos t = g(t1, . . . , tm) if one at least of the following condition holds:

1. f >F g and ∀j ∈ {1, . . . ,m}, s >rpos tj
2. g >F f and ∃i ∈ {1, . . . , n} such that either si >rpos t or si =mult t.

3. f = g, Stat(f) = lex and

(a) ∃i = 1, . . . , n, si >rpos t or si =mult t or else

(b) ∃i = 1, . . . , n,∀j < i, sj =mult tj and ∀k ∈ {1, . . . , n}, s >rpos tk.
4. f = g, Stat(f) = mult and (s1, . . . , sn) >

lex
rpos (t1, . . . , tm).

Another simplification ordering, well-suited for computations, is the recursive decomposition order-
ing [Les84], so-called because it pre-processes terms by decomposing them, in order to improve efficiency.

January 28, 2006 rewriting solving proving

76 Termination of rewrite systems

6.5 Conclusion

In complex proofs of termination, different orderings are combined. Usual combinations, such as multiset
extension or lexicographic combination, have already been presented here. Another simple idea would be to
simply combine two terminating rewrite systems by taking their union. But it is not true that the union of
two terminating rewrite systems is still terminating, even if the function symbols are disjoint. A survey of
the known results about the modularity of the termination property can be found in Chapter 8.
Further Readings: A comprehensive survey of termination is [Der87].

January 28, 2006 rewriting solving proving

Chapter 7

Generalizations of rewriting

7.1 Introduction

This chapter is devoted to various extensions of the rewriting relation on terms. The two first notions,
ordered rewriting and class rewriting, emerged from the problem of equational axioms like commutativity
that cannot be oriented without loosing the termination property of reduction. The first proposed solutions
in [LB77c, LB77a, LB77b, Hue80, PS81] amounted to define a rewrite relation on equivalence classes of
terms and to simulate it by another rewrite relation on terms that transforms a representative element of
the equivalence class. The problematic non-orientable axioms are then built in the matching process which
becomes equational matching.

Another approach of the same problem is taken in the notion of ordered rewriting which appeared
in [BDP89]. There only orientable instances of axioms may be used in the rewrite relation. The problematic
non-orientable axioms are kept as equalities.

It appeared later on that these two concepts can be combined to take advantage of theories like associa-
tivity and commutativity where equational matching is available. This produces the notion of ordered class
rewriting which underlies the simplification mechanism of equational theorem provers like SbREVE [AHM89].

Conditional rewriting started from a quite different motivation issued from abstract data types and
algebras with partial functions and exceptions. This algebraic point of view was the base of earlier ap-
proaches [PEE81, Rém82, Dro83, Kap84, ZR85, BK86]. However to be able to associate with a condi-
tional rewrite system a decidable and terminating reduction relation, it is necessary to provide a reduc-
tion ordering to compare terms involved in the consequence and in the condition of a conditional rewrite
rule [JW86, Kap87, DOS87]. Then conditional rewriting has been shown to provide a computational
paradigm combining logic and functional programming [Fri85a, DP88, GM86]. Only later the connection
between conditional equalities and Horn clauses was exploited. Considering a conditional equality as an
equational Horn clause leads to define ordered conditional rewriting [BG91b].

Rewriting with constraints emerged more recently as a unified way to cover the previous concepts by
looking at ordering and equations as symbolic constraints on terms. But even further, it provides a framework
to incorporate disequations, built-in data types and sort constraints.

7.2 Ordered rewriting

The termination property of a rewrite system is crucial to compute normal forms of terms and reduction
orderings have been proposed to ensure termination as soon as, in the rewrite system, every left-hand side
is greater than the corresponding right-hand side. This is the key point to choose an orientation for the
equality and to use it as a rewrite rule. Two kinds of equalities may cause failure of orientation: the first
one is due to equalities like f(x) = g(y) that do not have the same variables in the left and right-hand sides.
The second case is due to permutative axioms like commutativity that cannot be oriented without loosing
the termination property of the reduction relation. However such non-orientable equalities may sometimes
be used for reduction anyway, because some of their instances can be oriented. For instance, considering
the commutativity axiom (x + y = y + x), an instance like (x + f(x) = f(x) + x) may be oriented using a
lexicographic path ordering. Based on this idea, ordered rewriting does not require to use equalities always in
the same direction, but the decreasing property of rewriting with respect to a given ordering has to be always
satisfied. This approach needs to define an adequate rewrite relation and a corresponding Church-Rosser
property.

January 28, 2006 rewriting solving proving

78 Generalizations of rewriting

7.2.1 Ordered rewrite systems

In ordered rewrite systems, the reduction ordering is made explicit.

Definition 7.1 [BDP89] An ordered rewrite system, denoted (E,>), is a set of equalities E together with
a reduction ordering >.

From the equalities and the ordering, a set of ordered instances can be built. The ordered rewriting
relation is just rewriting with ordered instances of equalities.

Definition 7.2 Given an ordered rewrite system (E,>), an ordered instance of an equality (g = d) ∈ E
(with respect to the ordering >), is an equality (σ(g) = σ(d)) such that σ(g) > σ(d).

A simple example illustrates this notion.

Example 7.1 Consider a commutative monoid with two generators, that are constants a and b. Assuming
that (a ∗ b) > (b ∗ a), the ground term (a ∗ b) is reduced, by the commutativity equality (x ∗ y = y ∗ x) to
(b ∗ a) but not vice-versa.

Let E> denote the following set of rewrite rules that are ordered instances of equalities in E:

E> = {σ(g)→ σ(d) | (g = d) ∈ E, and σ s.t. σ(g) > σ(d)}.

Definition 7.3 Given an ordered rewrite system (E,>), the ordered rewriting relation is the rewriting
relation →E> generated by the set E>.

In a more operational way, this could also be defined as follows.

Definition 7.4 Given an ordered rewrite system (E,>), a term t (E,>)-rewrites to a term t′, which is
denoted by t→E> t′ if there exists

• an equality l = r of E,

• a position ω in t,

• a substitution σ, satisfying t|ω = σ(l) and σ(l) > σ(r)

such that t′ = t[ω ←↩ σ(r)].

Note that s→E> t implies s←→E t and s > t.

7.2.2 Church-Rosser property for ordered rewriting

The corresponding Church-Rosser property crucially depends on the reduction ordering.

Definition 7.5 A set of equalities E is said to be ground Church-Rosser with respect to a reduction ordering
> if for all ground terms t and t′ such that t

∗←→E t′, there exists a ground term t′′ such that t
∗−→E>

t′′
∗←−E> t′.

The Church-Rosser property of E with respect to > means that any proof t
∗←→E t′ of a theorem (t = t′)

with t, t′ ∈ T (F), has a normal form, which is a rewrite proof using
∗−→E> .

Definition 7.6 A proof t
∗−→E> t′′

∗←−E> t′, with t and t′ ground terms, is called a ground rewrite proof.

Such a proof contains no more subproof t←→E t′ nor peak t′ ←E> t→E> t′′. In order to eliminate the
←→E-steps, one needs a condition that ensures that two E-equivalent ground terms are always comparable
in some ordering � that extends >.

Definition 7.7 A reduction ordering � that is total on T (F) is called ground-total.

Of course when � is a ground-total reduction ordering, for all ground terms t, t′ such that t ←→E t′,
then either t� t′ or t′ � t.

We thus assume in what follows, that the reduction ordering > extends to a ground-total reduction
ordering �. This condition is fulfilled in most cases: orderings based on polynomial interpretations satisfy
this condition for any set of equalities E [Lan79a, Lan75b]. Also any precedence which is total on the set F
of operator symbols can be extended to such an ordering by the means of a recursive path ordering [Der87].

Note that it would be enough to assume that� is a ground-total reduction ordering for E, which means
that two E-equivalent ground terms are always comparable.

January 28, 2006 rewriting solving proving

7.3 Class rewriting 79

Example 7.2 [MN90] Consider the set of equalities E:

(x ∗ y) ∗ z = x ∗ (y ∗ z)
x ∗ y = y ∗ x

x ∗ (y ∗ z) = y ∗ (x ∗ z)

and a reduction ordering > total on ground terms and satisfying for all ground terms x, y, z:

(x ∗ y) ∗ z > x ∗ (y ∗ z)
x ∗ y > y ∗ x if x > y

x ∗ (y ∗ z) > y ∗ (x ∗ z) if x > y

Then (E,>) is an ordered rewrite system such that E is ground Church-Rosser with respect to a reduction
ordering >.

Assuming that > is the lexicographic path ordering and that a, b, c are constants such that c > b > a,

b ∗ (c ∗ (b ∗ a))→E> b ∗ (c ∗ (a ∗ b))→E> b ∗ (a ∗ (c ∗ b))→E> a ∗ (b ∗ (c ∗ b))→E> a ∗ (b ∗ (b ∗ c)).

This ordered rewrite system allows deciding the word problem for associativity and commutativity of ∗.

In this example, with a lexicographic path ordering, the first equality (associativity) is orientable, that
is all its ground instances are ordered, so it could be replaced once for all by a rewrite rule. This leads to a
more liberal definition of ordered rewrite system, where equalities are now split into two parts: an orientable
part that gives a rewrite system contained in the reduction ordering, and a non-orientable part.

Example 7.3 [MN90] Groups of exponent two can be defined by the following ordered rewrite system
composed of the set of equalities and rewrite rules E

x ∗ y = y ∗ x
x ∗ (y ∗ z) = y ∗ (x ∗ z)
(x ∗ y) ∗ z → x ∗ (y ∗ z)

x ∗ x → 1

x ∗ (x ∗ y) → y

x ∗ 1 → x

1 ∗ x → x

and a reduction ordering > total on ground terms and satisfying for all ground terms x, y, z:

x ∗ y > y ∗ x if x > y
x ∗ (y ∗ z) > y ∗ (x ∗ z) if x > y

and containing the rewrite rules.

7.3 Class rewriting

To deal with the problem of non-orientable equalities like commutativity, the solution proposed in this
section is to quotient the set of terms by the congruence generated by these equalities, called axioms, and to
rewrite in equivalence classes. This requires the elaboration of new abstract concepts, namely the notion of
class rewrite systems (also called equational term rewriting systems) and rewriting modulo a set of axioms in
which the matching takes into account non oriented equalities. Adequate notions of confluence and coherence
modulo a set of equalities [Hue80, Jou83, JK86c] must be defined for expressing abstract properties of such
rewriting relations.

7.3.1 Class rewrite systems

Given a set of axioms A, let
∗←→A be the generated congruence relation. The notion of rewriting formalized

hereafter can be understood as making a set of rules R computing in equivalence classes modulo
∗←→A.

Definition 7.8 A class rewrite system R/A is composed of a set of rewrite rules R and a set of equalities
A, such that A and R are disjoint sets.

January 28, 2006 rewriting solving proving

80 Generalizations of rewriting

It may be sometimes useful to distinguish between A and ~A = {(g → d), (d → g)|(g = d) ∈ A}. Note
that ←→A=→ ~A.

Example 7.4 A class rewrite system for abelian groups, i.e. associative and commutative groups, is given
by the following sets of rewrite rules and equalities:

x+ 0 → x

x+ (0 + y) → x+ y

x+ (−x) → 0

x+ ((−x) + y) → y

−− x → x

−0 → 0

−(x+ y) → (−x) + (−y)

x+ y = y + x

(x+ y) + z = x+ (y + z)

The rewrite relation defined below applies to a term if there exists a term in the same equivalence class
modulo A that is reducible with a rewrite rule of R.

Definition 7.9 Given a class rewrite system R/A, the term t (R/A)-rewrites to t′, denoted t →R/A t′, if

t
∗←→A u[ω ←↩ σ(l)] and t′

∗←→A u[ω ←↩ σ(r)], for some rule l → r ∈ R, some term u, some occurrence ω in
u and some substitution σ.

However this rewrite relation is not completely satisfactory from a more operational point of view, for
the following reasons:

• Even if R is finite and
∗←→A decidable,→R/A may not be computable since equivalence classes modulo

A may be infinite or not computable. For instance, the axiom −x = x generates infinite equivalence
classes.

• The relation →R/A does not terminate if R is non-empty and A contains an axiom like idempotency
x + x = x where a lone variable occurs on one side and several times on the other. Of course, this
produces the infinite sequence from a left-hand side of a rule (l→ r) ∈ R:

l
∗←→A l+ l →R r + l

∗←→A r + (l + l)→R r + (r + l)....

Other axioms that cause non-termination are equalities like x ∗ 0 = 0 where a variable occurs on one
side and not on the other. Then 0 ←→A l ∗ 0 →R r ∗ 0 ←→A 0 is a cycle for →R/A. Indeed, if such
axioms are present, they must be considered as rewrite rules and put in R.

To circumvent these problems with →R/A, especially to avoid scrutiny through equivalence classes, the
idea is to use a weaker relation. Several approaches follow this idea and four of them can be mentioned:

• Huet’s approach [Hue80] uses standard rewriting →R but is restricted to left-linear rules.

• Peterson and Stickel’s approach [PS81] uses rewriting modulo A, denoted →R,A, and needs matching
modulo A.

• Pedersen’s approach [Ped84] uses a restricted version of matching modulo A, confined to variables.

• Jouannaud and Kirchner’s method [JK86c] uses standard rewriting with left-linear rules and rewriting
modulo A with non-left-linear rules, mixing advantages of the two first methods.

Several abstract properties are common to these relations and are formalized in the next section for a
general relation→RA

that may by any of these relations. However at least to support intuition, and because
this is the most commonly used rewrite relation for class rewrite systems, the Peterson and Stickel’s relation
is defined more precisely.

Definition 7.10 Given a class rewrite system R/A, a term t (R,A)-rewrites to a term t′, which is denoted
by t→R,A t

′ if there exists

January 28, 2006 rewriting solving proving

7.3 Class rewriting 81

• a rule l→ r of R,

• a position ω in t,

• a substitution σ, satisfying t|ω
∗←→A σ(l) and called a match modulo A from l to t|ω,

such that t′ = t[ω ←↩ σ(r)].

Notation: When either the rule, the substitution and/or the position need to be precised, a rewriting step
is denoted by

t→ω,σ,l→r
R,A t′.

Note that in this relation t and t[σ(l)]ω differ only by A-equality steps below the position ω. So clearly
→R,A is included in →R/A.

7.3.2 Church-Rosser results

A class rewrite system R/A defines an abstract reduction system and all concepts and properties of abstract
reduction systems are available. We rephrase some of them in the context of class rewrite systems.

Definition 7.11 The class rewrite system R/A is terminating if →R/A is terminating.

A term irreducible for →R/A is said in R/A-normal form. The R/A-normal form of a term t is denoted
t ↓R/A.

Definition 7.12 The class rewrite system R/A is Church-Rosser if

∗←→R∪A ⊆ ∗−→R/A ◦ ∗←→A ◦ ∗←−R/A .

Whenever the class rewrite system R/A is Church-Rosser and terminating, for any terms t, t′, t
∗←→R∪A t

′

iff t ↓R/A ∗←→A t
′ ↓R/A. In other words, when R/A is Church-Rosser and terminating,

∗←→R∪A is decidable by
checking A-equality of R/A-normal forms. This result can be understood as a method for proving equational
theorems in a theory described by a class rewrite system. Then to be effective, this method assumes two
conditions: A-equivalence must be decidable and R/A-normal forms must be computable. Since this is not
always true with the relation →R/A, other computable rewrite relations must be considered. Let →RA

(or
RA for short) be any (rewriting) relation satisfying →R ⊆ →RA

⊆ →R/A.
The definition of a Church-Rosser property for RA takes the following form:

Definition 7.13 The rewriting relation RA is Church-Rosser modulo A if

∗←→R∪A ⊆ ∗−→RA
◦ ∗←→A ◦ ∗←−RA

.

In other words, this property means that any theorem t = t′ with an equational proof using R ∪ A has
also a so-called rewrite proof.

Definition 7.14 A proof of (t = t′) is a rewrite proof for RA if ∃t1, t′1,

t
∗−→RA

t1
∗←→A t

′
1
∗←−RA

t′

Exercice 33 — Prove that If R1 ∪ R2 is Church-Rosser then R1/E2 is Church-Rosser modulo E2, where E2 is
obtained from R2 by treating the rules as equations.
Answer: The proof is due to P. Narendran, M. Subrahmaniam and Q. Guo.

∗
−→R1∪R2 = (

∗
−→R2 ◦ −→R1 ◦

∗
−→R2)

∗∪
∗
−→R2

⊆ (←→ ∗E2◦ −→R1 ◦ ←→ ∗E2)
∗∪ ←→ ∗E2

= ←→ ∗R1/E2
∪ ←→ ∗E2

Thus

∗
−→R1∪R2 ◦

∗
←−R1∪R2 ⊆ (

∗
−→R1/E2

∪ ←→ ∗E2) ◦ (←→ ∗E2∪
∗
−→R1/E2

)

January 28, 2006 rewriting solving proving

82 Generalizations of rewriting

Exercice 34 — It is not the case that if R/A is Church-Rosser then R, A is Church-Rosser. Prove this assertion
using the following counterexample where

A : a + (b + c) = (a + b) + c

R : (a + b)→ c

Answer: For R,A to be Church-Rosser it must be the case that for any two terms s and t, if (s, t) ∈
∗
←→R∪A

then (s, t) ∈
∗
−→R,A ◦

∗
←→A ◦

∗
←−R,A. Let s be a + (b + b) and t be c + b. (a + (b + b), c + b) ∈

∗
←→R∪A, since

(a + (b + b))
∗
←→A ((a + b) + b) →R (c + b). But (a + (b + b)) 6∈

∗
−→R,A ◦

∗
←→A ◦

∗
←−R,A, since (a + (b + b)) and

(c + b) are irreducible with respect to →R,A and are not A equivalent.
The system

R′ : a + (b + c)→ (a + b) + c

(a + b)→ c

obtained by orienting the equation in A is convergent. Hence R/A is Church-Rosser modulo A by the result of the

previous exercise 7.3.2.

Confluence of RA is not enough to be equivalent to the Church-Rosser property, as in the case where
A = ∅. Coherence, another diamond property, is needed.

Definition 7.15

• The rewriting relation RA is confluent modulo A if

∗←−RA
◦ ∗−→RA

⊆ ∗−→RA
◦ ∗←→A ◦ ∗←−RA

.

• The rewriting relation RA is coherent modulo A if

∗←−RA
◦ ∗←→A ⊆ ∗−→RA

◦ ∗←→A ◦ ∗←−RA
.

• The rewriting relation RA is locally coherent with R modulo A if

←RA
◦ →R ⊆ ∗−→RA

◦ ∗←→A ◦ ∗←−RA
.

• The rewriting relation RA is locally coherent with A modulo A if

←RA
◦ ←→A ⊆ ∗−→RA

◦ ∗←→A ◦ ∗←−RA
.

The following lemma enlights the role of local coherence with A. Any term A-equivalent to a term in
RA-normal form, is itself in RA-normal form, provided R/A is terminating.

Lemma 7.1 Assume that R/A terminates and that RA is locally coherent with A modulo A. Then for any

terms t, t′, if t
∗←→A t

′ ↓RA
then t is RA-irreducible.

Proof: By induction on the number n of steps←→A. If n = 0, the result is clear. Else t←→A t1
∗←→A t

′ ↓RA

and by induction hypothesis, t1 is RA-irreducible. Now assume that t is RA-reducible to t′′. Then by

local coherence of RA with A modulo A, t′′
∗−→RA

∗←→A t1. Thus t
+−→R/A t, which contradicts the

termination of R/A. 2

This lemma is useful to prove the next theorem that relates the different properties.

Theorem 7.1 If R/A is terminating, the following properties are equivalent:

1. RA is Church-Rosser modulo A.

2. RA is confluent modulo A and RA is coherent modulo A.

3. RA is locally coherent with R modulo A and locally coherent with A modulo A.

4. ∀t, t′, t ∗←→R∪A t
′ iff t ↓RA

∗←→A t
′ ↓RA

.

January 28, 2006 rewriting solving proving

7.3 Class rewriting 83

Proof: Note that property (4) asserts that the Church-Rosser property modulo A is true when computing
RA-normal forms of t and t′, provided R/A is terminating. This is perfectly similar to the usual case
of an empty set A of equalities: in that case the Church-Rosser property can be checked on normal
forms, provided R is terminating.

(2)⇒ (3) is clear and does not use the termination hypothesis.

(4)⇒ (1) is straightforward, but (4) assumes termination.

(1)⇒ (2) : the proofs are straightforward, and the termination hypothesis implies that actually
∗←−RA

◦ ∗←→A ⊆ ∗−→RA
◦ ∗←→A ◦ +←−RA

.

(3)⇒ (4) : the right part of the equivalence clearly implies the left. Let us prove the converse by
multiset induction on →R/A: letM = {t0, t1, ..., tn+1} be a multiset of at least two elements (the
one element case is straightforward) such that t = t0 ←→R∪A t1...tn ←→R∪A tn+1 = t′. The basic
(one step) case being obvious, we consider the general one. Three cases are to be distinguished
according to the last equality step tn ←→R∪A tn+1.

• tn+1 →R tn: since tn ↓RA
is a RA-normal form of tn+1, the result follows from the induction

hypothesis applied to the multisetM−{tn+1}.
• tn ←→A tn+1: the result follows from either the induction hypothesis applied to the multiset
M−{tn+1} if tn, and thus tn+1, is RA-irreducible, or else it follows from the local coherence
of RA and from the induction hypothesis applied to the multiset {t0, ..., tn, t′′n, ..., t′n, ..., t′n+1}
which is strictly smaller thanM, since its terms are all proper descendents of tn+1 for→R/A.

• tn →R tn+1: we first apply the induction hypothesis to the multiset M − {tn+1}. As
tn is reducible by R (therefore by RA), we can apply local coherence modulo A of RA
with R. We end the proof by applying the induction hypothesis to the multiset {tn ↓RA

, ..., t′′n, ..., t
′
n, ..., t

′
n+1, ..., tn+1 ↓RA

}.

2

Theorem 7.1 is false if termination of RA is assumed in place of termination of R/A, as proved by the
following counterexamples where local properties are true but global ones are not. Note that these examples
are similar to [Hue80], with added complexity to ensure that they are not coherent.

Example 7.5 Assume given a finite set of terms {t0, t1, t2, t3, t4, t5} and let RA be the relation given by:
{t1 →RA

t0, t2 →RA
t1, t3 →RA

t4, t4 →RA
t5} and let ←→A be given by: {t1 ←→A t2, t2 ←→A t3, t3 ←→A

t4}.
RA is locally coherent modulo A with R and A, its confluence modulo A is trivially satisfied, but coherence

modulo A is not. Moreover R/A is clearly non-terminating, but RA is terminating.

Similarly, we get a counterexample where local coherence of R with R modulo A is true but confluence
modulo A is not satisfied.

Example 7.6 Assume given a finite set of terms {t0, t1, t2, t3, t4, t5, t6} and let R be the relation given by:
{t1 →R t0, t2 →R t1, t3 →R t2, t3 →R t4, t4 →R t5} and let ←→A be given by: {t1 ←→A t2, t2 ←→A

t3, t3 ←→A t4, t4 ←→A t5}.
R is locally coherent modulo A with R and A, but neither confluence modulo A nor coherence modulo

A is satisfied. Moreover R/A is clearly non-terminating, but R is terminating.

The following exercise provides another counter-example due to P. Narendran.
Exercice 35 — Consider the signature with constants symbols a, b, c, d, e, i and a binary operator +. Let A be the
set of ground axioms:

(a + b) + d = (a + c) + d

(a + c) + d = e

and R be the set of ground rewrite rules:

c → b

a + b → i

Prove the following properties:

1. R,A is locally coherent with R modulo A and locally coherent with A modulo A.

January 28, 2006 rewriting solving proving

84 Generalizations of rewriting

2. R,A is terminating.

3. R/A is not terminating.

4. R/A is not Church-Rosser modulo A

Answer:

1. R,A is locally coherent with R modulo A and locally coherent with A modulo A.

Note that →R,A is equivalent to →R. Hence for local confluence, it suffices to show that ←R ◦ →R⊆
∗
−→R,A

◦
∗
←→A ◦

∗
←−R,A. This is a consequence of local confluence of R, since R is a reduced ground rewriting system

with no critical pairs.

For local coherence, let (s, s′) ∈←R ◦ ←→A. Therefore there exists a term m such that m→R s and m←→A s′.
Let ω and υ be any two positions in m such that m[r]ω = s for some rule l → r ∈ R and m[d]υ = s′ for some
g = d ∈ A.

If the positions ω and υ are disjoint, then the→R and ←→A commute and the property is satisfied. Otherwise
one position is a prefix of the other. It is easy to see from A and R that ω ≤ υ is impossible. Hence υ ≤ ω and
we can assume w.l.o.g. that υ = Λ.

(a) If m = (a + b) + d, s′ = (a + c) + d. The only redex available for rewrite is (a+ b). Hence s = i + d. Since
s′ →R (a + b) + d→R i + d, local coherence is satisfied.

(b) If m = (a + c) + d, s′ = e. Again by a similar argument as in the previous case s = (a + b) + d
∗
←→A s′,

so local coherence is satisfied.

The above two are the only two possible cases. Therefore, →R,A is locally coherent.

2. R,A is terminating. Given any term t there exists no position ω in t such that t|ω
+
←→A σ(l), for any

substitution σ and rule l → r ∈ R. Hence any rewrite sequence using R, A can be embedded in a rewrite
sequence using →R. Since it can be trivially shown that →R is terminating, R, A is terminating.

3. R/A is not terminating due to the loop:

(a + b) + d←→A (a + c) + d→R (a + b) + d

4. R/A is not Church-Rosser modulo A: Let s = (i + d) and t = e.

(a + c) + d←→A (a + b) + d→R i + d and (a + c) + d
∗
←→A e

But i + d and e both are irreducible with respect to →R,A and are not A-equal.

Exercice 36 — Assume that →R ⊆ →RA ⊆ →R/A. Prove the following properties:

1. R Church-Rosser modulo A implies RA Church-Rosser modulo A implies R/A Church-Rosser.

2. R/A terminating implies RA terminating implies R terminating.

3. If RA is Church-Rosser modulo A and R/A terminating, then any term t is RA-irreducible iff t is R/A-
irreducible. Deduce that t ↓RA is in normal form for R/A, and t ↓R/A is in normal form for RA.

Answer:
Exercice 37 — The following counter-example and its proof are due to P. Narendran, M. Subrahmaniam and
Q. Guo.

It is not the case that if R1 ∪ R2 is convergent then E2 \R1 is Church-Rosser where E2 is obtained from R2 by
treating the rules as equations. Consider the following example :

R1 : g(f(x))→ x

R2 : g(h(x))→ h(g(x))

Thus E2 = {g(h(x)) = h(g(x))}.

Answer: R1, E2 is not Church-Rosser. Let s be g(h(f(x))) and t be h(x).

With the precedence on the function symbols being given as g >F h, termination of R1 ∪R2 can be easily seen using

a recursive path ordering. R1 ∪R2 is locally confluent since it is a reduced rewrite system with no critical pair.
Exercice 38 — The following counter-example and its proof are due to P. Narendran, M. Subrahmaniam and
Q. Guo.

It is not the case that if R/A is Church-Rosser then R is locally coherent with respect to A. Prove this assertion
using the counter-example given below.

A : a = b

R : f(x, x)→ x

Answer: R is not locally coherent with respect to S: Consider the term f(b, b). f(b, b)→R b and f(b, b)←→A f(a, b).
Since b and f(a, b) are both irreducible with respect to→R and are not A equivalent, (b, f(a, b)) provides the counter-
example for local coherence.
R/A is Church-Rosser: This can be easily proved using Exercise 7.3.2. This is also a consequence of the proof that
R, A is Church-Rosser:

January 28, 2006 rewriting solving proving

7.3 Class rewriting 85

• R/A is terminating since →R decreases size and ←→A preserves size.

• R,A is locally coherent and locally confluent: CPA(R, A) is empty since f(x, x) cannot be A-unified with a or

b. The only critical pair in CPA(R, R) is trivial since f(x, x)
∗
←→A f(y, y) iff x

∗
←→A y.

7.3.3 Termination

The termination of R/A is thus a crucial condition to ensure. Unfortunately there is no general method for
proving it for any set of axioms A. Researches have been pursued in two different directions: on one hand,
finding ad-hoc mechanisms for proving termination for a given set of axioms in A, especially for associativity
and commutativity; on the other hand, proposing properties for reducing the termination of R/A to the
termination of R.

Ad-hoc mechanism for associative commutative theories

The first method, already proposed by Lankford in 1975, further developped in [BCL87] and currently
implemented in REVE for instance, is based on polynomial interpretations. The idea is to interpret terms by
polynomials using an homorphism τ from the set of terms T (F ,X) into an F -algebra A with a well-founded
ordering >. For that, a multivariate integer polynomial fτ (x1, ..., xn) is associated to each n-ary function
symbol f . The choice of coefficients must satisfy the monotonicity condition: ∀a, b ∈ A, a > b implies
fτ (...a...) > fτ (...b...). The interpretation of an AC-operator ought to be an AC polynomial, so must be
linear (i.e. of the form x + y + n) or quadratic (i.e. of the form mx + ny + p). Moreover terms must be
mapped onto nonnegative integers only. Then to each rule l → r ∈ R, the polynomial τ(l) − τ(r) must be
positive for all values of variables greater than the minimal value of a ground term.

The method can be better explained on an example.

Example 7.7 Consider the class rewrite system BR/AC given by the following set BR of rewrite rules

x⊕ 0 → x

x⊕ x → 0

x ∧ 0 → 0

x ∧ 1 → x

x ∧ x → x

x ∧ (y ⊕ z) → (x ∧ y)⊕ (x ∧ z)

and the asssociativity and commutativity axioms for ⊕ and ∧.
The following polynomial interpretation can be used to prove termination of BR/AC.

⊕τ (x1, x2) = x1 + x2 + 1

∧τ (x1, x2) = x1x2

constantτ = 2.

The set of rules BR is then mapped onto the set of polymomials

x+ 2 + 1− x
x+ x+ 1− 2
2x− 2
2x− x
x2 − x
x(y + z + 1)− (xy + xz + 1)

Each of these polynomials takes only positive values, provided that variables are always greater than 2. This
proves the termination of BR/AC.

Other techniques, for the associativity and commutativity case, are obtained by applying transformations
on terms and then comparing their results. For instance, a usual transformation is flattening that transforms
for instance the term x + (y + z) into +(x, y, z) for an associative commutative symbol +. More general
transformations can be formalized by application of rewrite rules [BD86a, GL86] to both terms to compare;
then the resulting terms are compared using a usual reduction or simplification ordering on terms.

January 28, 2006 rewriting solving proving

86 Generalizations of rewriting

Total AC-compatible orderings

A simplification ordering AC-compatible and total on non-AC-equivalent ground terms was defined
by [NR91b]. Another ordering based on a total precedence on function symbols, instead of polynomial
interpretations, was proposed in [RN93], which has moreover tha advantage to be extendable to terms with
variables.

Let >1 be a recursive path ordering with status based on a total precedence >F , in which AC-symbols
have a lexicographical left-to-right status. The interpretation of a term t is defined thanks to a set RF of
flattening rules

f(x1, . . . , xm, f(y1, . . . , yr), z1, . . . , zn)→ f(x1, . . . , xm, y1, . . . , yr, z1, . . . , zn)

for all AC-function symbols f with m+ n ≥ 1 and r ≥ 2, and a set RI of interpretation rules of the form

f(x1, . . . , xm, g(t1, . . . , tr), y1, . . . , yn)→ f(x1, . . . , xm, t, y1, . . . , yn)

for all symbols g and all AC-symbols f >F g in the precedence, m + n ≥ 1, where t is the maximal term
w.r.t. >1 of {t1, . . . , tr} if r > 0 and where t is the smallest constant symbol ⊥ if r = 0 and g 6= ⊥.

The interpretation I(t) of a term t is defined as its normal form w.r.t. RF ∪ RI under the leftmost-
innermost strategy using RF first.

Using this interpretation, the ordering > is defined as follows.

Definition 7.16 s > t if

• I(s) >1 I(t) or

• I(s) =mult I(t), i.e. I(s) and I(t) are equal up to a permutation of arguments of AC-operators. Let
f be the top symbol of both s and t and f(s1, . . . , sm), f(t1, . . . , tm) be the normal forms of s and t
obtained by rewriting with RF only at topmost position. Then

1. f is AC and {s1, . . . , sm} >mult {t1, . . . , tm} or

2. f is not AC and ∃i = 1, . . . ,m, ∀j < i, sj =AC tj and si > ti.

Example 7.8 Suppose a >F b >F f >F g >F h where f is AC. We have f(a, b) > g(a, b) be-
cause I(f(a, b)) = f(a, b) >1 g(a, b) = I(g(a, b)). We also have f(a, f(a, b)) > f(a, g(a, b)) because
I(f(a, f(a, b))) = f(a, a, b) > f(a, a) = I(f(a, g(a, b))).

The following results are proved in [RN93]:

Theorem 7.2 > is AC-compatible and total on non-AC-equivalent ground terms.

Moreover there exists an extension >V of > to terms with variables such that s >V t implies σ(s) > σ(t)
for all ground substitutions σ.

General methods

Designing a general method for proving termination of R/A from termination of R requires good properties
to be satisfied by both R and A. The first one is that rules must be compatible with equivalence classes.

Definition 7.17 A reduction ordering > is compatible with A if for any terms s, s′, t, t′, s′
∗←→A s > t

∗←→A

t′ implies s′ > t′.

Any ordering that is compatible with A induces an ordering on A-congruence classes, also denoted >.

Proposition 7.1 A class rewrite system R/A is terminating iff R is contained in some reduction ordering
> compatible with A.

Proof: If R/A is terminating, let > be defined by t > t′ iff t →R/A t′. Then this ordering is a reduction
ordering compatible with A.

Conversely, assume that R is contained in some reduction ordering > compatible with A. If there
exists an infinite derivation sequence

t1
∗←→A→R

∗←→A t2
∗←→A→R

∗←→A t3
∗←→A→R

∗←→A ...,

then the ordering would have an infinite decreasing chain t1 > t2 > t3.... 2

January 28, 2006 rewriting solving proving

7.3 Class rewriting 87

Ensuring compatibility is a strong requirement and a weaker condition is proposed in [JM84].

Definition 7.18 A relation > is A-commuting if for any terms s, t, s′ such that s′
∗←→A s > t, there exists

t′ such that s′ > t′
∗←→A t.

Proposition 7.2 The class rewrite system R/A is terminating if there exists a A-commuting reduction
ordering >R that contains R.

Proof: If there exists an infinite derivation sequence

t1
∗←→A→R

∗←→A t2
∗←→A→R

∗←→A t3
∗←→A→R

∗←→A ...,

there exists an infinite sequence t1
∗←→A>R

∗←→A t2
∗←→A>R

∗←→A t3
∗←→A>R

∗←→A ..., and by A-
commuting property, t1 >R t′2 >R t′3 >R ...

∗←→A ..., obtained by repeatedly pushing to the end the
A-equivalence steps. This contradicts the well-foundness of >R. 2

An even more general result can be stated, along the same lines:

Proposition 7.3 The class rewrite system R/A is terminating if R is contained in a well-founded monotonic
ordering > that commutes over a monotonic equivalence that contains A.

Example 7.9 The example of boolean ring and algebra
A boolean algebra is an algebra B = (B,FB) where F = {0, 1,∧,∨,¬} that satisfies the following

equalities.

x ∨ 0 = x

x ∧ 1 = x

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
(x ∨ y) ∧ y = y

(x ∧ y) ∨ y = y

x ∨ (¬x) = 1

x ∧ (¬x) = 0

x ∧ y = y ∧ x
(x ∧ y) ∧ z = x ∧ (y ∧ z)

x ∨ y = y ∨ x
(x ∨ y) ∨ z = x ∨ (y ∨ z)

These axioms imply the well-known properties of operators ∧,∨,¬:

1 ∨ x = 1

x ∨ x = x

0 ∧ x = 0

x ∧ x = x

¬(x ∨ y) = (¬x) ∧ (¬y)
¬(x ∧ y) = (¬x) ∨ (¬y)
¬(¬x) = x

Since the 1950s it is known that any term (i.e. boolean formula) of the boolean algebra admits a normal
form, which is called the set of prime implicants and can be produced algorithmically. Such algorithms have
been produced by Quine [Qui52, Qui59] or by Slagle, Chang and Lee [SCL70]. But surprinsingly, attempts
to find a Church-Rosser class rewrite system for Boolean algebra using a completion procedure failed to
terminate in all experiments reported by [Hul80b, Hul80c, PS81]. Only in 1991, a formal proof on the
non-existence of a convergent system for boolean algebra was given in [SA91].

In 1985, J. Hsiang observed that there exists however a convergent class rewrite system in an extended
signature F = {0, 1,∧,∨,¬,⊕}, where ⊕ and ∧ are operators from a boolean ring. A class rewrite system

January 28, 2006 rewriting solving proving

88 Generalizations of rewriting

for boolean rings, where the conjunction ∧ and the exclusive-or ⊕ are associative and commutative, is given
by the following sets of rewrite rules and equalities, denoted BR/AC:

x⊕ 0 → x

x⊕ x → 0

x ∧ 0 → 0

x ∧ 1 → x

x ∧ x → x

¬x → x

x ∧ (y ⊕ z) → (x ∧ y)⊕ (x ∧ z)

x ∧ y = y ∧ x
(x ∧ y) ∧ z = x ∧ (y ∧ z)

x⊕ y = y ⊕ x
(x⊕ y)⊕ z = x⊕ (y ⊕ z)

Using this class rewrite system, any formula of predicate calculus has a normal form. For instance

(p(x) ∧ p(x))⊕ p(x)⊕ (q(y) ∧ r(x, y) ∧ 1)⊕ (p(x) ∧ 0)⊕ 1
∗−→BR/AC q(y) ∧ r(x, y) ⊕ 1.

In order to deal with Boolean algebras notations, one may add four more rules for defining implication ⇒,
equivalence ≡, negation ¬ and disjunction ∨. A convergent class rewrite system for computing normal forms
in Boolean algebras with the extended signature is as follows:

x ∨ y → (x ∧ y)⊕ x⊕ y
x⇒ y → (x ∧ y)⊕ x⊕ 1

x ≡ y → x⊕ y ⊕ 1

¬x → x⊕ 1

x⊕ 0 → x

x⊕ x → 0

x ∧ 0 → 0

x ∧ 1 → x

x ∧ x → x

x ∧ (y ⊕ z) → (x ∧ y)⊕ (x ∧ z)

x ∧ y = y ∧ x
(x ∧ y) ∧ z = x ∧ (y ∧ z)

x⊕ y = y ⊕ x
(x⊕ y)⊕ z = x⊕ (y ⊕ z)

Exercice 39 — The following counter-example and its proof are due to P. Narendran, M. Subrahmaniam and
Q. Guo.
It is not the case that if R, A is terminating then R/A is terminating. Prove that the following class rewrite system
provides a counter-example which proves this assertion, with A:

a + b = a + c

and R:
c→ b

where a, b and c are constants.
Answer: R/A is not terminating as is illustrated by the following loop:

a + b←→A a + c→R a + b.

Note that by definition of R, A, for any term t there exists no position ω in t such that t|ω = σ(c), for any substitution

σ, unless t|ω = c. Hence →R,A is equivalent to →R. Since →R is trivially terminating hence →R,A is terminating.

January 28, 2006 rewriting solving proving

7.4 Ordered class rewriting 89

7.4 Ordered class rewriting

Especially for the case of AC-theories, it is possible to combine both notions of ordered and class rewriting.
As in ordered rewrite systems, the reduction ordering is made explicit, and as in class rewrite systems, it
has to be compatible with the equivalence class.

Definition 7.19 An ordered class rewrite system, denoted (E/A,>), is defined by a set of axioms A, a set of
equalities E and a well-founded A-compatible reduction ordering > total on A-equivalence classes of ground
terms. A and E are assumed disjoint.

The class rewrite relation applies to a term if there exists a term in the same equivalence class modulo
A that is reducible with E>.

Definition 7.20 Given an ordered class rewrite system (E/A,>), the term t (E/A,>)-rewrites to t′, denoted

t →E/A,> t′, if t
∗←→A u[σ(l)]ω and t′

∗←→A u[σ(r)]ω , for some equation (l = r) ∈ E, some term u, some
occurrence ω in u and some substitution σ such that σ(l) > σ(r).

By construction →E/A,> is terminating. A term irreducible for →E/A,> is said in E/A-normal form.
w.r.t. >. The (E/A,>)-normal form of a term t is denoted t ↓E/A,>.

A-compatible reduction orderings do not exist when E is non-empty and A contains an axiom like
idempotency (x + x = x) where a lone variable occurs on one side and several times on the other. From
an instance σ of an equality (l = r) ∈ E, a contradiction to well-foundedness of > may be built, provided
σ(l) > σ(r):

σ(l)
∗←→A σ(l) + σ(l) > σ(r) + σ(l)

∗←→A σ(r) + (σ(l) + σ(l)) > σ(r) + (σ(r) + σ(l)) . . .
Other axioms that prevent the existence of an A-compatible reduction ordering are equalities like (x∗ 0 = 0)
where a variable occurs on one side and not on the other. Then 0←→A σ(l) ∗ 0 > σ(r) ∗ 0←→A 0 provides
the contradiction. Indeed, if such axioms are present, they must be considered as ordered equalities.

The rewrite relation →E/A,> is not completely satisfactory from an operational point of view: even if E

is finite and
∗←→A decidable, →E/A,> may not be computable since equivalence classes modulo A may be

infinite or not computable. For instance, the axiom (−x = x) generates infinite equivalence classes. To avoid
scrutiny through equivalence classes, the idea is to use a weaker relation on terms, called ordered rewriting
modulo A, which incorporates A in the matching process, and uses the set E> of ordered instances of E.

A more operational definition of ordered rewriting modulo A is given below:

Definition 7.21 Given an ordered class rewrite system (E/A,>), a term t (E,A,>)-rewrites to a term t′,
which is denoted by t→E,A,> t

′ if there exists

• an equality l = r of E,

• a position ω in t,

• a substitution σ, satisfying t|ω
∗←→A σ(l) and σ(l) > σ(r)

such that t′ = t[ω ←↩ σ(r)].

Note that s→E,A,> t implies s
∗←→E∪A t and s > t.

The corresponding Church-Rosser property crucially depends on the reduction ordering.

Definition 7.22 The class rewrite system (E/A,>) is Church-Rosser on a set of terms T if

∗←→E∪A ⊆ ∗−→E/A,> ◦ ∗←→A ◦ ∗←−E/A,> .

The ordered rewriting relation (E,A,>) defined on T is:

Church-Rosser modulo A if
∗←→E∪A ⊆ ∗−→E,A,> ◦ ∗←→A ◦ ∗←−E,A,>

confluent modulo A if
∗←−E,A,> ◦ ∗−→E,A,> ⊆ ∗−→E,A,> ◦ ∗←→A ◦ ∗←−E,A,>

coherent modulo A if
∗←−E,A,> ◦ ∗←→A ⊆ ∗−→E,A,> ◦ ∗←→A ◦ ∗←−E,A,>

locally confluent modulo A if ←E,A,> ◦ →E,> ⊆ ∗−→E,A,> ◦ ∗←→A ◦ ∗←−E,A,>
locally coherent modulo A if ←E,A,> ◦ ←→A ⊆ ∗−→E,A,> ◦ ∗←→A ◦ ∗←−E,A,>

The next theorem, adapted from [JK86c], relates the different properties.

Theorem 7.3 The following properties of an ordered class rewrite system (E/A,>), are equivalent on T :
• (E,A,>) is Church-Rosser modulo A.
• (E,A,>) is confluent modulo A and coherent modulo A.
• (E,A,>) is locally confluent and locally coherent modulo A.

• ∀t, t′, t ∗←→E∪A t
′ iff t ↓E,A,> ∗←→A t

′ ↓E,A,>.

January 28, 2006 rewriting solving proving

90 Generalizations of rewriting

7.5 Conditional rewriting

Conditional rewrite systems arise naturally in algebraic specifications of data types, where they provide a
way to handle partial operations and case analysis. They are also useful in theorem proving where they offer
an alternative to Horn clauses.

The algebraic study of conditional rewrite rules, that are rules of the form l →
r if (s1 = t1 ∧ · · · ∧ sn = tn), has been developed in many directions.

• Earlier approaches, as in [BK86, Kap84], consider such systems without any restrictive hypothesis on
the rules. In recursive rewriting [Kap84, Kap87] the condition of a rule is evaluated first and the rule
is applied only when the condition holds. Thus conditional rules introduce the additional complexity
of recursively evaluating the conditions, which gives rise to a new termination problem.

• In contextual rewriting [Rém82] rules may be applied to terms without prior evaluation of the condition,
which is appended to the environment as a context. This approach also is subject to an obvious non-
termination risk; in general, the contextual part of a term may grow unbounded during a sequence of
reductions.

With a general definition of conditional rules, simple questions, as “does a term t rewrite to t′” become
clearly undecidable [Kap84]. Researches then focus on finding restrictions on the rules to yield a decidable
rewriting relation.

• In order to avoid infinite recursive evaluation of the condition, the hierarchical approach [Dro83, PEE81,
Rém82, ZR85] states a hierarchy on the rules and asks that, for each rule, the condition is evaluated
at a lower level of the hierarchy.

• Termination of evaluation may be obtained via a reduction ordering to compare terms involved in
the equality and in the condition of a conditional rewrite rule. In a simplifying system, every left-
hand side of a rule is greater than both its right-hand side and its condition in some simplification
ordering [Kap87]. Since such an ordering is well-founded, every term can be brought to a normal form
via a simplifying system. Simplifying systems have been generalized to reductive systems [JW86], by
replacing a simplification ordering with a more general reduction ordering.

• An even more general proposal is decreasing conditional rewrite systems [DOS87], that are systems
where for each instance, the instantiated left-hand side is greater than the instantiated right-hand side
and conditions. They have been extended in [BG89, DO90] to cover systems with variables in the
conditions that do not appear in the left-hand side. The rewrite relation for decreasing systems is
terminating and decidable, when the rewrite system consists has a finite number of rules.

• Considering a conditional equality as an equational Horn clause leads to use a general ordering on
clauses to define ordered conditional rewriting. An ordered conditional equality is such that the equality
is maximal w.r.t. conditions and the right-hand side is not greater than the left-hand side. This last
approach is an instance of [BG91b].

7.5.1 Conditional rewrite systems

The formulas being considered are conditional equalities, written

l = r if Γ

, where Γ is a conjunction of equalities. Γ = (s1 = t1 ∧ · · · ∧ sn = tn) and l = r are respectively called the
condition and the conclusion of the conditional equality (See Section 2.6 of Chapter 2).

In a conditional rewrite rule, the equality is oriented and denoted as

t→ s if Γ.

Definition 7.23 A conditional rewrite system is a set of conditional rewrite rules of the form

l→ r if (s1 = t1 ∧ · · · ∧ sn = tn).

Γ = (s1 = t1 ∧ · · · ∧ sn = tn), l and r are respectively called the condition, left-hand side and right-hand side
of the conditional rewrite rule.

January 28, 2006 rewriting solving proving

7.5 Conditional rewriting 91

Using a conditional rewrite system R, a given rule could be applied to a term if its condition, instantiated
by the matching substitution, is satisfied.

In standard rewrite systems, every variable occurring in a right-hand side of a rule also occurs in the left-
hand side. This condition generalizes to conditional rewrite rules by requiring that every variable occurring
either in the condition or in the right-hand side of a rule also occur in the left-hand side. This may appear
as a strong restriction, and it is possible to define conditional rewriting in a very general way, as follows:

Definition 7.24 Given a conditional rewrite system R, a term t rewrites to a term t′, which is denoted by
t→R t

′ if there exist:

1. a conditional rewrite rule l→ r if Γ of R,

2. a position ω in t,

3. a substitution σ, satisfying t|ω = σ(l),

4. a substitution τ for the new variables such that τ(σ(Γ)) holds,

and then t′ = t[ω ←↩ τ(σ(r))].

With this definition, a conditional rewrite rule is applicable if there exists a substitution for the extra vari-
ables that makes the condition hold. Operationally this problem can be solved by narrowing. However, with
extra variables, ground confluence no longer guarantees the completeness of the narrowing process [GM87].
Completeness can be restored at the price of a stronger confluence condition, called level-confluence. The
interested reader can refer to [DO88, DO90] for more results on this subject.

Let us exemplify the use of extra variables on the definition of the append function of two lists:

Example 7.10 Consider the set of conditional rewrite rules:

append(nil, y) → y
append(x, y) → cons(u, z) if (x = cons(u, v) ∧ append(v, y) = z)

We have
append(cons(a, nil), nil)→ cons(a, nil)

since {u 7→ a, v 7→ nil, z 7→ nil} is a solution modulo this definition of append of (cons(a, nil) =? cons(u, v)∧
append(v, nil) =? z).

Definition 7.24 is too general to be of practical use. This leads to distinguish more restrictive notions of
conditional rewriting relations, according to the kind of evaluation chosen for the conditions. Definition 7.24
is then modified accordingly. First it is often required that every variable occurring either in the condition
or in the right-hand side of a rule also occurs in the left-hand side.

Var(Γ) ∪ Var(r) ⊆ Var(l).

Thus in the condition “there exists a substitution τ for the new variables such that τ(σ(Γ)) holds,” of
Definition 7.24, τ becomes the identity and we are left to check that σ(Γ) holds. Second, the evaluation
of the conditions could be made more operational in different ways. For the different kinds of rewriting
relations introduced below, we mention only the modified parts of Definition 7.24:

1. for natural conditional rewriting:
t→Rnat t′ if
(4) there exists a proof σ(si)

∗←→Rnat σ(ti) for each instantiated component of the condition.

2. for join conditional rewriting:
t→Rjoin t′ if
(4) there exists a joinability proof σ(si) ↓Rjoin σ(ti) for each instantiated component of the condition.

3. for normal conditional rewriting:
t→Rnorm t′ if

(4) σ(ti) is a normal form of σ(si), denoted by σ(si)
!−→Rnorm σ(ti), for each instantiated component

of the condition.

For a better readability, the relations →Rnat , →Rjoin and →Rnorm are denoted simply by Rnat, Rjoin and
Rnorm.

January 28, 2006 rewriting solving proving

92 Generalizations of rewriting

Example 7.11 [BK86] Consider the join conditional rewriting relation for the system:

f(a) → a
f(x) → c if x = f(x)

Since a ↓ f(a) we have f(a) → c by applying the second rule. Because f(a) ↓Rjoin f(f(a)), we have also
f(f(a))→ c. But neither c nor f(c) are reducible.

Example 7.12 Consider the normal conditional rewriting relation for the system:

even(0) → true
even(s(x)) → odd(x)
odd(x) → true if even(x) = false
odd(x) → false if even(x) = true

Then even(s(0))→ odd(0)→ false by applying first the second then the fourth rule.

In any case, the rewrite relation→R associated to a conditional rewrite system has an inductive definition,
which is fundamental for establishing properties of conditional rewrite systems.

Definition 7.25 Let R be a conditional rewrite system and Ri the rewrite system defined for i ≥ 0 as
follows:

R0 = {l→ r | l→ r ∈ R}
Ri+1 = Ri ∪ {σ(l)→ σ(r) | l→ r if (s1 = t1 ∧ · · · ∧ sn = tn) ∈ R,

and ∀j = 1, . . . , n, σ(sj) ≡i σ(tj)}

where ≡i denotes
∗←→Ri

, ↓Ri
or

!−→Ri
.

Then:

Lemma 7.2 t→R t
′ iff t→Ri

t′ for some i ≥ 0.

With this definition, an abstract reduction system can be associated to any conditional rewrite system,
according to the evaluation chosen for the conditions. All definitions and properties of Chapter 4 are thus
available for these abstract reduction systems.

Let us now compare the different definitions of conditional rewriting in more details. The main problem
with natural conditional rewriting is that the applicability of a rule involves arbitrary proofs of equalities
and so little is gained from this notion of rewriting. This is the reason for considering the more restrictive
definition of join conditional rewriting. The notion of normal rewriting appears as even more restrictive.
However the following results show that it has the same power as join rewriting.

First any join rewriting relation can be simulated by a normal rewriting relation on an enriched set of
terms. Let Rjoin be generated by the set of conditional rewrite rules R = {l→ r if (s1 = t1 ∧ · · · ∧ sn = tn)},
expressed with function symbols F ; let Rnormext be the normal rewriting relation generated by the sys-
tem Rext obtained by replacing each rule l → r if (s1 = t1 ∧ · · · ∧ sn = tn) by a rule of the form
l → r if (eq(s1, t1) = true ∧ · · · ∧ eq(sn, tn) = true) where eq is a binary function symbol and true is a
constant, that do not belong to F . Rext additionally contains the rule eq(x, x)→ true.

In order to more precisely compare the deduction power of these different rewriting relations, the addi-
tional hypothesis of decreasingness is needed.

Definition 7.26 A conditional rewriting relation is decreasing if there exists a well-founded extension > of
the rewriting relation → which satisfies two additional properties:

• > contains the proper subterm relation �,

• for each rule l → r if (s1 = t1 ∧ · · · ∧ sn = tn), we have σ(l) > σ(si) and σ(l) > σ(ti), for all substitu-
tions σ and all indices i, 1 ≤ i ≤ n.

Any conditional rewrite system has an underlying conditional equational system of the form defined in
Definition 7.23 denoted by Reqn. Indeed Reqn is obtained by replacing → by = in R. So Reqn ` p = q
means that the equality (p = q) can be deduced from the conditional system Reqn by the rules of equational
conditional deduction.

The next theorem summarizes the results presented in [DO90].

January 28, 2006 rewriting solving proving

7.5 Conditional rewriting 93

Theorem 7.4 Let p and q be any terms, R be any conditional rewrite system R and Reqn be its underlying
conditional equational system. Then:

•

p
∗←→Rnat q iff Reqn ` p = q.

• If Rjoin is confluent,

p ↓Rjoin q iff Reqn ` p = q.

• If Rnat is decreasing and confluent,

p ↓Rnat q iff p ↓Rjoin q.

• If Rext is the associated extended conditional rewrite system

p ↓Rjoin q implies p ↓Rext
q.

Conversely, if p and q do not contain eq and true,

p ↓Rext
q implies p ↓Rjoin q.

Obviously, if Rjoin is confluent, then so is the relation Rnat, but the converse does not hold, because not
all proofs in the condition of a natural rewriting proof can be transformed into joinability proofs.

Example 7.13 [Kap84] Consider the following system, where a, b, c, a′, b′ are constants and g, d are any
terms.

c → a
a′ → b
b′ → a
b′ → b
g → d if c = a′

Then c ←→Rnat a ←→Rnat b′ ←→Rnat b ←→Rnat a′ and so g →Rnat d. But c ↓Rjoin a′ is false and thus
g →Rjoin d is false, as well as g

∗←→Rjoin d.

7.5.2 Decidability results

For terminating unconditional rewrite systems, with a finite number of rules, the joinability relation (p ↓
q) is decidable. With conditional rewrite systems, joinability is not necessarily decidable, even for finite
terminating conditional systems. In [Kap83, Kap84], an example is built of a conditional rewrite system
such that the relation →R is not decidable and such that the normal form of a term is not computable.
Additional conditions must be added to get back decidable properties.

Theorem 7.5 [DO90] If →Rjoin is decreasing, the relations →Rjoin ,
∗−→Rjoin and ↓Rjoin are all decidable.

Proof: This is proved by induction with respect to the ordering that makes the conditional rewriting relation
decreasing. 2

The notion of decreasingness of a rewriting relation is not usable in practice. A property that can be
checked on the conditional rewrite system is preferable. This leads to introduce the notion of reductive
system [JW86] that generalizes the definition of simplifying system in [Kap87].

Definition 7.27 [JW86] A conditional rewrite system is reductive if there exists a well-founded reduction
ordering > such that for each rule l → r if (s1 = t1 ∧ · · · ∧ sn = tn), and for all substitutions σ:

(i) σ(l) > σ(r) and

(ii) σ(l) > σ(si) and σ(l) > σ(ti), for all indices i, 1 ≤ i ≤ n.

January 28, 2006 rewriting solving proving

94 Generalizations of rewriting

Actually reductive systems capture the finiteness of evaluation of terms, as explained in [DO90] or
in [Kap87]. Let the following predicate ; be defined on terms by t ; t′ if there exist a conditional rewrite
rule l→ r if (s1 = t1 ∧ · · · ∧ sn = tn) of R, a position ω in t, a substitution σ, satisfying t|ω = σ(l), and such
that t′ = σ(si) or t′ = σ(ti) for some i, 1 ≤ i ≤ n. Intuitively this means that evaluating t, while trying
to apply the given rule, leads to evaluate t′. Ensuring termination of the evaluation procedure turns out to
guarantee the termination of→R ∪;. This is done by imposing that the right-hand side and the condition
of any rule are simpler than its left-hand side. The relation →R ∪ ; corresponds to one step computation
and its transitive closure (→R ∪;)+ represents an arbitrary computation branch.

Proposition 7.4 Let R be a reductive conditional rewrite system. Then Rjoin is decreasing.

Proof: Let us define > as the union →Rjoin ∪ ; ∪�. Clearly > is an extension of the rewriting relation
→Rjoin which satisfies the two additional properties:

• > contains the proper subterm relation �

• for each rule l → r if (s1 = t1 ∧ · · · ∧ sn = tn), σ(l) ; σ(si) and σ(l) ; σ(ti), for all substitutions
σ and all indices i, 1 ≤ i ≤ n.

It remains to prove that > is well-founded. This follows from the fact that the proper subterm relation
is well-founded and commutes with both →Rjoin and ;. So the termination of > amounts to the
termination of →Rjoin ∪ ;. But since R is reductive, t →Rjoin t′ implies t > t′ and t ; t′ implies
t > t′. Since > is well-founded, so is →Rjoin ∪;. 2

7.5.3 Ordered conditional systems

As for unconditional equalities, it is possible to define a notion of ordered conditional rewriting, to deal with
conditional systems where only some instances of the rules are reductive.

Definition 7.28 An ordered conditional rewrite system denoted (C,>), is a set of conditional equalities C
together with a reduction ordering >.

Let > be a reduction ordering on terms which is assumed to be contained in some ordering total on
ground terms. Remind that all recursive path orderings satisfy this condition. Let ≥ be defined by s ≥ t if
s > t or s = t.

From the conditional equalities and the ordering, a set of ordered instances has to be built. But we first
need to have an appropriate (and most powerful) notion of ordered conditional equality. This requires the
definition of an ordering on the different components of a conditional equality.

The multiset extension >mult is an ordering on equalities denoted by >E .
This ordering extends to conditional equalities considered as multisets of equalities as follows: First add

⊥ as a new symbol that satisfies for every term t, t > ⊥. Then associate to each occurrence of the equality
s = t, its complexity c(s = t) which is
- the multiset {{s}, {t}} if s = t is the conclusion of C,
- the multiset {{s,⊥}, {t,⊥}} if s = t occurs in the condition of C, These complexities are multisets of
multisets of terms that may be compared using (>mult)mult.

The complexity of a conditional equality C, denoted by c(C) is the multiset of complexities c(s = t) for
any s = t ∈ C. In other words, each conditional equality

C = (l = r if
∧

i=1,...,n

si = ti)

has the complexity

c(C) = {{{s1,⊥}, {t1,⊥}}, ..., {{sn,⊥}, {tn,⊥}}, {{l}, {r}}}.

This ordering gives rise to the notion of ordered conditional equality that generalizes the concept of
ordered equality.

Definition 7.29 A conditional equality c = (l = r if Γ) is ordered if r 6≥ l and c(l = r) is strictly maximal
in c(C) (i.e. there is no other element in the multiset c(C) greater or equal to c(l = r))

We now get the notion of ordered instances.

January 28, 2006 rewriting solving proving

7.5 Conditional rewriting 95

Definition 7.30 Given an ordered conditional rewrite system (E,>), an ordered instance of a conditional
equality (l → r if Γ) ∈ E (with respect to the ordering >), is an ordered conditional equality (σ(l) →
σ(r) if σ(Γ).

Thus a conditional equality can be used to rewrite a term only if its instance by the matching substitution
is ordered.

The ordered conditional rewriting relation is just rewriting with ordered instances of conditional equalities.
The relation between ordered conditional equalities and reductive conditional rewrite rules is clarified in

the next proposition.

Proposition 7.5 Assume that > can be extended into a simplification ordering total on ground terms. If
a conditional equality is ordered, then its ground instances define a decreasing conditional rewrite relation
on ground terms. Conversely any reductive conditional rewrite rule is an ordered conditional equality.

Proof: Let C = (l = r if
∧
i=1,...,n si = ti) be an ordered conditional equality. Let → the join conditional

rewriting relation defined by the set of ground instances (σ(l) = σ(r) if
∧
i=1,...,n σ(si) = σ(ti)).

Let us also call > the extension of > on ground terms. If > is a simplification ordering on
ground terms, > contains the proper subterm relation. For any ground substitution σ, σ(l) >
σ(r). So →⊆> on ground terms. Moreover saying that c(l = r) is strictly maximal in c(C) =
{{{s1,⊥}, {t1,⊥}}, ..., {{sn,⊥}, {tn,⊥}}, {{l}, {r}}}, implies that for all i = 1, . . . , n, σ(l) > σ(si) and
σ(l) > σ(ti).

Conversely, if l → r if
∧
i=1,...,n si = ti is a reductive conditional rewrite rule w.r.t. a reduction

ordering >, then the conditional equality C = (l = r if
∧
i=1,...,n si = ti) satisfies for each substitution

σ, σ(l) > σ(r), and ∀i = 1, . . . n, σ(l) > σ(si), σ(l) > σ(ti), so in particular, ∀i = 1, . . . n, l > si, l > ti.
This implies that l = r is maximal. 2

7.5.4 Horn clauses versus conditional rewrite rules

Programming with conditional equalities has the great advantage to combine functional and logic program-
ming paradigms in a uniform framework. The relation between rewrite programs and Horn clause programs
from a semantical point of view is clarified in [BH92]. Here we borrow an example of [DO90] in order to
compare the two formalisms of Horn clauses and conditional rewrite rules on a simple example. In a Horn
clauses language, the definition of the function append is given by the two clauses:

null(x) ⇒ append(x, y) = y
¬null(x) ⇒ append(x, y) = cons(car(x), append(cdr(x), y))

The additional definitions of null, car and cdr are also given as clauses:

⇒ null(nil)
⇒ ¬null(cons(x, y))
⇒ car(cons(x, y)) = x
⇒ cdr(cons(x, y)) = y

In order to incorporate equality in the deduction mechanism for first-order logic, paramodulation must be
added to resolution for the need of completeness. But then non-linear forward reasoning and backward
chaining are required in this approach.

An alternative is to use function definitions as rewrite rules. For the append definition, the following set
of rules could be written:

append(x, y) → if null(x) then y else cons(car(x), append(cdr(x), y))
if true then x else y → x
if false then x else y → y
null(nil) → true
null(cons(x, y)) → false
car(cons(x, y)) → x
cdr(cons(x, y)) → y.

It is important to note that unrestricted reduction using this system could lead to the following infinite
derivation:

append(nil, nil) → if null(nil) then nil else cons(car(nil), append(cdr(nil), nil))

January 28, 2006 rewriting solving proving

96 Generalizations of rewriting

→ if true then nil else cons(car(nil), append(cdr(nil), nil))

→ if true then nil else cons(car(nil), if null(cdr(nil)) then nil

else cons(car(cdr(nil)), append(cdr(cdr(nil)), nil))).

In this specific case, instead of axiomatizing the if then else operator, the condition can be better
expressed by mutually exclusive left-hand side patterns; then the three first rules are replaced by the next
ones:

append(nil, y) → y
append(cons(x, y), z) → cons(x, append(y, z)).

But this is not always possible. A more general method is to transform a rewrite rule

f(x, y)→ if p(x, y) then r(x, y) else s(x, y)

into two conditional rewrite rules:

f(x, y) → r(x, y) if p(x, y) = true
f(x, y) → s(x, y) if p(x, y) = false

Applied to append this gives:

append(x, y) → y if null(x) = true
append(x, y) → cons(car(x), append(cdr(x), y)) if null(x) = false.

We get by this way a form very similar to the Horn clauses definition.
The transformations we have used above show the difficulties to reduce conditional to unconditional

rewriting while preserving properties like termination. This is the subject of many studies well summarized
in [Hin94].

7.6 Constrained rewriting

Following the tradition of logic programming [JL87] and higher-order unification [Hue72], constraints have
been introduced in automated theorem proving to improve inference systems and deduction in several aspects.
Some advantages in using deduction with constraints are

1. to make explicit every symbolic computation step, especially unification, orientation and typing.

2. to modularize deduction and in particular to design better controls by delaying complex problem
solving.

3. to schematize (infinitely) many objects.

4. to get more expressive power.

These advantages may be better illustrated by a few examples where the concept of constraints is of
interest.

Example 7.14 In these examples, constraints are equations (t =? t′), disequations (t 6=? t′), inequations:
(t >? t′) or membership constraints (t ∈? s0) where s0 is a sort. In order to emphasize the fact that the
predicates used in constraints are interpreted in a specific way and that we are looking for solutions, we put
a question mark as exponent in constraints. Indexes specify instead in which interpretation constraints are
solved. For instance (t =?

∅ t
′) is an equation to solve in the empty theory, while (t =?

A t′) is solved in the
theory A.

We can then express

• A rule applying everywhere except in one point:

(−(x+ y)→ (−x) + (−y) ‖ (x 6=?
ACIdentity 0 ∧ y 6=?

ACIdentity 0))

• Ordered rewriting:

(x + y → y + x ‖ x >?
∅ y)

January 28, 2006 rewriting solving proving

7.6 Constrained rewriting 97

• Rewriting modulo AC “à la Pedersen” where AC-equalities only occur below a variable position of the
matched rewrite rule:

(x+ y → y ‖ x =?
AC 0)

• A relation true on even natural numbers:

(P (x) ‖ x =?
A 0)

with A = {s(s(x)) = x} schematizes

P (0) ∧ P (s(s(0)) ∧ ... ∧ P (s2n(0)) ∧

• A meta-rule:
(f(g(ẋ))→ g(ẋ) ‖ ẋ ∈? gn(f(x)))

that represents the infinite family {f(gn(f(x))) → gn(f(x))}, generated by the divergent completion
of one-rule system f(g(f(x)))→ g(f(x)).

• Some structure sharing:
(f(x, x, x, x) ‖ x =?

∅ bigterm)

• Infinite terms:
(h(x)→ x ‖ x =?

∅ f(x))

• Order-sorted rewriting:
(f(x)→ a ‖ x ∈? s0)

where S = {s0, s1}, with s0 ≤ s1, F = {a, f},

a : → s0
f : s0 → s1

7.6.1 Constraints

A constraint is a first-order formula built on a first-order signature Σ = (S,F ,P) where S is a set of sort
symbols, F a set of function symbols and P a set of predicate symbols. This signature is used to build
elementary constraints. For instance, considering P = {=, 6=, >,∈}, elementary constraints are equations:
(t =?

∅ t
′) or (t =?

A t
′), disequations: (t 6=?

∅ t
′) or (t 6=?

A t
′), inequations: (t >?

∅ t
′) or (t >?

A t
′), or membership

relations: (t ∈? s0).
Elementary constraints are then combined with usual first-order connectives and quantifiers. So the con-

straint language may also contain, beyond elementary constraints, conjunctions c∧c′, the empty conjunction
T (always trivially true), negations ¬c, existential closures (∃x, c) where c, c′ are constraints. Disjunctions
(c ∨ c′), falsity F (trivially unsatisfiable), universal closures (∀x, c), and implications (c ⇒ c′) can also be
defined from the previous ones.

The definition of constraint languages adopted in this paper is an instance of the definition given
in [Smo89, KKR90]. The main difference is that we restrict here to one interpretation, instead of considering
a class of interpretations.

Let us briefly remind that, given a signature Σ, a first-order Σ-structure K is given by :
- a carrier K which is a collection of non-empty sets (Ks)s∈S ,
- for each function symbol in F with a rank f : s1, . . . , sn 7→ s, a function fK from Ks1 × . . .×Ksn

to Ks,
- for each predicate symbol except = in P with a rank p : s1, . . . , sn, a relation pK on Ks1 × . . . × Ksn

.
Whenever Σ contains the predicate symbol =, it will be interpreted as the equality relation in K.

An assignment α is a mapping from X to K, that uniquely extends to an homomorphism α from T (Σ,X)
to K. The restriction of an assignment α to a set of variables V ⊆ X is denoted by α|V . The set of all
assignments is denoted by ASSXK .

Definition 7.31 Let Σ = (S,F ,P) be a signature and X a set of variables. A constraint language LK[Σ,X]
(or LK for short) is given by :

• a set of constraints which are first-order formulae built over Σ and variables X . The empty conjunction
T is also a constraint. Constraints are syntactically distinguished by a question mark exponent on
predicates. Var(c) denotes the set of free variables of the constraint c.

January 28, 2006 rewriting solving proving

98 Generalizations of rewriting

• An interpretation K is a Σ-structure of domain K and a solution mapping that associates to each
constraint the set of assignments SolK(c) defined as follows :

– SolK(T) = {α ∈ ASSXK},
– SolK(t1 =? t2) = {α ∈ ASSXK | α(t1) = α(t2)},
– SolK(p?(t1, . . . , tm)) = {α ∈ ASSXK | (α(t1), . . . , α(tm)) ∈ pK},
– SolK(c ∧ c′) = SolK(c) ∩ SolK(c′).

– SolK(¬c) = ASSXK\SolK(c).

– SolK(∃x : c) = {α ∈ ASSXK | ∃β ∈ ASSXK , α|X\{x} = β|X\{x} and β ∈ SolK(c)}.

An assignment in SolK(c) is a solution of c in LK. A constraint c is valid in LK, written LK |= c, if any
assignment is a solution of c in LK.

Abbreviations may be defined to write more complex constraints like : c ∨ c′ = ¬(¬c ∧ ¬c′), ∀x : c =
¬(∃x : ¬c) and F = ¬(T). Two constraints c and c′ are equivalent if SolK(c) = SolK(c′), which denoted
c ≡K c′.

Of particular interest for theorem proving, is the case where the interpretation K is isomorphic to a term
algebra. Then the notion of a symbolic solution of a constraint c coincides with a substitution σ such that

K |= σ(c), two symbolic solutions may be compared with the substitution ordering denoted here by ≤V(c)
K ,

and the notion of complete set of solutions is available.

Definition 7.32 A symbolic solution of a LK[Σ,X]-constraint c is a substitution σ such that LK |= σ(c).
The set of all symbolic solutions of c is denoted SSK(c).

A substitution φ is an instance on V ⊆ X of a substitution σ, written σ ≤VK φ, if there exists some
substitution µ such that ∀x ∈ V, LK |= φ(x) = µ(σ(x)).

Definition 7.33 A set of substitutions is a complete set of solutions of the LK[Σ,X]-constraint c, denoted
by CSSK(c), if
(1) ∀σ ∈ CSSK(c), Dom(σ) ∩ VRan(σ) = ∅ (idempotency).
(2) CSSK(c) ⊆ SSK(c) (correctness).

(3) ∀φ ∈ SSK(c), ∃σ ∈ CSSK(c), σ ≤Var(c)K φ (completeness).

When two substitutions of CSS(c) cannot be compared with ≤Var(c)K , the complete set of solutions CSSK(c)
is minimal.

The set SSK(c) of symbolic solutions of the LK-constraint c is a complete set of solutions.

• An equational presentation given by a signature (S,F ,P) where the only predicate is = and a set of
equational axioms E, defines an equational constraint language where atomic constraints are equations
over T (S,F ,X). The standard interpretation is the quotient algebra T (S,F ,X)/=E. A symbolic solu-
tion σ of a constraint c is an E-unifier. A complete set of solutions of a constraint c is denoted CSSE(c)
or CSUE(c) since it is also a complete set of E-unifiers. For instance, if F = {a, f}, X = {v, x, y} and
E consists of the associativity and commutativity axioms for f , then (f(v, x) =?

∅ f(a, f(x, y))) is an
equational constraint.

• A finite (S,F)-algebra A, together with a set of relations PA on A, defines a constraint language
LA[S,F ,P] where A is the interpretation of interest. For simplicity, we assume that the finite functions
defined on A are all defined on the same set and so S is reduced to one sort. In [KR92], constraints are
solved in this language by embedding it a primal constraint language whose standard interpretation is
isomorphic to a quotient term algebra.

7.6.2 Constrained equalities and rewrite rules

Using constraints, we are now ready to build formulas with constraints, especially equalities and rewrite
rules. Such formulas are built by extending the signature Σ = (S,F ,P) with at least two new predicate
symbols, namely = for building equalities with constraints and → for rewrite rules with constraints. They
are built in full generality on an extended signature Σ′ and a superset of variables X ′.

Definition 7.34 Let Σ ⊆ Σ′ and X ⊆ X ′. A constrained equality, denoted (l = r ‖ c), is given by two
terms l and r in T (Σ′,X ′) and a constraint c in LK[Σ,X].

January 28, 2006 rewriting solving proving

7.6 Constrained rewriting 99

The constrained equality (l = r ‖ c) schematizes the following set of equalities on T (Σ′,X ′): S(l = r ‖
c) = {σ(l) = σ(r) | σ ∈ SSK(c)}.

If there exists an ordering such that all these instances may be used from left to right, they are better
represented by constrained rules.

Definition 7.35 Let Σ ⊆ Σ′ and X ⊆ X ′. A constrained rewrite rule, denoted (l → r ‖ c), is given by
two ordered terms l, r in T (Σ′,X ′) and a constraint c in LK[Σ,X]. It is moreover assumed that Var(c) ⊆
Var(l) ∪ Var(r).

A constrained rewrite rule (l → r ‖ c) schematizes the following set of rewrite rules:
S(l → r ‖ c) = { σ(l)→ σ(r) | σ ∈ SSK(c) }.

7.6.3 Rewriting with constraints

Let us first give a very general definition of rewriting with constraints in which the matching theory may be
different from the theory in which constraints are solved.

Definition 7.36 Given a set CR of constrained rewrite rules with constraints in LK[Σ,X] and a set A
of axioms, a term t (CR,A,LK)-rewrites to a term t′, which is denoted by t →CR,A,LK t′ if there exist a

constrained rewrite rule (l → r ‖ c) of CR, a position ω in t, a substitution σ, satisfying t|ω
∗←→A σ(l), and

σ ∈ SSK(c). Then t′ = t[σ(r)]ω .

With this definition, a constrained rewrite rule is applicable if there exists a substitution that matches the
left-hand side and makes the constraint hold in the interpretation K. In its full generality, this (CR,A,LK)
rewrite relation allows the use of built-in constraint solvers in the structure K, but this leads to combination
problems in the matching and unification processes underlying rewriting and superposition with constrained
rewrite rules. These matching and unification problems must be solved in a conservative extension of K
taking into account axioms in A and all equalities valid in K. This problem is addressed in [KR93].

Definition 7.37 Let CR be a set of constrained rewrite rules and S(CR) the schematized set of rewrite
rules. The relation (CR,A,LK) is Church-Rosser modulo A on a set of terms T if
∗←→S(CR)∪A ⊆ ∗−→CR,A,LK ◦

∗←→A ◦ ∗←−CR,A,LK .

Example 7.15 Examples of ordered rewrite system given in [MN90] can actually be described by a con-
strained rewrite system. Assume given a reduction ordering > total on ground terms and satisfying for all
ground terms x, y, z:

(x ∗ y) ∗ z > x ∗ (y ∗ z)
x ∗ y > y ∗ x if x > y

x ∗ (y ∗ z) > y ∗ (x ∗ z) if x > y

Then the following set CR is a constrained rewrite system, where A = ∅:

(x ∗ y) ∗ z → x ∗ (y ∗ z) ‖ T
x ∗ y → y ∗ x ‖ x >?

∅ y
x ∗ (y ∗ z)→ y ∗ (x ∗ z) ‖ x >?

∅ y

If > is the lexicographic path ordering and a, b, c are constants such that c > b > a :

b ∗ (c ∗ (b ∗ a))→CR b ∗ (c ∗ (a ∗ b))→CR b ∗ (a ∗ (c ∗ b))→CR a ∗ (b ∗ (c ∗ b))→CR a ∗ (b ∗ (b ∗ c)).

This constrained rewrite system allows deciding the word problem for associativity and commutativity of ∗.

Example 7.16 Consider the set of constrained rewrite rules:

append(nil, y) → y
append(x, y) → cons(u, z) ‖ (x =?

∅ cons(u, v) ∧ append(v, y) =?
∅ z)

We have
append(cons(a, nil), nil)→ cons(a, append(v, nil))

with the match (x 7→ cons(a, nil))(y 7→ nil), since (u 7→ a)(v 7→ nil)(y 7→ nil)(z 7→ append(v, nil)) is a
solution of (cons(a, nil) =?

∅ cons(u, v) ∧ append(v, y) =?
∅ z).

January 28, 2006 rewriting solving proving

100 Generalizations of rewriting

Reflexivity
7→7→
〈t〉A → 〈t〉A ‖ T

Congruence 〈t1〉A → 〈t′1〉A ‖ c1, . . . , 〈tn〉A → 〈t′n〉A ‖ cn
7→7→
〈f(t1, . . . , tn)〉A → 〈f(t′1, . . . , t

′
n)〉A ‖ c1 ∧ . . . ∧ cn

if c1 ∧ . . . ∧ cn satisfiable
Replacement 〈t1〉A → 〈t′1〉A ‖ c1 . . . 〈tn〉A → 〈t′n〉A ‖ cn

7→7→
〈l(t1, . . . , tn)〉A → 〈r(t′1, . . . , t′n)〉A ‖ c1 ∧ . . . ∧ cn ∧ c(t1, . . . , tn)
if

(l(x1, . . . , xn)→ r(x1, . . . , xn) ‖ c(x1, . . . , xn)) ∈ CR
and c1 ∧ . . . ∧ cn ∧ c(t1, . . . , tn) satisfiable

Transitivity 〈t1〉A → 〈t2〉A ‖ c1, 〈t2〉A → 〈t3〉A ‖ c2
7→7→
〈t1〉A → 〈t3〉A ‖ c1 ∧ c2
if c1 ∧ c2 satisfiable

Figure 7.1: CONSREW: Constrained rewrite deduction

7.6.4 Comparison with conditional rewriting

The notion of constrained rewriting bears much similarity with conditional rewriting, especially with contex-
tual rewriting. However, in conditional rewriting, occurrences of the same function symbol in conditions and
in conclusion are usually interpreted in the same way. This is no more true with constrained rewriting, where
the symbols in constraints are subject to special deduction rules. For instance, an equation (f(s) =?

∅ f(t))

in a constraint may be decomposed into (s =?
∅ t). Such a transformation is in general not valid in the first-

order theory which underlies the constrained formula. The difference between constrained and conditional
rewriting also appears for instance in the following example of idempotent semigroups from [SS82a]. It is a
noetherian confluent “conditional” system for the theory of an idempotent associative symbol ∗.

x ∗ x → x
x ∗ y ∗ z → x ∗ z if (x =?

ACI z) ∧ (x ∗ y =?
ACI z)

where ACI is the theory of an associative commutative idempotent symbol. So the equations in the condition
are solved modulo the theory ACI of ∗, while the rules are used with matching modulo associativity. Since
the theory of ∗ is different in the constraints, due to the commutativity axiom, we feel that this system is
typically a constrained rewrite system. Actually this system does not fit into the classical frameworks for
conditional term rewriting [KR89b].

7.6.5 A constrained rewriting logic

Following [Mes92], a general logic setting can be proposed to formalize constrained rewrite deduction. In
the constrained rewriting logic sketched now, sentences are defined as constrained sequents of the form
(〈t〉A → 〈t′〉A ‖ c) where t, t′ ∈ T (Σ,X), 〈t〉A denotes the A-equivalence class of t and c ∈ LK. The informal
meaning of such sentences is that t′ is derived from t if c is satisfied. A constrained rewrite theory is a set
CR of constrained rewrite rules. Each rule (l → r ‖ c) has a finite set of variables Var(l)∪Var(r)∪Var(c) =
{x1, . . . , xn} which are recorded in the notation (l(x1, . . . , xn) → r(x1, . . . , xn) ‖ c(x1, . . . , xn)). A theory
CR entails the sequent (〈t〉A → 〈t′〉A ‖ c), if it is obtained by the finite application of the deduction rules
in Figure 7.1.

A sequent is a one-step CR-rewrite, if it can be derived from CR by application of the rules Reflexivity,
Congruence and exactly one application of Replacement. The relation between a one step CR-rewrite
and the constraint rewriting relation previously defined on terms is made precise in the following lemma.

Lemma 7.3 A sequent 〈t〉A → 〈t′〉A ‖ c is a one step CR-rewriting iff there exist a rule (l → r ‖ c) in CR,

a substitution σ and a position ω of t such that t→ω,σ,(l→r ‖ c)
CR,A,LK

t′.

Proof: Immediate induction on the form of the proof of the sequent 〈t〉A → 〈t′〉A ‖ c. 2

January 28, 2006 rewriting solving proving

7.7 Conclusion 101

7.7 Conclusion

This chapter gathered several proposed extensions of rewriting that appeared to be of prime interest for
theorem provers or for programming languages. The application of rewriting to the definition of operational
semantics of logico-functional programming languages led to various other extensions not covered here, like
order-sorted rewriting [KKM88], priority rewriting [Moh89], or graph rewriting [B+87] In the domain
of automated theorem proving, rewriting techniques are of primarily use in provers using demodulation or
simplification inference rules to prune the search space. In this context, it appears that most of interesting
proofs in mathematical structures, set and graph theory, or geometry, involve in their axiomatization some
equalities which cannot be immediately used as rewrite rules. This motivates the introduction of several
extensions, especially ordered rewriting, class rewriting and rewriting with constraints. This chapter has
shown the evolution between them and their increasing power of expressivity. Although these three extensions
are better motivated by theorem proving purposes, they also have promising applications in programming
languages.

January 28, 2006 rewriting solving proving

102 Generalizations of rewriting

January 28, 2006 rewriting solving proving

Chapter 8

Modular properties of rewrite systems

8.1 Introduction

For ascertaining properties of rewrite systems such as confluence or termination when there are many rewrite
rules, it is obviously important to have results which state that a rewrite system has a property Prop if
that system can be partitioned into smaller ssystems which have the property Prop. Two very simple
counterexamples show there is no hope to apply this divide and conquer approach in general for the properties
of confluence and termination. Consider for instance R1 = {a→ b}, R2 = {b→ a} and R3 = {a→ c} where
a, b, c are constants. Each of these systems is confluent and terminating, but R1 ∪R2 is not terminating and
R1 ∪ R3 is not confluent. In these examples however, function symbols are shared and a natural idea is to
eliminate this case. The research on modularity for disjoint rewrite systems originated with Toyama [Toy87]
who proved that the disjoint union of two confluent rewrite systems is confluent. In [Toy86], Toyama refuted
the fact that the disjoint union of two terminating rewrite systems is terminating. His counterexample
inspired the formulation by Rusinowitch [Rus87b] of sufficient syntactic restrictions on the rules, in terms of
collapsing and duplicating rules, to keep the property of termination. These first results have been extended
by Middeldorp [Mid89c], who also considered the case of conditional rewrite systems [Mid89a, Mid89d]. The
disjointness assumption was relaxed in the case of constructor systems that are allowed to share constructors,
while preserving the confluence and termination properties [MT91]. A survey of properties of rewrite systems
preserved under (disjoint) unions can be found in [Mid90]. Most of the proofs for the results presented in
this chapter can be found there, as well as results about the modular properties of weakly normalizing
(conditional) rewrite systems that we do not consider here.

It must be clear however that properties of confluence and termination of the union of two abstract
reduction systems, or two rewrite systems, have also been considered without the disjointness assumption.
But then a commutation property between the considered abstract relations is needed to prove that the
property is modular.

The results presented in this chapter are divided into three parts, according to the hypotheses put on
the intersection of systems. Disjoint systems are considered first, then results are extended to constructor
systems and other results on the union of systems are given last.

8.2 Modularity

Before stating any results, it is useful to precisely define the notion of modular property.

Definition 8.1 A given property Prop is modular if Prop is satisfied by R1 and R2 iff Prop is satisfied by
the union of R1 and R2.

We are interested in studing the modularity of the properties of abstract reduction systems in general or
of term rewrite systems in particular: local confluence, termination and confluence.

8.3 Disjoint systems

When R1 and R2 are rewrite systems built on disjoint signatures, their union is denoted R1⊕R2. All results
given in this section assume disjoint signatures for the systems.

January 28, 2006 rewriting solving proving

104 Modular properties of rewrite systems

8.3.1 Confluence and local confluence

In the context of disjoint rewrite systems, the first modular property stated by Toyama is confluence. This
result is important not only from an historical point of view, but also because many following results rely
on this result.

Theorem 8.1 [Toy87] Confluence is a modular property of rewrite systems.

The proof relies on a commutation property between the reduction relation of R1 and the reduction of R2.
More details on various commutation properties will be given in Section 8.5.

Concerning local confluence, the proof of modularity is easy by using the technique for proving local
confluence from the computation of critical pairs, detailed in Chapter 16. Indeed there cannot exist critical
pairs between two rewrite systems on disjoint sets of function symbols.

Theorem 8.2 [Mid90] Local confluence is a modular property of rewrite systems.

The generalization of these results to conditional rewrite systems needs to be careful.

Theorem 8.3 [Mid90] Confluence is a modular property of natural conditional rewriting.

However it is also proved in [Mid90] that local confluence is not a modular property of conditional rewrite
systems.

8.3.2 Termination

The second interesting property of rewrite systems to consider is termination. However, termination is not
a modular property, as shown in the next counterexamples.

Example 8.1 The rewrite system

f(a, b, x) → f(x, x, x)

is terminating [Toy86], as well as

g(x, y) → x

g(x, y) → y.

However in the disjoint union of both systems, there is a cycle:

f(g(a, b), g(a, b), g(a, b)) → f(a, g(a, b), g(a, b))

→ f(a, b, g(a, b))

→ f(g(a, b), g(a, b), g(a, b))

Example 8.2 Another example, due to Drosten, of two confluent and terminating rewrite systems is as
follows. Let R1 be

f(0, 1, x) → f(x, x, x)

f(x, y, z) → 2

0 → 2

1 → 2

and R2 be

d(x, y, y) → x

d(x, x, y) → y.

However The disjoint sum R1 ⊕R2 is not terminating because the term f(d(0, 1, 1), d(0, 1, 1), d(0, 1, 1)) has
a cyclic derivation:

f(d(0, 1, 1), d(0, 1, 1), d(0, 1, 1)) → f(0, d(0, 1, 1), d(0, 1, 1))

→ f(0, d(2, 1, 1), d(0, 1, 1))

→ f(0, d(2, 2, 1), d(0, 1, 1))

→ f(0, 1, d(0, 1, 1))

→ f(d(0, 1, 1), d(0, 1, 1), d(0, 1, 1)).

January 28, 2006 rewriting solving proving

8.4 Constructor systems 105

Adding syntactic conditions on rewrite rules allow getting positive results.

Definition 8.2 A rewrite rule l → r is a collapsing rule if r is a variable.
A rewrite rule l→ r is a duplicating rule if there exists a variable that has more occurrences in r than in

l.

The results are summarized in the next theorem:

Theorem 8.4 Let R1 and R2 be two terminating rewrite systems.

1. If neither R1 nor R2 contain collapsing rules, then R1 ⊕R2 is terminating.

2. If neither R1 nor R2 contain duplicating rules, then R1 ⊕R2 is terminating.

3. If one of the systems R1, R2 contains neither collapsing rules nor duplicating rules, then R1 ⊕ R2 is
terminating.

Proof: (1) and (2) are proved in [Rus87b]. (3) is proved in [Mid89c]. 2

8.3.3 Simple termination

More subtle results can be obtained when considering specific methods for proving termination. A first
result confirms the observation that common classes of precedence-based simplification orderings exhibit a
modular behaviour simply by combining the corresponding disjoint precedences.

Theorem 8.5 [Gra92, KO90] Termination is modular for the class of (finite) disjoint systems whose ter-
mination is proved by simplification ordering.

The proof presented in [Gra92] relies on the expression of (undecicable) sufficient conditions for the
nontermination of the disjoint union of two rewrite systems. The restriction to finite system was required
in [KO90].

8.3.4 Normal form and convergence

Remind that the unique normal form property of a rewrite system R means that any term has a unique
normal form (but may also have infinite derivations).

Theorem 8.6 [Mid89b] The unique normal form property is modular.

The proof is based on the fact that every term rewrite system with unique normal forms can be conser-
vatively extended to a confluent rewrite system with the same normal forms. This method also works for
generalizing the result to natural conditional rewriting, but fails for join conditional rewriting.

If a restriction to left-linear rules is added, another positive result is obtained.

Theorem 8.7 [TKB89] Let R1 and R2 be left-linear rewrite systems. Then R1 ⊕R2 is convergent iff both
R1 and R2 are convergent.

8.4 Constructor systems

A natural question is how to relax the disjointness assumption in the previous results. In [Mid91], A. Mid-
deldorp and Y. Toyama addressed the problem of convergence of the union of constructor systems, that is
systems in which all function symbols are constructors, except those at the top of left-hand sides of rewrite
rules.

Definition 8.3 A constructor system (C,D, R) is defined by a set of constructors C, a set of defined functions
D and a set of rewrite rules R, such that every left-hand side of any rule in R is of the form f(t1, ..., tn) with
f ∈ D and t1, ..., tn ∈ T (C,X).

Two constructor systems (C1,D1, R1) and (C2,D2, R2) share constructors if D1, D2 and C1∪C2 are pairwise
disjoint.

The next example also illustrate some negative results.

January 28, 2006 rewriting solving proving

106 Modular properties of rewrite systems

Example 8.3 Consider the two constructor systems (C1,D1, R1) and (C2,D2, R2) where C1 = {s, a, b},
D1 = {f},

R1 : f(x, x) → a
f(x, s(x)) → b

C2 = {s}, D2 = {c},
R2 : c → s(c)

Each of them is confluent, but their union is not, since the term f(c, s(c)) rewrites to both a and b that are
not joinable.

Exercise: Find two terminating constructor systems whose union is not terminating. (Example 8.1 provides
an example)

However, constructor systems enjoy several modular properties.

Theorem 8.8 [Mid91] The union of terminating and confluent (resp. locally confluent) constructor systems
with shared constructors is terminating and confluent (resp. locally confluent).

The theorem also holds for weak convergence, that is confluence and weak normalization.
This result yields the possibility to decompose some systems into parts sharing some function symbols

and rewrite rules; the convergence property of the (non disjoint) union is then inferred from the convergence
of the sub-systems.

A constructor system is convergent if it can be decomposed into convergent constructor systems. It is
important to note that the notion of decomposition does not imply disjointness. This method is illustrated
by the two following examples.

Example 8.4 [Mid91] Consider the constructor system R with constructor set {0, s}:

0 + x → x

s(x) + y → s(x+ y)

0× x → 0

s(x)× y → (x× y) + y

f(0) → 0

f(s(x)) → f(x) + s(x).

It can be decomposed into R1

0 + x → x

s(x) + y → s(x + y)

0× x → 0

s(x) × y → (x × y) + y

and R2

0 + x → x

s(x) + y → s(x+ y)

f(0) → 0

f(s(x)) → f(x) + s(x).

Both systems are easily shown convergent, so is their union.

Example 8.5 [Mid91] Consider the constructor system R with constructor set {0, s, true, false}:

0 + x → x

s(x) + y → s(x+ y)

0× x → 0

s(x)× y → (x× y) + y

fib(0) → s(0)

fib(s(0)) → s(0)

January 28, 2006 rewriting solving proving

8.4 Constructor systems 107

fib(s(s(x))) → fib(s(x)) + fib(x)

x < 0 → false

0 < s(x) → true

s(x) < s(y) → x < y

true ∧ false → false

false ∧ true → false

x ∧ x → x

It can be decomposed into R1 with constructors C1 = {0, s}

0 + x → x

s(x) + y → s(x + y)

0× x → 0

s(x) × y → (x × y) + y

R2 with constructors C2 = {0, s}

0 + x → x

s(x) + y → s(x+ y)

fib(0) → s(0)

fib(s(0)) → s(0)

fib(s(s(x))) → fib(s(x)) + fib(x)

R3 with constructors C3 = {0, s, true, false}

x < 0 → false

0 < s(x) → true

s(x) < s(y) → x < y

and R4 with constructors C3 = {true, false}

true ∧ false → false

false ∧ true → false

x ∧ x → x.

All four systems are easily shown complete, so is their union.

Thess results are yet improved by Kurihara and Ohuchi. In their approach constructors are any symbol
that does not appear at the top of a left-hand side of rules. But they do not impose further restrictions on
the form of left-hand sides of rewrite rules as in Definition 8.3.

Theorem 8.9 [KO92] The union of simply terminating systems with shared constructors is simply termi-
nating.

An interesting example is given by Kurihari and Ohuchi in [KO92], where other methods cannot apply.

Example 8.6 The two rewrite systems R1 = {f(f(a, x), x) → f(x, f(b, x))} and R2 = {g(b) → g(a)}
share constructors a and b. Termination of R1 can be proved using a recursive path ordering induced by a
precedence where a is greater than b, while termination of R2 can be proved using a recursive path ordering
induced by a precedence where b is greater than a. Indeed this prevents the possibility to find a recursive
path ordering combining the two precedences for proving termination of R1 ∪ R2. Theorem 8.13 does not
apply because the rule of R1 is neither left- nor right-linear. Theorem 8.8 does not apply either because R1

is not a constructor system. Of course, Theorem 8.9 applies and yields the simple termination of R1 ∪R2.

Unfortunately confluence is not modular when constructors are shared as demonstrated in the next
example:

Example 8.7 [Hue80] Consider R1 = {f(x, x)→ a, f(x, h(x))→ b} and R2 = {c→ h(c)} which are both
confluent and share the constructor h. However in R1 ∪R2, the term f(c, c) has two normal forms a and b.

January 28, 2006 rewriting solving proving

108 Modular properties of rewrite systems

From Theorem 8.9, it is easy to get modularity of simple convergent systems.

Theorem 8.10 [KO92] Let R1 and R2 be two simply terminating and confluent rewrite systems with shared
constructors. Then R1 ∪R2 is simply terminating and confluent.

Proof: Indeed R1 ∪R2 is terminating and there is no critical pair between R1 and R2. 2

8.5 Non-disjoint systems with commutation properties

When it is impossible to use the disjointness assumption, to decompose into constructor systems, or to share
only constructors, it is useful to have results about modularity expressed at a more abstract level of relations
and abstract reduction systems.

8.5.1 Confluence

In the very general framework of abstract reduction systems, one of the first results on Church-Rosser
properties was obtained by Hindley [Hin64]Hindley and Rosen [Ros73]Rosen. It states that to get confluence
without termination, some commutation property must hold.

Definition 8.4 Let 〈T , (→i)i∈I〉 be an abstract reduction system. For some i, j ∈ I, →i commutes with
→j if ←i ◦ →j ⊆ →j ◦ ←i.

Lemma 8.1 [Hin64, Ros73] (Lemma of Hindley-Rosen)
Let 〈T , (→i)i∈I〉 be confluent abstract reduction systems such that for any i, j ∈ I, →i commutes with →j .
Then

⋃
i∈I →i is confluent.

This lemma may be rephrased as the statement of a modular property.

Lemma 8.2 Let 〈T1,→1〉 and 〈T2,→2〉 be two confluent abstract reduction systems such that→1 commutes
with →2 and →2 commutes with →1. Then 〈T1 ∪ T2,→1 ∪ →2〉 is confluent, i.e. confluence is a modular
property of commuting abstract reduction systems.

Sufficient conditions for commutation are stated on abstract reduction relations in [Hin64, Sta75]. How-
ever the next example shows that commutation is not a necessary condition for confluence of the union of
confluent abstract reduction systems.

Example 8.8 Let 〈T , (→i)i∈{1,2}〉 be defined by {a →1 b, b →1 c} and {a →2 c}. 〈T ,→1〉, 〈T ,→2〉 and
〈T , (→i)i∈{1,2}〉 are confluent, although →1 and →2 clearly do not commute.

8.5.2 Termination

A sufficient condition useful to prove termination of the union 〈T1 ∪T2,→1 ∪ →2〉 of two abstract reduction
systems is based in the idea that in every sequence of reduction, only finitely many steps of →1 can occur.
This property is called relative termination.

Definition 8.5 Let A1 = 〈T1,→1〉 andA2 = 〈T2,→2〉 two abstract reduction systems. Then A1/A2 denotes

〈T1 ∪ T1, ∗−→2 ◦ →1 ◦ ∗−→2〉.
A1 is relatively terminating w.r.t. A2 if A1/A2 is terminating.

Then termination of A1/A2 allows proving termination of A1 ∪ A2:

Lemma 8.3 [BD86a] The union of two terminating abstract reduction systems A1 and A2 is terminating
iff A1/A2 is terminating.

This termination property can in turn be proved using a refined commutation property.

Definition 8.6 Let 〈T , (→i)i∈I〉 be an abstract reduction system. For some i, j ∈ I, →1 quasi-commutes
over →2 if →2 ◦ →1⊆→1 ◦(→1 ∪ →2)

∗.

Proposition 8.1 [BD86a] Let A1 and A2 be two abstract reduction systems. If A1 is terminating and
quasi-commutes over A2, then A1/A2 is terminating.

January 28, 2006 rewriting solving proving

8.6 Conclusion 109

From Lemma 8.3 and Proposition 8.1, one easily get:

Theorem 8.11 [BD86a] The union of two terminating abstract reduction systems A1 and A2 is terminating
if A1 quasi-commutes over A2.

From a more operational point of view, another idea to combine complex proofs of termination is to take
the union of two terminating relations. Again, in order to state that the union of two well-founded-orderings
is well-founded, a commutation property is needed. This is the case for reduction orderings in general.

Definition 8.7 Let consider two well-founded-orderings >R and >S . >S commutes over >R if >R ◦ >S ⊆
>S ◦ >R.

Proposition 8.2 [DJ90a] If R and S are two relations on a set T , contained into two reduction orderings
that commute, then R ∪ S is terminating on T .

Example 8.9 The union of R = {f(a) → f(b)} and S = {g(b) → g(a)} is terminating, by identifying the
rewrite system and the associated rewrite relation.

This result is important since it allows combining a rewriting relation and various ordering on terms,
which is especially useful for noetherian induction.

The union of a terminating rewriting relation with the strict subterm ordering �sub, the strict subsump-
tion ordering < or the strict encompassment ordering @, is well-founded:

• If R is a terminating rewrite system, →R ∪�sub is well-founded.

• If R is a terminating rewrite system, →R ∪ < is well-founded.

• If R is a terminating rewrite system, →R ∪ @ is well-founded.

Another possibility is to consider the property of weak termination and to restrict to innermost rewriting.

Theorem 8.12 If two rewrite systems are weakly terminating with an innermost strategy, then their disjoint
union is weakly terminating.

Theorem 8.13 Let R1 and R2 be two terminating rewrite systems such that R1 is left-linear, R2 is right-
linear and there is no overlap between left-hand sides of R1 and right-hand sides of R2, then R1 ∪ R2

terminates.

8.6 Conclusion

A question left open in this chapter, when the disjointness property is relaxed, is how to check properties like
commutation or quasi-commutation of abstract reduction systems. In the context of term rewrite systems,
sufficient conditions have been proposed, based on linearity properties of rewrite rules and on checks of
critical pairs for instance by [Ges90, RV80, Toy88]. An overview of their results can be found in [Mid90].

Another research area bears some similarity with the modularity results presented in this chapter. This
is the problem of proving termination of systems obtained as the combination of convergent rewrite systems
with the (typed) lambda-calculus or with the calculus of constructions. These problems are studied for
instance in [GBT89, Oka89, Bar90].

January 28, 2006 rewriting solving proving

110 Modular properties of rewrite systems

January 28, 2006 rewriting solving proving

Chapter 9

Implementing rewriting

9.1 Compiling rewriting

9.1.1 Sequentiality

9.1.2 Compilation into a functional language

9.2 Concurrent rewriting

January 28, 2006 rewriting solving proving

112 Implementing rewriting

January 28, 2006 rewriting solving proving

Part III

Solving

January 28, 2006 rewriting solving proving

115

Solving equations is ubiquitous in mathematics and the sciences. Solving equations on first-order terms
emerged with Herbrand’s work on proof theory [Her30] and was coined unification by Alan Robinson [Rob65].
Unification has received considerable attention since then, because it is at the heart of mechanizing mathe-
matics and consequently a major piece in interpretors for logic programming languages. Invented by Alan
Robinson, resolution was the first really effective mechanization of first-order logic. For the case of proposi-
tional logic, ground resolution allows to deduce the ground clause C ∨D from two ground clauses A∨C and
¬A ∨D, where A denotes an atom and C and D denote ground clauses. The case of non-ground clauses is
more difficult, since different atoms may have common ground instances. Unification bridges the conceptual
gap between ground and non-ground atoms by computing a representative of all their common instances.
Alan Robinson gave the first algorithm ever for computing such a representative, called it a most general
unifier, and showed its uniqueness (up to an equivalence).

Following Alan Robinson, many people sought new, more efficient unification algorithms. Milestones
here are [CB83, PW78, Hue76, MM82]. Corbin and Bidoit emphasized that the exponential complexity
in Robinson’s algorithm was due to the implementation of terms by trees, a fact already known by many
people, including Robinson himself.1 Simply using dags instead broke the complexity down to a quadratic
one. Huet obtained an almost linear complexity by using Tarjan’s Find-Union algorithm for managing
equivalence classes (of unifiable subterms). Paterson and Wegman found a truly linear one by using a more
elaborate data structure for terms. Its use, however, does not pay off in practice because of the important
overhead of building the data structure itself. Finally, Martelli and Montanari pointed out that unification
should be seen as a problem of solving equations. Their algorithm incorporates the detection of cycles
along the way (rather than at the end) and performs well in practice. Some of these algorithms adapt to
infinite rational terms [Hue76, Col84]. They can all be seen as deterministic implementations of a same set
of non-deterministic rules, as recently sketched in [DJ90a]. Various data structures may be used to ease
the implementation of the rules. We build on this point of view borrowed from Martelli and Montanari in
section 3.2. Basic properties of unifiers are discussed by Lassez, Maher and Marriot [LMM88], and the logic
of unification by Le Chenadec [LC89].

Attempts for mechanizing higher-order logic started soon after the discovery of resolution. If deduction
can still be performed [Hue72], solving equations between higher-order terms, a problem called higher-order
unification, becomes undecidable (actually semi-decidable) even for second-order terms. The main difference
between the first-order and the higher-order case is the possibility of having infinitely many incomparable
solutions. Milestones here are [Pie71, Hue76, SG89]. Huet proved undecidability of third-order unification
(a result refined by Goldfarb who proved that second-order unification was already undecidable [Gol81]) and
gave a fair procedure to enumerate a set of generators (called preunifiers) of all solutions in the general case.

In 1972 Plotkin gave a set of inference rules for mechanizing first-order theories based on E-unification,
where two terms unify if they have a common instance, common up to E-equality [Plo72]. Similar to the
higher-order case, he introduced the notion of complete sets of E-unifiers, that is generators of the whole set of
unifiers by using instanciation and E-equality. He himself gave an algorithm for arithmetic theories, showed
the existence of infinitely many such most general unifiers for associative theories, and conjectured that
complete sets of most general unifiers may not always exist (intuitively, most general unifiers may be infinite
terms). Milestones here are [Baa89a, FH86, Mak77, Yel87, TA87, BJSS88, Kir86, Fag84, Kir89a, Sti81,
SS89]. Fages and Huet proved Plotkin’s conjecture and showed that minimal complete sets were isomorphic.
Baader later gave sufficient conditions for a minimal complete sets of unifiers not to exist. Algorithms for
Presburger arithmetic were given first by Presburger and later by Shostak.2 Stickel solved the AC-case,
whose termination proof was much later completed by Fages. AC-unification relies upon solving linear
homogeneous diophantine equations, a problem successfully addressed by Huet [Hue78], Lambert [Lam87a]
and Fortenbacher [For83]. Stickel’s algorithm was recently improved upon first by Kirchner [Kir89a] and
then Boudet [Bou89]. Both algorithms need solving systems of linear homogeneous diophantine equations,
a problem solved efficiently by Contejean and Devie [CD89]. Makanin solved the case of associativity and
identity (words). A detailed study of Makanin’s algorithm can be found in [Péc81, Abd87]. Arnborg and
Tiden solved the case of left (or right) distributivity. Boudet, Jouannaud and Schmidt-Schauß solved the
case of Boolean rings and Abelian groups. Kirchner solved the case of “syntactic” theories by generalizing
Martelli and Montanari. Schmidt-Schauß solved the general case of a combination of two disjoint theories
that separately admit an unification algorithm, improving upon Yelick and Kirchner.

On the dark side, the solvability of Diophantine equations, that is, polynomial equations over the integers,
was shown to be undecidable by Matijasevič [Mat70, DMR76].3 Simpler cases of undecidable unification

1See Knight’s unification survey [Kni89] for interesting historical remarks about the discovery of improved unification algo-
rithms.

2Presburger arithmetic can be equationally axiomatized, which justifies its place in this list.
3An axiomatization of the corresponding equational theory is given in section 10.1.

January 28, 2006 rewriting solving proving

116

problems are associativity and distributivity, and associativity, commutativity and distributivity [Sza82,
SS82b]. Distributivity (left and right) has been a challenging simple equational theory whose unification
problem was unknown until Schmidt-Schauß solve it positively [SS98].

Of course, E-unifiability is semi-decidable for recursively enumerable E. Paramodulation (without func-
tional reflexivity axioms) is one improvement over the obvious “British-museum” method of interleaving the
production of substitutions with the search for equational proofs. Enumerating a complete set of unifiers in
an arbitrary equational theory is called universal unification by Siekmann [Sie89]. Fay [Fay79] was the first
to give a non-trivial (non necessarily terminating) procedure for universal unification, called narrowing, and
to prove its completeness for any theory presented by a finite convergent set of rewrite rules. Hullot [Hul80a]
improved upon Fay by characterizing cases where a modified procedure terminates (an example is given
by the theory of quasi-groups). A rule-based version of narrowing (Fay’s version) is due to Nutt, Réty
and Smolka [NRS89]. Gallier and Snyder [GS89] solved the general case, giving a set of rules enumerating
complete set of E-unifiers for an arbitrary theory E.

Universal unification has been proved useful for embedding equations into PROLOG [GM86], as well as
for the general understanding of E-unification itself.

Type systems introduced new unification problems in the last five years. The possibility of having
subtypes, record types, overloading and polymorphism raised similar questions as above, since part of these
new features can be equationally axiomatized. This is one area where the research is very active now, since
many problems are either open or amenable to drastic improvements. Major works here are [CD85, Wal84,
SS86a, MGS87, SAK89, Kir88].

With constraint logic programming [Col89, JL87] and, more recently, constrained theorem prov-
ing [KK89], unification had to be generalized so as to cover inequalities besides equalities, as well as ar-
bitrary quantifiers and special predicate symbols (besides equality). This is again a subject under active
development, and a whole paper is devoted to it by Comon [Com91b].4

Previous surveys on unification include [Sie89, Kni89]. Recent developments in unification theory are
given in [Kir90]. Our notations and definitions are consistant with [DJ90a], where a whole section is devoted
to unification. We concentrate on unification in this survey, although related problems such as match-
ing [Bür89], semi-unification [Hen89] and rigid unification [GRS89] share many properties with unification.

Higher-Order Unification
Higher-order unification is the problem of solving equations in the typed lambda calculus, i.e., of com-

puting higher-order substitutions for the free variables of the terms of the equation s =? t, which make s
and t equal modulo the (α and β) conversion rules of the calculus. This problem is, of course, related to
semantic first-order unification.

Higher-order unification is the key to higher-order theorem proving and higher-order logic programming.
As an example, it is the main mechanism for generalizing resolution to higher-order logic [Hue72, Hue73a,
JP76]. It is also crucial for program synthesis and program transformation [HM88, HL78a] or type inference
in polymorphic languages [Pfe88, LC89]. It is the basic mechanism used in λ-PROLOG [MN86].

The main results on higher-order unification have been obtained during the seventies. Huet [Hue76,
Hue73b, Hue75] has shown the undecidability of third order unification. He has also defined a restricted
form of unification called pre-unification which is used in refutational methods for higher-order theorem
proving. Goldfarb [Gol81] shows that even second-order unification is undecidable, and Farmer has recently
proved that monadic second-order unification was decidable [Far88]. Let us also mention the early work by
Pietrzykowski and Jensen [Pie71, JP76].

Recently Snyder and Gallier gave a general overview of the work in this field and showed how Huet’s
procedure can be described and proved using transformation rules [SG89]. This highlights similarities and
differences between first- and higher-order unification by expressing the fundamental elementary unification
steps in the same way.

Higher-order unification is surveyed in [GS90, JK91]. Taking advantage of the transformation of λ-terms
into combinators, Dougherty [Dou90] gives an alternative to Huet’s approach.

4The search for decision procedures for various constraint languages actually goes back far away in the past. For example,
Fourier investigated linear constraints on the reals.

January 28, 2006 rewriting solving proving

Chapter 10

Unification of equational problems

We will now define what equational unification is all about. But to give such a definition is not so easy since
it should be simple and allow convincing soundness and completeness proofs. This is not the case with many
of the definitions of equational unification which are given in the litterature. The reason is that there are
two contradicting goals: as far as generality is concerned, the definition should not depend upon a particular
case, such as syntactic unification. On the other hand, since our approach is based on transforming problems
in simpler ones having the same set of solutions, the definition must allow to get a clear, simple and robust
definition of equivalence of two unification problems but also to be able to define what simpler problem
means.

10.1 Solutions and unifiers

One source of potential trouble in defining equational problems and their solutions and unifiers is that some
variables may simply appear or go away when transforming a given unification problem into a simpler one.
As a consequence, our definition of a solution to a unification problem should not only care of the variables
occurring in the simplified problem, but also of the variables which have appeared at the intermediate steps.
The idea that the so-called “new variables” are simply existentially quantified variables appeared first in
Comon [Com88b] although quantifiers had already been introduced by Kirchner and Lescanne [KL87] both
in the more general context of disunification.

An other problem, is the need of managing the so-called “new variables” which may be necessary for
expressing the most general unifiers. Building upon Plotkin [Plo72] and Huet [Hue76], Hullot [Hul80c]
introduced the concept of variables away from a set given set of variables W . Intuitively, W is a set of
variables which must be protected from a possible capture because of the current environment in which
unification is used e.g. a completion procedure.

Since we are giving a general framework for unification problems, we need to define the solutions of an
equation between terms in T (F ,X) in an arbitrary F -algebra A which will be in our case the free algebra
modulo some set of equational axioms. The solution to a unification problem in some algebra A should
not, of course, give a value to the bound variables, the value of which should be given by the semantics
of existential quantification. This can easily be done, if solutions are homomorphisms, by restricting the
application of the homomorphism to the free variables.

Definition 10.1 Let F be a set of function symbols, X be a set of variables, and A be an F -algebra. A
〈F ,X ,A〉-unification problem (unification problem for short) is a first-order formula without negations nor
universal quantifiers whose atoms are T,F and s =?

A t, where s and t are terms in T (F ,X). We call an
equation on A any 〈F ,X ,A〉-unification problem s =?

A t and multiequation any multiset of terms in T (F ,X).
Equational problems will be written as a disjunction of existentially quantified conjunctions:

∨

j∈J

∃−→wj
∧

i∈Ij

si =?
A ti.

When |J | = 1 the problem is called a system. Variables −→w in a system P = ∃−→w ∧
i∈I si =?

A ti are called
bound, while the other variables are called free. Their respective sets are denoted by BVar(P) and Var(P).

The superscripted question mark is used to make clear that we want to solve the corresponding equalities,
rather than to prove them.

January 28, 2006 rewriting solving proving

118 Unification of equational problems

x+ 0 → x 0 + x → x
x ∗ 0 → 0 0 ∗ x → 0

prede(succe(x)) → x succe(prede(x)) → x
opp(0) → 0 opp(opp(x)) → x

x+ opp(x) → 0 opp(x) + x → 0
opp(prede(x)) → succe(opp(x)) opp(succe(x)) → prede(opp(x))
succe(x) + y → succe(x+ y) x+ succe(y) → succe(x+ y)
x+ prede(y) → prede(x + y) prede(x) + y → prede(x+ y)
opp(x+ y) → opp(y) + opp(x) x ∗ succe(y) → (x ∗ y) + x
succe(x) ∗ y → y + (x ∗ y) (x+ y) + z → x+ (y + z)

opp(y) + (y + z) → z x+ (opp(x) + z) → z
prede(x) ∗ y → opp(y) + (x ∗ y) x ∗ prede(y) → (x ∗ y) + opp(x)

Figure 10.1: BasicArithmetic: Basic arithmetic axioms.

Example 10.1 With obvious sets X and F and for an F -algebraA, {∃z f(x, a) =?
A g(f(x, y), g(z, a))∧x =?

A

z} is a system of equations where the only bound variable is z and the free variables are x and y.

Definition 10.2 A A-solution (for short a solution when A is clear from the context) to a 〈F ,X ,A〉-
unification system P = ∃−→w ∧

i∈I si =?
A ti is a homomorphism h from T (F ,X) to A such that there exists

an homomorphism h′ from T (F ,X) to A satisfying h′(x) = h(x) for all x ∈ X − −→w and h′(si) = h′(ti) for
all i ∈ I.

A A-solution to a 〈F ,X ,A〉-unification problem D =
∨
j∈J Pj , where all the Pj are unification systems,

is a homomorphism h from T (F ,X) to A such that h is solution of at least one of the Pj .
We denote by SolA(D) the set of solutions of D in the algebra A. Two 〈F ,X ,A〉-unification problems

D and D′ are said to be A-equivalent if SolA(D) = SolA(D′), this is denoted D′ ⇔A D.

Note how the above definition takes care of the existentially quantified variables by forgetting the respective
values of the homomorphism h, allowing these variables to take whatever value is necessary to satisfy all
equations.

Finding solutions to a unification problem in an arbitrary F -algebra A is impossible in general and when
it is possible it is often difficult. For example, solving equations in the algebra T (F)/E, where E is the
BasicArithmetic theory given by the set of equational axioms described in Figure 10.1 is actually the problem
of finding integer solutions to polynomial equations with integer coefficients. This is known as Hilbert’s
tenth problem, shown to be undecidable by Matijasevič [Mat70, DMR76].

Fortunately, we will see that the existence of solutions is decidable for many algebras of practical interest.
However, there are in general infinitely many solutions to a unification system P . A first step towards the
construction of a finite representation of these solutions is the notion of a unifier, which is meant as describing
sets of solutions:

Definition 10.3 A A-unifier of an 〈F ,X ,A〉-unification system

P = ∃−→w
∧

i∈I

si =?
A ti

is a substitution σ such that

A |= ∃−→w
∧

i∈I

σ|X−−→w (si) = σ|X−−→w (ti).

A A-unifier of a 〈F ,X ,A〉-unification problem D =
∨
j∈J Pj , where all the Pj are 〈F ,X ,A〉-unification

systems, is a substitution σ such that σ unifies at least one of the Pj .
We denote by UA(D) the set of unifiers of D. This is abbreviated U(D) when A is clear from the

context. Similarly when clear from the context A-unifiers are called unifiers and 〈F ,X ,A〉-unification is
called unification.

It is important to note that, as it is usual in logic (see for example [Gal86]), only free variables are
substituted. Thus for example, applying the substitution {(z 7→ f(a))} to the formula ∃z, f(z) =? x results
in this formula itself. Bound variables are taken care of by the semantics as defined in Definition 2.22 and

January 28, 2006 rewriting solving proving

10.1 Solutions and unifiers 119

indeed, unifiers are substitutions of the free variables of the formulas in such a way that it becomes valid as
a universaly quantified existential formula.

The above definition is important, since it allows to define unifiers for equations whose solutions range
over an arbitrary F -algebra A. The relationship between solutions and unifiers is not, however, quite as
strong as we would like it to be. Of course, interpreting a unifier in the algebra A by applying an arbitrary
homomorphism yields an homomorphism that is a solution. That all solutions are actually homomorphic
images of unifiers is not true in general, but happens to be true in term generated algebras (allowing in
particular free algebras generated by a given set of variables).

To illustrate the difference between solutions and unifiers, let us consider the set of symbols F = {0, s, ∗}
and the F -algebra R whose domain is the set of real numbers. Then h(x) =

√
2 is a solution of the equation

x ∗ x =?
R s(s(0)), although no R-unifier exists for this equation, since the square root cannot be expressed

in the syntax.

Proposition 10.1 If A is a term generated F -algebra then a unification system P has A-solutions iff it
admits A-unifiers.

Proof: Assume that σ is a A-unifier of the system P = ∃−→w ∧
i∈I si =?

A ti then by definition

A |= ∃−→w σ|X−−→w (si) = σ|X−−→w (ti)

(where the universal quantifier is not explicitly mentioned). This means, by definition of validity, that
for every assignment ν of the variables in X \ −→w , ν.σ is a A-solution of P .

Conversely, if µ is a A-solution of the system P = ∃−→w ∧
i∈I si =?

A ti, there exists homomorphisms h
and h′ from T (F ,X) to A such that for all i ∈ I, h′(si) = h′(ti) and ∀x ∈ X \ −→w , h(x) = h′(x). Since
A is term generated (c.f. Definition 2.23), this means that: ∀a ∈ A, ∃t ∈ T (F) such that, a = ι(t)
where ι is the interpretation under consideration for A. Thus ∀x ∈ Dom(h′) ∩ X , ∃ux ∈ T (F) such
that h′(x) = ι(ux). Let σ be the ground substitution such that for all x ∈ Dom(h′) ∩ X , σ : x 7→ ux.
Then by construction: ισ(si) = ισ(ti), which means since these equality involves only ground terms
that, A |= σ(si) = σ(ti) for all i in I, and thus σ is a A-unifier of P . 2

Notice that from the previous proof it becomes clear that unifiers represent in general, because of variable
instantiation, several (possibly infinite) solutions.

Example 10.2 In the BasicArithmetic example, if we consider the equation x =? s(y), then (x 7→ 1, y 7→ 2)
is one of its N-solution. Its corresponding N-unifier is (x 7→ succe(0), y 7→ succe(succe(0))). The N-
unifier (x 7→ succe(y)) also represents the previous N-solution by simply valuating x to succe(0) and y to
succe(succe(0)).

In the following, we are restricting our attention the special but fundamental case of the free algebras,
initial algebras and their quotient. For these algebras the above property is satisfied since they are by
construction term generated. As an important consequence of the previous proposition, two unification
problems are equivalent iff they have the same sets of unifiers, an alternative definition that we are adopting
in the remainder.

Definition 10.4 For a set of equational axioms E built on terms in T (F ,X), an equation to be solved
in A = T (F ,X)/E is denoted by =?

E. The equivalence of equational problems is denoted by ⇔E and
A-unification is called E-unification.

Since a unification system is a term whose outermost symbol is the existential quantifier, its body part,
i.e., the conjunction of equations occurring in the system, is actually a subterm. Rewriting this subterm to
transform the unification system into a simpler one hides the existential quantifier away. As a consequence,
one may simply forget about the existential quantifier for most practical purposes. This is true for syntactic
unification, where existential quantification is not needed as long as the transformation rules are chosen
among the set given in Chapter 3. This is not, however, true of all algorithms for syntactic unification:
Huet [Hue76] for example uses an abstraction rule introducing new variables in a way similar to the one used
for combination problems in Chapter 11.

Example 10.3 The equation {x+ y =?
A x+ a} is equivalent to the equation {y =?

A a}, since the value of x
is not relevant: our definition allows dropping useless variables. Note that this is not the case if unifiers are
substitutions whose domain is restricted to the variables in the problem, a definition sometimes used in the
litterature, since {x 7→ a, y 7→ a} would be a unifier of the first problem but not of the second.

January 28, 2006 rewriting solving proving

120 Unification of equational problems

Example 10.4 P = {x+(y ∗ y) =?
A x+x} is equivalent to P ′ = ∃z {x+ z =?

A x+x, z =?
A y ∗ y} whereas it

is not equivalent to P ′′ = {x+ z =?
A x+ x, z =?

A y ∗ y}. In P ′′, z does not get an arbitrary value, whereas it
may get any value in P , and in P ′ as well, since the substitution cannot be applied to the bound variable z.

Exercice 40 — Assuming the symbol + commutative, prove that x + f(a, y) =? g(y, b) + f(a, f(a, b)) is equivalent

to (x =? g(y, b) ∧ f(a, y) =? f(a, f(a, b))) ∨ (x =? f(a, f(a, b)) ∧ f(a, y) =? g(y, b)).

Answer: One can easy check that the definition of equivalence (on unifiers) is satisfied.

The key to our definition is that, as usual in logic, substitutions do not replace bound variables. This
question of handling “new” variables appearing during the unification process has often been ignored. When
recognized, it has been solved in different ways. An alternative, slightly more complicated definition of
solutions is given in [Com88b]. Another alternative to the solution developed here is given in [Kir85a], where
a weaker notion than equivalence is defined, called extension, which allows one to handle the case of different
sets of variables in related unification problems. This leads, however, to more complex and technical proofs.
A third alternative [RB86, RB85, Gog89, RS86, Baa89b, Baa91] is simply to get rid of the variables by using
a categorical point of view. However, this does not allow to build unification algorithms directly from their
description, a major goal in our approach.

Let us finally mention that for any finitely presented equational theory T H(E), the set of E-unifiers is
recursively enumerable. This is due to the fact that one can enumerate all the substitutions and for each of
them check, in finite time, if it is an E-unifier (see Section 2.4.6).

10.2 Generating sets

We have seen that unifiers schematize solutions in the case of term generated algebras. Let us now consider
schematizing sets of unifiers. This will be done using the notion of complete set of unifiers that we will also
define and then study from an abstract point of view.

10.2.1 Complete sets of unifiers

Unifiers are representations of solutions but are still infinitely many in general. We may take advantage of
the fact that any instance of a unifier is itself a unifier to keep a set of unifiers minimal with respect to
instantiation.

In order to express it in general, we need to introduce a slightly more general concept of equality and
subsumption as follows.

Definition 10.5 Let A be an F -algebra. We say that two terms s and t are A-equal, written s =A t if
h(s) = h(t) for all homomorphisms h from T (F ,X) into A. A term t is an A-instance of a term s, or s is
more general than t in the algebra A if t =A σ(s) for some substitution σ; in that case we write s ≤A t. The
relation ≤A is a quasi-ordering on terms called A-subsumption.

As in Section 2.4.4 subsumption is easily lifted to substitutions:

Definition 10.6 We say that two substitutions σ and τ are A-equal on the set of variables V ⊆ X , written
σ =V

A τ if σ(x) =A τ(x) for all variables x in V . A substitution σ is more general for the algebra A on the
set of variable V than a substitution τ , written σ ≤VA τ , if there exists a substitution ρ such that ρσ =V

A τ .
The relation ≤VA is a quasi-ordering on substitutions called A-subsumption. V is omitted when equal to X .

The above definitions specialize to the notion of subsumption defined in Section 2.4.4 when the algebra
A is equal to T (F ,X).

We are in fact mostly interested in generating sets of the set of A-unifiers of an equational problem. The
definition of such a generating set that we are now presenting is issued from the definition given first by
G. Plotkin [Plo72] followed by G. Huet [Hue76] and J.-M. Hullot [Hul80c].

Definition 10.7 Given an equational problem P , CSUA(P) is a complete set of unifiers of P for the algebra
A if:

(i) CSUA(P) ⊆ UA(P), (correctness)

(ii) ∀θ ∈ UA(P), ∃σ ∈ CSUA(P) such that σ ≤Var(P)
A θ, (completeness)

(iii) ∀σ ∈ CSUA(P),Ran(σ) ∩ Dom(σ) = ∅. (idempotency)

January 28, 2006 rewriting solving proving

10.2 Generating sets 121

CSUA(P) is called a complete set of most general unifiers of P in A, and written CSMGUA(P), if:

(iv) ∀α, β ∈ CSMGUA(P), α ≤Var(P)
A β implies α = β. (minimality)

or in other words: any two substitutions of CSUA(P) are not comparable for the quasi-ordering ≤Var(P)
A .

Furthermore CSUA(P) is said outside the set of variables W such that Var(P) ⊆W when:

(v) ∀σ ∈ CSUA(P),Dom(σ) ⊆ Var(P) and Ran(σ) ∩W = ∅. (protection)

Notice that unifiers are compared only on the problem variables (i.e., Var(P)), a fundamental restriction
as pointed out in particular by F. Baader in [Baa91]. As shown in Lemma 2.1 the conditions (idempotency)
as well as (protection) in the above definition insure that the unifiers are idempotent.

One may wonder why the notion of being most general is defined with respect to unifiers, rather than
to unified terms, since practice often uses the latter. This is so because substitutions compose, making the
design of algorithms easier. On the other hand, different unifiers in a complete set of most general unifiers
may yield the same set of instantiated terms, up to A-equivalence. This is a practical concern that one
should keep in mind.

Complete sets of most general unifiers are very important, in particular when they are finite, since they
describe the generally infinite set of solutions of the problem under consideration. We will further elaborate
on this notion in the next sections.

In the next chapters we mainly investigate semantic unification (also called equational unification), when
A is the quotient algebra T (F ,X)/E, for some a priori given set E of equational axioms, or the typed
instance of these algebras.

Although higher-order unification could be viewed as a case of semantic unification in a quotient set by
appropriately axiomatizing the λ-calculus, we can adopt the traditional λ-calculus view that unifiers are
simply higher-order substitutions. In this case, T (F ,X) is the algebra of higher-order terms, and A its
quotient under βη-interreducibility. The above definition of complete sets of unifiers hold for all these cases
but we will not investigate further higher-order unification in this book.
Exercice 41 — Give a description of all the ∅-solutions of the equation x =? y. Then give a complete set of

∅-solutions outside {x, y}. How does the elements of this set compare to the unifier α = (x 7→ y)? Is your complete

set of solutions minimal?

Answer: 1. {σ|σ(x) = σ(y) = t, t ∈ T (F ,X) − {x, y}} ∪ {x 7→ y} ∪ {y 7→ x} 2. It is enough to take σ = {(x 7→

z), (y 7→ z)}, where z is a variable different fromx et y. We have then (z 7→ y).σ = α[{x, y}].

A complete set of A-unifiers satisfying (i) and (ii) clearly always exists, just take the set of all A-solutions.
Let us now check that the limitation on the set of variables to get complete set of unifiers outside W is not
in general a limitation. This will imply that the idempotency restriction is not either a limitation in general.

Proposition 10.2 Let W be a set of variables such that X−W is denumerable and P an equational problem
such that Var(P) ⊆ W . If Σ is a complete set of A-unifiers of P satisfying only the conditions (i) and (ii)
of the definition above then there exists a complete set of unifiers of P outside W having the same number
of elements than Σ.

Proof: Let
Σ′ = {ξδ | δ ∈ Σ and ξ ∈ Perm and ξ : W ∩Ran(δ) 7→ X − (W ∪Ran(δ))}.

In others words, ξ renames the variables of W ∩Ran(δ) outside W ∪Ran(δ). Note that this is possible
because X −W has been supposed denumerable and since Ran(δ) is finite. Let us check that Σ′ is a
complete set of unifiers:

1. By definition, each element of Σ′ is outside W .

2. It is clear that Σ′ ∈ UA(P).

3. Finally let us show the completeness of Σ′ : ∀α ∈ UA(P), ∃δ ∈ Σ such that

δ ≤Var(P)
A α

⇔ ∃ρ, ρδ =
Var(P)
A α

⇔ ∃ρ, ρξ−1ξδ =
Var(P)
A α

⇔ ξδ ≤Var(P)
A α

which prove that Σ′ satisfy all the conditions to be a complete set of unifiers outside W .

2

January 28, 2006 rewriting solving proving

122 Unification of equational problems

This result shows that under the natural condition of having enough variables, there exists always a complete
set of unifiers outside a given set of variables containing the variables of the problem. The condition of
protection for the variables in W is thus only a technical way to simplify the proofs. A consequence of the
previous result is also that if there is enough variables, it is not necessary to check the idempotency condition
in Definition 10.7, since it can be insured as in the previous proof.

Using the result above, let us now show how a complete set of unifiers can be computed for a disjunction
of systems from the complete sets of its system components.

Lemma 10.1 Let D =
∨
j∈J Pj a disjunction of systems. Then

⋃
j∈J CSUA(Pj) is a complete set of A-

unifiers of D.

Proof: We just have to check properties (i) and (ii).
(i), by definition of the set of solutions of a disjunction we have:

⋃
j∈J CSUA(Pj) ⊆ UA(D).

(ii): Let σ be a A-unifier of D. By definition there exists a system Pj which solutions set contains σ
and this allows to conclude that σ will be generated by an element of CSUA(Pj). 2

Because of this result, we will be interested mainly in solving systems rather that disjunctions.
Unfortunately this cannot be extended to minimal complete sets of unifiers. Take for example: D = S1∨S2

with S1 = {x =? y} and S2 = {x =? a ∧ y =? b}. Then the respective minimal complete sets of unifiers are:

CSMGU(D) = {x 7→ z, y 7→ z}
CSMGU(S1) = {x 7→ z, y 7→ z}
CSMGU(S2) = {x 7→ a, y 7→ b},

which shows that CSMGU(D) 6= CSMGU(S1) ∪CSMGU(S2).

10.2.2 Abstract properties of generating sets

We have just seen how the set of all the unifiers of a given problem can be generated from one of its subset, if
possible minimal. In fact many properties of generating sets are only due to the structure of the quasi-order
on substitutions and not to the substitutions themself. It is why it is quite natural to explore first the
properties of generating sets of posets. The results will then have immediate consequences on A-unifiers up
to ≡A the subsumption equivalence modulo A. For more details on the concepts that we are now using on
orderings, refer to Section 4.2 and to [Bou70] or [BM67, Bir67].

Definition 10.8 A subset G of E is a minimal generating set of the poset (E,≤) if:

1. ∀α ∈ E, ∃σ ∈ G such that σ ≤ α, (completeness)

2. ∀α, β ∈ G,α ≤ β ⇒ α = β. (minimality)

A poset (E,≤) is of type zero if E have no minimal generating set.

Exercice 42 — Show that a subset G generating the poset (E,≤) is minimal iff G have no proper subset that

generates E.

Answer:

Lemma 10.2 Let (E,≤) be a poset. Then two minimal generating subsets G1 and G2 of E are equal.

Proof: G2 a generating set thus:
∀α ∈ G1, ∃σ ∈ G2 such that σ ≤ α,

similarly G1 is a generating set thus:

∀σ′ ∈ G2, ∃α′ ∈ G1 such that α′ ≤ σ′.

We have:
∀α ∈ G1, ∃σ′ ∈ G2, α

′ ∈ G1, such that α′ ≤ σ′ ≤ α
and since G1 is minimal α = α′ and since (E,≤) is a poset α = σ′. 2

A consequence for minimal complete sets of A-unifiers of a unification problem P is that they are all

isomorphic up to ≡Var(P)
A the subsumption equivalence modulo A. For a direct proof, see [FH86].

In fact for posets, the minimal generating sets have a nice characterization:

January 28, 2006 rewriting solving proving

10.2 Generating sets 123

Lemma 10.3 Let (E,≤) be a poset and M be the set of all ≤-minimal elements of E.

1. If G is a minimal generating set of E then G = M .

2. If M is a generating set then M is a minimal generating set of E.

Proof: 1. (G ⊆ M): Let G be a minimal generating set of E and let g ∈ G such that g is not ≤-minimal.
Then there exists x ∈ E such that x < g. Since G is a generating set, there exists g′ ∈ G such that
g′ ≤ x < g, but this contradicts the minimality of G.
(M ⊆ G): If m ∈ M , since G is a generating set, there exists g ∈ G such that g ≤ m. But m being a
minimal element implies m = g.
2. If M is a generating set, since minimal elements are not comparable by definition, M also minimal.
2

As a consequence, we get the following characterization of the type zero posets:

Corollary 10.1 The set M of minimal elements of the poset (E,≤) is generating iff M is a minimal
generating set iff (E,≤) is not of type zero.

Finally let us state the characterizations due to F. Baader [Baa89a] :

Theorem 10.1 Let (E,≤) be a poset. Let us consider the following properties:

1. (E,≤) is of type zero.

2. There exists an element w of E such that for all elements u in E, if u ≤ w then there exists v ∈ E
such that v ≤ u et v 6= u.

3. There exists a descending chain in E:

. . . ≤ u3 ≤ u2 ≤ u1

without lower bound in E and having the following property:

∀u ∈ E, u ≤ un ⇒ ∃w ∈ E such that w ≤ u and w ≤ un.

4. There exists a strictly decreasing chain in E:

. . . < u3 < u2 < u1

such that {u1, u2, u3, . . .} is a generating set.

5. There exists a decreasing chain in E without lower bound in E.

Then the following relations hold:

• 1⇔ 2

• 4⇒ 3⇒ 1⇒ 5

• 5 6⇒ 1 6⇒ 3 6⇒ 4

Proof: Let M be the set of minimal elements in E.
1 ⇒ 2. By the previous results (1) implies that M is not a generating set. Let w be a term not
generated by M . Any u in E such that u ≤ w is thus not minimal and there exists v such that v ≤ u.
2 ⇒ 1. Assume that M is a generating set. Then for any w there exists u in M such that u ≤ w.
But because of property (2), there exists v in E such that v ≤ u and v 6= u, which contradicts the
minimality of u.
1⇒ 5. Assume (5) false. Then all decreasing chains in E have a lower bound in E. By application of
Zorn’s lemma (see page 54) there exists a minimal element in E and thus M is a generating set and
(1) does not hold.
The proof of the other implications is left to the reader and can be found in [Baa89a]. 2

January 28, 2006 rewriting solving proving

124 Unification of equational problems

10.2.3 Application to minimal complete sets of unifiers

For an equational theory E and a unification problem P , the previous abstract results on posets can be

applied to the poset (UA(P)/ ≡Var(P)
E ,≤Var(P)

E), yielding in particular:

Corollary 10.2 When a minimal complete set of E-unifiers of a unification problem P exists, it is unique
up to subsumption equivalence. More precisely, for two minimal complete sets of E-unifiers Σ1 and Σ2 of
P , there exists a bijection φ such that:

φ : Σ1 → Σ2

σ1 7→ σ2 ≡ φ(σ1).

The next question is to determine if there exist theories having unification problems P such that

(UA(P)/ ≡Var(P)
E ,≤Var(P)

E) is of type zero, i.e. such that P has no minimal complete set of E-unifiers.
This was conjectured by G.Plotkin in his seminal paper [Plo72] but, the first example of such a situation is
due to F. Fages and G. Huet ten years later [FH83].

Proposition 10.3 [FH86] Let FH be the following equational theory:

FH =

{
f(0, x) = x
g(f(x, y)) = g(y).

Then the equation g(x) =?
FH
g(0) has no minimal complete set of FH-unifiers.

We will prove this result by applying the case 4⇒ 1 in Theorem 10.1. Thus we have to show that there exists
a strictly decreasing and generating chain of FH-unifiers. This will be the subject of the next two Lemmas.
Before giving them, let us first remark that the term rewriting system

−→
FH = {f(0, x)→ x, g(f(x, y))→ g(y)}

is terminating and confluent.

Lemma 10.4 Let:
σ0 = {x 7→ 0}
σi = {x 7→ f(xi, σi−1(x))} (0 < i)

then Σ = {σi|i ∈ N} is a complete set of FH-unifiers for the equation g(x) =?
FH
g(0) and ∀i ∈ N, σi+1 ≤{x}FH

σi

Proof: We prove the correctness by induction on i.
For i = 0, it is clear.
For 0 < i, we have σi(g(x)) = g(σi(x)) = g(f(xi, σi−1(x))) =FH g(σi−1(x)) = σi−1(g(x)) =FH g(0) by
induction hypothesis.
Let σ ∈ U(g(x) =?

FH
g(0)), completeness is proved by structural induction on the form of the normal

form t of σ(x) for
−→
FH.

By definition we have g(t) =FH g(0).

• If t is a variable, a constant or g(t′) then clearly t should be 0, in which case σ0 ≤{x}FH
σ.

• If t = f(t′, t′′) then g(t′′) =FH g(0) and the result follows.

Let us now prove that:

. . . σi <
{x}
FH

. . . σ1 <
{x}
FH

σ0

• σi+1 ≤{x}FH
σi since:

{xi+1 7→ 0}σi+1 = {xi+1 7→ 0, x 7→ f(0, σi(x))}
=FH {xi+1 7→ 0, x 7→ σi(x)}

thus {xi+1 7→ 0}σi+1 =
{x}
FH

σi.

• We can finally show by contradiction that σi 6≤{x}FH
σi+1.

2

Notice that in fact the previous example is a matching problem and that the theory is not regular and
collapse. Fages and Huet give also an example of regular collapse theory of type zero. But in this case, the
problem under consideration should be a unification problem since:

January 28, 2006 rewriting solving proving

10.3 (Un)-Decidability of unification 125

Proposition 10.4 Let E be a regular set of axioms, then any non-trivialy redondant complete set of matches
is minimal.

The FH example relies on building an equational theory such that an equation has for complete set of E-
unifiers a strictly decreasing chain of substitutions. More complicated exemples are provided by varieties of
idempotent semigroup [Baa87] that are almost all of type zero. In particular idempotent semigroup are of type
zero [Baa86a, SS86b]. Together with decidability results, This leads to a unification based classification of
equational theories that we are presenting after giving more details on the decidability results for unification.

10.3 (Un)-Decidability of unification

Equational unification and matching are in general undecidable since there exist equational theories that
have undecidable word problems.

What is more disturbing is that very simple theories have undecidable E-unification problem. Let us
review some of them.

Proposition 10.5 Let DA be the theory built over the set of symbols F = {a, ∗,+} and consisting in the
axioms: 





x+ (y + z) = (x + y) + z
x ∗ (y + z) = (x ∗ y) + (y ∗ z)
(x + y) ∗ z = (x ∗ z) + (x ∗ z).

Unification is undecidable in DA.

Proof: It is done in [Sza82] using a reduction to Hilbert’s tenth problem. 2

Another simple theory with undecidable unification problem is DlAUr, consisting in the associativity of +,
the left distributivity of ∗ with respect to + and a right unit element 1 satisfying x ∗ 1 = x [TA87].

In fact, decidability of unification is even quite sensitive to “new” constants. H.-J. Bürckert shows it by
encoding the previous DA theory using new constants. This shows in particular that there exists equational
theories for which unification is decidable but matching is not [Bür89]. Another quite simple example has
been found by A. Bockmayr:

Proposition 10.6 [Boc92] The unification problem for the set of axioms:

ISG =






(x ∗ y) ∗ z = x ∗ (y ∗ z)
i(i(x)) = x
(x ∗ i(x)) ∗ x = x
(i(x) ∗ x) ∗ (i(y) ∗ y) = (i(y) ∗ y) ∗ (i(x) ∗ x)

of inverse semigroups is decidable in the signature F = {∗, i, a} but is undecidable for F ′ = {∗, i, a, b}.

Since left (or right) distributivity has a decidable unification problem [TA87] and as does associativity as
well, it is challenging to know which are the minimal undecidable theories consistent with Peano arithmetic.
A first answer has been given for DA by Szabó and for DlAUr by Arnborg and Tiden: they proved that
every theory T consistent with Peano arithmetic and such that DA ⊆ T or DlAUr ⊆ T has an undecidable
unification problem.

The decidability of unification for classes of theories is also a very challenging problem. For example,
variable permutative theories have an undecidable unification problem, as shown in [NO90], refining a result
of [SS90b]. Even in theories represented by a canonical term rewriting system (which is, as we have seen in
Part Rewriting, a strong requirement) the unification problem is undecidable:

Proposition 10.7 [Boc87]

In the equational theory BasicArithmetic presented by the canonical term rewriting system
−−−−−−−−−−−→
BasicArithmetic,

the unification and matching problems are undecidable.

Proof: (i)
−−−−−−−−−−−→
BasicArithmetic is confluent and noetherien as it can be checked by a completion program like

reve.
(ii) The normal form of any ground term t computed by

−−−−−−−−−−−→
BasicArithmetic is the usual arithmetic value

i.e. is of the form pn(0) or sm(0).

(iii) Let us now assume that unification is decidable modulo
−−−−−−−−−−−→
BasicArithmetic. Then in particular

January 28, 2006 rewriting solving proving

126 Unification of equational problems

the matchability of any term t to 0 is decidable. We can assume without restriction that the sub-
stitution µ such that µ(t) = 0 is ground (otherwise either it is not a match or it can be reduced

using
−−−−−−−−−−−→
BasicArithmetic). Since such a term t is a representation of a multivariate integer polyno-

mial this would mean that Hilbert’s tenth problem would be decidable, which has been proven to
be false [Mat70, DMR76]. 2

10.4 A Classification of Theories with Respect to Unification

Since we have seen that minimal complete sets of E-unifiers are isomorphic whenever they exist, a
classification of theories based on their cardinality makes sense, as pioneered by Szabó and Siek-
mann [SS84, Sza82, SS82b]. But in doing so, we should be careful with the fact that solving one single
equation is not general enough a question, as shown by the following result:

Proposition 10.8 There exists equational theories E such that all single equation have minimal complete
set of E-unifiers, but some system of equations are of type zero i.e. have no minimal complete set of
E-unifiers.

Proof: In [BHSS90] it is shown that the equational theory:

BHSS =






f1(g1(x)) = g2(f1(x))
f2(g1(x)) = g2(f2(x))
f3(g1(x)) = g2(f3(x))
f4(g1(x)) = g2(f4(x))
f1(k1(x)) = f2(k1(x))
f3(k2(x)) = f4(k2(x))
k1(h(x)) = k2(h(x))
g1(k2(h(l(x)))) = k2(h(x))

has the required property. 2

Thus it makes sense to define the type of an equational theory based on the cardinality of minimal
complete sets of E-unifiers for equation systems, when they exist.

Let P be a system of equations in an equational theory E, and let CSMGUE(P) be a complete set of
most general E-unifiers of P , whenever it exists. E-unification is said to be:

U-based if CSMGUE(P) exists for all problems P (the class of U-based theories is denoted by U),

U-unitary if E ∈ U and |CSMGUE(P)| ≤ 1 for all P ,

U-finitary if E ∈ U and |CSMGUE(P)| is finite for all P ,

U-infinitary if E is U-based but not finitary,

U-nullary if E is not U-based,

U-undecidable if it is undecidable whether a given unification problem has solutions.

We drop the “U-” when it is clear from the context that we are interested in a unification property. We use
0, 1, ω and ∞ to denote the respective types of nullary, unary, finitary and infinitary theories.

Syntactic unification is unitary as we have seen in Section 3.2 and so is unification in boolean rings [MN89],
see Section 13.2. Commutative unification is finitary, as we will see next in Section 10.5.4. So is also
associative-commutative unification, see Section 13.1. Associative unification is infinitary [Plo72], take for
example the equation x + a =?

A(+) a + x which independant A(+)-unifiers are {x 7→ a}, {x 7→ a+ a}, {x 7→
a+ (a+ a)}, · · ·. We have seen that the theory FH is nullary.

One can wonder if this classification can be enhanced by allowing U-finitary theories with only 2 most
general elements and 3 and 4..., but this is hopeless due to the following result:

Proposition 10.9 [BS86] In any given U-finitary but non U-unitary theory, there exists an equation the
complete set of unifiers of which has more that n elements for any given natural number n.

Finally, given a finite presentation of a theory E, its position in the unification hierarchie is undecidable, i.e.
it is undecidable whether E is U-unitary, U-finitary, U-infinitary or U-nullary [Nut89].

The Table 10.1 summarizes part of our current knowledge about unification in equational theories.

January 28, 2006 rewriting solving proving

10.4 A Classification of Theories with Respect to Unification 127

Name Type Deci Main references

∅ 1 yes [Her30, Rob65, Rob71, Hue76, MM82,
PW78, CB83, Fag83]. Subject of Sec-
tion 3.2.

A(f) ∞ yes The decidability has been proved
in [Mak77]. Related works
are [Abd87, AP90, Jaf90, Plo72],
[Péc81, Sie75, LS75].

C(f) ω yes [Sie79, Her87, Kir86]. Subject of Sec-
tion 10.5.4.

I(f) ω yes First studied in [RS78]. Hullot [Hul80a] de-
rives an algorithm by narrowing.

A(f), C(f) ω yes [Sti76, Sti75, Sti81, LS76, Fag84, HS85,
Kir89a, Kir85a]. Subject of Section 13.1.

A(f), I(f) 0 yes Studied in [SS82b, Baa86a, SS86b]. The va-
riety of bands has been completely investi-
gated in [Baa86b].

C(f), I(f) ω yes [RS78, JKK83]
A(f), C(f),
I(f), U(f, 1)

ω yes [BB88, Dro92]

A(+), C(+),
U(+, 0),
E(h,+),
UE(h, 0)

? no [Nar96]

A(f), C(f),
E(h, f)

? no [BB88, Dro92]

Dr(f, g) 1 yes [AT85, TA87]
Dl(f, g) 1 yes [AT85, TA87]
D(f, g) ∞ open [Sza82] give a first study of the theory.
D(f, g), A(g) ∞ no [Sza82, page 150]
D(f, g),
A(g),A(f)

∞ no [Sza82, page 151]

D(f, g), C(f),
C(g)

∞ open [Sza82]

D(f, g), A(f),
A(g), I(f), I(g)

open yes [Sza82]

Dl(f, g), A(g),
C(g)

? no [Nar96]

D(f, g), A(g),
C(g)

∞ no [Sza82]

Dl(f, g), A(g),
Ur(f, 1)

∞ no [AT85, TA87]

H(f, ∗,+) 1 yes [Vog78]
H(f, ∗,+), A(+) ∞ yes [Vog78]
H(f, ∗,+),
A(+), C(+)

ω yes [Vog78]

E(h, ∗) 1 yes [Vog78]
E(h, ∗), A(∗),
C(∗)

∞ no First studied in [Vog78], the undecidability
result is proved in [Nar96]

Cr(f) ω yes [Pla93, Kir85a, Jea80]
QG ω yes [Hul80c]

continued on next page

January 28, 2006 rewriting solving proving

128 Unification of equational problems

continued from previous page

Name Type Deci Main references

AG ω yes [Lan79b, LBB84]
BR 1 yes [MN89]
Minus ω/∞ yes Depending of the arity of the symbols, the

type may be infinite [KK82, Kir84a].
BST ω/∞ yes Depending of the arity of the symbols, the

type may be infinite [KK82].

Table 10.1: Some results on equational unification

10.5 Transforming equational problems

10.5.1 A Rule-Based Approach to Unification

Following [Her30, MM82], we view unification as a step by step process of transforming unification problems
until a solved form is obtained, from which a representation of all unifiers can be easily extracted. These
rules can be designed to be either deterministic or non-deterministic. In the first case, no matter which rule
is applied, an equivalent unification problem is obtained. In the latter case, several transformation rules may
apply concurrently on the same input problem to obtain an equivalent set of unification problems. This last
situation is the way [JK91] deals with disjunctions of systems. We take here the first solution which have
the advantage to explicit all the choices at once and the drawback to induce a more compact description of
the transformation rules. In both cases, these transformational approaches, because of the clear distinction
made between the transformation rules and their actual use (the control), have the following key advantages:

1. It eases the design (and the understanding as well) of (complex) unification algorithms, by providing
a systematic guide which consists in:

• Choose the intended solved forms. This characterizes which equational problems actually cor-
respond to most general unifiers or more generaly to the desired simplified form of equational
problems.

• Determine the transformation rules. For each possible equational problem which is not in solved
form, write transformation rules replacing this set with an equivalent one.

• Determine the appropriate control. This will determine which application of the transformation
rules is intended in order to reach the solved forms.

2. It eases correctness proofs by providing a systematic guide for proving the following fundamental
properties:

• Soundness; that is to show that each rule preserves the set of unifiers.

• Completeness; that is to show that normal forms (with respect to the transformation rules) are
indeed solved forms. This is usually quite easy, since the rules are actually designed to achieve
this purpose.

• Termination; one has to show that the rules terminate for some specific control or class of controls
or class of input.

• Fairness; that is to show that normal forms are indeed reached for the chosen control.

Termination happens to be generally the difficult part of most proofs.

10.5.2 Solved forms for Unification Problems

We will now need a slightly more general form of solved form than the one introduced for syntactic unification
but the reader will recognize the same ideas concerning tree and dag solved forms. Existential quantifiers
are used in both, but may be omited when they are not necessary.

Definition 10.9 A tree solved form is any conjunction of equations:

∃~z, x1 =? t1 ∧ · · · ∧ xn =? tn

January 28, 2006 rewriting solving proving

10.5 Transforming equational problems 129

such that ∀1 ≤ i ≤ n, xi ∈ X and:

(i) ∀1 ≤ i < j ≤ n xi 6= xj ,
(ii) ∀1 ≤ i, j ≤ n xi /∈ Var(tj),
(iii) ∀1 ≤ i ≤ n xi /∈ ~z,
(iv) ∀z ∈ ~z, ∃1 ≤ j ≤ n z ∈ Var(tj).

Given a unification problem P , we say that ∃~z, x1 =? t1 ∧ · · · ∧ xn =? tn is a tree solved form for P if it is
a tree solved form equivalent to P and all variables free in ∃~z, x1 =? t1 ∧ · · · ∧ xn =? tn are free variables
of P .

In the above definition, the first condition checks that a variable is given only one value, while the second
checks that this value is a finite term. The third and fourth conditions check that the existential variables
are useful, i.e., that they contribute to the value of the other variables.

Tree solved forms have the following important property which is a straighforward extention of Lemma 3.8:

Lemma 10.5 Let A be an F -algebra. A unification problem P with tree solved form:

P = ∃~z, x1 =? t1 ∧ · · · ∧ xn =? tn

has, up to A-subsumption equivalence, a unique most general idempotent unifier {x1 7→ t1, · · · , xn 7→ tn} in
A which is denoted µP .

Regardless in which algebra A-solutions are to be computed, tree solved forms have a unique most
general idempotent unifier representing the set of all solutions in A. When dealing with tree solved forms,
the mention of the algebra of interest is therefore superfluous.

We refer to the Theorem 3.3 for establishing the canonicity of tree solved forms.
We now extend the notion of dag solved form given for syntactic unification.

Definition 10.10 A dag solved form is any set of equations

∃~z , x1 =? t1 ∧ · · · ∧ xn =? tn

such that ∀1 ≤ i ≤ n, xi ∈ X and:

(i) ∀1 ≤ i < j ≤ n xi 6= xj ,
(ii) ∀1 ≤ i ≤ j ≤ n xi /∈ Var(tj),
(iii) ∀1 ≤ i ≤ n ti ∈ X ⇒ xi, ti 6∈ ~z,
(iv) ∀z ∈ ~z, ∃1 ≤ j ≤ n z ∈ Var(tj).

Given a unification problem P , we say that ∃~z , x1 =? t1 ∧ · · · ∧ xn =? tn is a dag solved form for P if it is
a dag solved form equivalent to P and all variables free in ∃~z , x1 =? t1 ∧ · · · ∧ xn =? tn are free variables
of P .

The second condition forbids cycles. The third condition forbids that an existentially quantified variable
be equal to a free variable. Moreover, if a free variable x is mapped to another free variable y, then x may
not appear in any other right hand side. The last condition requires that any existentially quantified variable
contributes to the value of a (free by transitivity) variable. In some sense, both conditions together describe
the usefulness of quantified variables. Note that some of the xi may be existentially quantified in dag solved
forms.

Of course, a tree solved form for P is a dag solved form for P . Dag solved forms save space, since the
value of the variable xj need not be duplicated in the ti for i ≤ j. Conversely, a dag solved form yields
a tree solved form by replacing xi by its value ti in all tj such that j < i and removing the remainding
unnecessary existentially quantified variables. Formally the job is done using the quantifier elimination rule
together with the following transformation rule:

Eliminate P ∧ x =? s
7→7→ {x 7→ s}P ∧ x =? s if x /∈ Var(s), s /∈ X , x ∈ Var(P)

Dag2Tree: Transformation of dag to tree solved forms

As a consequence we get as an extention of Lemma 3.12:

January 28, 2006 rewriting solving proving

130 Unification of equational problems

Lemma 10.6 A unification problem P = ∃~z , x1 =? t1 ∧ · · · ∧ xn =? tn in dag solved form has, up to
A-subsumption equivalence, a unique most general idempotent unifier σ = σn · · ·σ2σ1, where σi = {xi 7→ ti}.

The occur check relation is then defined in the same way as for syntactic unification problems, see
Definition 3.6.

In the following, we refer without further precision to the most general unifier associated to a particular
solved form by either one of the above lemmas.

10.5.3 Equivalence

Let us state here the most commonly used tranformations that preserve the set of solutions.

Proposition 10.10 Let E be a set of equational axioms built on terms of TFX . Then one can replace any
subterm t in an equational problem P with an E-equal term without changing the set of E-unifiers of P .

In particular rewriting by some term rewriting system that is a sub-theory of E preserves the set of
E-unifiers.

One quite important set of rules preserve equivalence of equational problems; they are the rules that allow
manipulating the connectors ∧ and ∨ . The most commonly used such rules are described in Figure 10.2.

Proposition 10.11 All the rules in Simplification preserve the set of A-unifiers, for any F -algebra A.

10.5.4 The commutativity example

Let us terminate this chapter with the easy but useful example of the description and proof of a unification
algorithm for the commutativity of a symbol +.

As in the free case, unification algorithms try to transform a unification problem into a set of equivalent
unification problems in solved form by using appropriate rules.

We now give the rules for a commutative theory: assume that F = {a, b, . . . , f, g, . . . ,+} and that + is
commutative, the others being free. Then a set of rules for unification in this theory can be easily obtained
by adding a mutation rule to the set Dag-Unify, which describes the effect of the commutativity axiom.
We call the resulting set of rules CommutativeUnification: it is described in Figure 10.3.

We see how easy it is here to obtain a set of rules for unification modulo commutativity from the set of
rules for syntactic unification. Note that there is no need of using existential quantifiers here.

In order to study this set of transformation rules we are following on purpose the same approach as we
have done for SyntacticUnification.

First of all let us prove that all these rules are sound i.e. preserve the set of unifiers.

Lemma 10.7 All the rules in CommutativeUnification are sound.

Proof: The main difference with syntactic unification is of course the rule ComMutate which soundness
is an obvious consequence of the commutativity of +. 2

Definition 10.11 A commutative unification procedure is any sequence of application of the transformation
rules in CommutativeUnification on a finite set of equations P .

In fact a strategy of application of the rules in CommutativeUnification determines a unification
procedure. Some are complete, some are not. Let us first show that a brute force fair strategy is complete.

Theorem 10.2 Starting with a unification problem P and using the above rules in
CommutativeUnification repeatedly until none is applicable results in F iff P has no C-unifier,
or else it results in a finite disjunction of tree solved form:

∨

j∈J

xj1 =?
C t

j
1 ∧ · · · ∧ xjn =?

C t
j
n

having the same set of C-unifiers than P . Moreover:

Σ = {σj |j ∈ J and σj = {xj1 7→ tj1, . . . , x
j
n 7→ tjn}}

is a complete set of C-unifiers of P .

January 28, 2006 rewriting solving proving

10.5 Transforming equational problems 131

Associativity- ∧ (P1 ∧ P2) ∧ P3 = P1 ∧ (P2 ∧ P3)
Associativity- ∨ (P1 ∨ P2) ∨ P3 = P1 ∨ (P2 ∨ P3)
Commutativity- ∧ P1 ∧ P2 = P2 ∧ P1

Commutativity- ∨ P1 ∨ P2 = P2 ∨ P1

Trivial P ∧ (s =? s) → P
AndIdemp P ∧ (e ∧ e) → P ∧ e
OrIdemp P ∨ (e ∨ e) → P ∨ e
SimplifAnd1 P ∧ T → P
SimplifAnd2 P ∧ F → F
SimplifOr1 P ∨ T → T
SimplifOr2 P ∨ F → P
Distrib P ∧ (Q ∨ R) → (P ∧ Q) ∨ (P ∧ R)
Propag ∃~z : (P ∨ Q) → (∃~z : P) ∨ (∃~z : Q)
Elimin0 ∃z : P → P

if z 6∈ Var(P)
Elimin1 ∃z : z =? t ∧ P → P

if z 6∈ Var(P) ∪ Var(t)

Figure 10.2: Simplification: Rules for connectors simplification

Proof: By Lemma 3.13 all the rules considered preserve the set of C-unifiers. We shall now prove that the
process stops and that the normal forms are indeed tree solved forms.

This last point follows immediately from a step by step inspection of the different cases, we left it as
an exercice to the reader.

The most difficult point is to prove that the process terminates. As in the syntactic case this is not com-
pletely obvious since the rule Eliminate makes the terms bigger but Decompose and ComMutate
decrease their size. Moreover we have now to consider disjunction of systems and to define accordingly
the complexity of a disjunction of systems.

The complexity of one equation is defined as for syntactic unification:

I(s =?
C t) = (max(|s|, |t|), type(s, t))

and the complexity of a system is defined as:

I(F) = (0, ∅)
I(s1 =?

C
t1 ∧ . . . ∧ sn =?

C
tn) = (N, {I(s1 =?

C
t1), . . . , I(sn =?

C
tn)})

where N is the number of unsolved variables, i.e. of variables that are not solved. We compare the
complexities lexicographically, using the standard ordering on naturals for the first component and the
multiset ordering for the second component. Finally the complexity of a finite disjunction of systems
D =

∨
j∈J P

j is the multiset of the complexities of its systems: I(D) = {I(P j)|j ∈ J} compared by
the multiset extention of the ordering on system complexities.

We will now check that for CommutativeUnification, each application of a rule decreases the com-
plexity of the disjunction of systems on which it is applied.

We have seen when proving SyntacticUnification that all the rules but ComMutate decrease the
complexity of a system thus of a disjunction.

The last case is ComMutate. As Decompose, it may increase the number of solved variables but
in any case it decreases the second component since it replaces an equation by strictly smaller
ones, thus a system is replaced by the disjunction of two other ones whose complexity is strictly
smaller, thus the complexity of the whole disjunction decreases too.

Finally, all the σj are solutions of P since they are mgu for a tree solved form in the disjunction of
tree solved forms issued from P . That Σ is a complete set of C-unifiers results from the definition of
the set of unifiers of a disjunction. 2

January 28, 2006 rewriting solving proving

132 Unification of equational problems

Since we have proved that the whose set of rule terminates, we can envisage as for syntactic unification
complete restrictions of it. Let us first define useful subsets of the rules in CommutativeUnification. We
introduce the set of rules:
TreeComUnify =
{Delete, Decompose, ComMutate, Conflict, Coalesce, Check, Eliminate}

and
DagComUnify =
{Delete, Decompose, ComMutate, Conflict, Coalesce, Check*, Merge}.

Corollary 10.3 Starting with a unification problem P and using the rules TreeComUnify repeatedly until
none is applicable, results in F iff P has no C-unifier, or else it results in a finite disjunction of tree solved
form: ∨

j∈J

xj1 =?
C t

j
1 ∧ · · · ∧ xjn =?

C t
j
n

having the same set of C-unifiers than P . Moreover:

Σ = {σj |j ∈ J and σj = {xj1 7→ tj1, . . . , x
j
n 7→ tjn}

is a complete set of C-unifiers of P .

Proof: This is a clear consequence of Theorem 10.2. In fact Merge and Check* are useless for getting the
tree solved forms. Termination is of course not affected when the set of rules is restricted. 2

Exercice 43 — Apply the set of rules TreeComUnify to the following unification problem x + g(x + y) =?
C

g(y + z) + g(h(z)).

Answer:

We can also forbid the application of the Eliminate rule, in which case we get dag solved forms:

Corollary 10.4 Starting with a unification problem P and using the rules DagComUnify repeatedly until
none is applicable, results in F iff P has no C-unifier, or else it results in a finite disjunction of dag solved
form: ∨

j∈J

xj1 =?
C t

j
1 ∧ · · · ∧ xjn =?

C t
j
n

having the same set of C-unifiers than P . Moreover:

Σ = {σj |j ∈ J and σj = {xjn 7→ tjn} · · · {xj1 7→ tj1}}

is a complete set of C-unifiers of P .

Proof: This is also a clear consequence of Theorem 10.2. One can check easily that the normal forms are
indeed dag solved forms and termination is not affected. 2

By removing Eliminate, we get a set of rules for solving equations over infinite trees, exactly as for
syntactic unification.

10.5.5 Complexity of Commutative Unification

This first study of a non trivial equational unification algorithm allows us to state the questions that designers
will reach when studying equational unification:

1. Are the images of a given term, under the application of the substitutions in a minimal complete set
of unifiers, independant for the subsumption ordering?

2. Are the complete sets of unifiers, obtained under a given set of transition rules, minimal?

3. What is the complexity of the cardinality of the minimal complete set of unifiers with respect to the
input system?

4. What is the complexity of the decidability of equational unification?

5. What is the complexity of the enumeration of minimal complete set of unifiers?

January 28, 2006 rewriting solving proving

10.5 Transforming equational problems 133

To the first question, the answer is negative: When applied to the equation s =?
C
t, commutative unifi-

cation may generate redundant unified terms σ(s), even if the substitutions σ are most general. This is the
case with the simple problem x+ y =?

C
a+ b, whose complete set of most general unifiers is

{{x 7→ a, y 7→ b}, {x 7→ b, y 7→ a}},

since a+ b and b + a are equivalent under commutativity.
Even worst, there seems to be no general solution to question 2 even in the case of commutativity since

in general the unification algorithm generated by the rules above may return non minimal complete sets of
unifiers, as for the problem x + y =? (a + b) + (b + a). Of course any post processing consisting to check
for redondancy after the generation of a CSU is applicable but since this require to check all the elements of
a CSU two by two, this will be quite expensive. This kind of redundancy of complete sets of most general
commutative unifiers has been studied by [Sie79].

The number of minimal complete set of commutative unifiers can be quite large. For example the
matching problem

(x1 + x2) + (x3 + x4) =? (a+ b) + (c+ d)

has 4! independant unifiers and there exists problems with 2 ∗ n leaves having a CSMGU of n! elements.
Thus the cardinality of CSMGU can be exponential in the size of the input problem.

January 28, 2006 rewriting solving proving

134 Unification of equational problems

Delete P ∧ s =?
C
s

7→7→
P

Decompose P ∧ f(s1, . . . , sn) =? f(t1, . . . , tn)
7→7→
P ∧ s1 =? t1 ∧ . . . ∧ sn =? tn
if f 6= +

ComMutate P ∧ s1 + s2 =?
C
t1 + t2

7→7→

P ∧




s1 =?

C
t1 ∧ s2 =?

C
t2

∨
s1 =?

C
t2 ∧ s2 =?

C
t1





Conflict P ∧ f(s1, . . . , sn) =?
C
g(t1, . . . , tp)

7→7→
F
if f 6= g

Coalesce P ∧ x =?
C
y

7→7→
{x 7→ y}P ∧ x =?

C
y

if x, y ∈ Var(P) and x 6= y
Check* P ∧ x1 =?

C
s1[x2] ∧ . . .

. . . ∧ xn =?
C
sn[x1]

7→7→
F
if si /∈ X for some i ∈ [1..n]

Merge P ∧ x =?
C
s ∧ x =?

C
t

7→7→
P ∧ x =?

C
s ∧ s =?

C
t

if 0 < |s| ≤ |t|
Check P ∧ x =?

C
s

7→7→
F
if x ∈ Var(s) and s /∈ X

Eliminate P ∧ x =?
C
s

7→7→
{x 7→ s}P ∧ x =?

C
s

if x /∈ Var(s), s /∈ X , x ∈ Var(P)

Figure 10.3: CommutativeUnification: Rules for commutative unification

January 28, 2006 rewriting solving proving

Chapter 11

Modular semantic unification

In the context of logic programming and deduction with constraints, the need for combining constraint
solving in specific theories frequently appears. For instance, in first-order theorem proving, free constants
and function symbols are generated during skolemization and it is known that unification with constants
or general unification, where new constants or free function symbols are added to the signature, must be
carefully distinguished from elementary unification [Bür86]. Combination problems also appear in constraint
logic programming, when different kinds of constraints coexist and must be solved in appropriate domains
for which a constraint solving process is already available. We focuss in this paper on the combination of
symbolic constraint solvers that compute solutions which are substitutions defined on an appropriate set of
terms.

Unification in an equational theory is a special case of symbolic constraint solving, for which the com-
bination problem has already been addressed and can be stated as follows: given two unification algo-
rithms in two (consistent) equational theories E1 on a set of terms T (F1,X) and E2 on T (F2,X), how
to find a unification procedure for E1 ∪ E2 on T (F1 ∪ F2,X)? Combining unification algorithms was ini-
tiated in [Her86, Kir85a, Tid86, Yel87] where syntactic conditions on the axioms of the theories to be
combined were assumed. Combination of arbitrary theories with disjoint sets of symbols is considered
in [Bou90b, SS89, BS92]. The general idea of unification in a combination of theories consists in first break-
ing an equational problem into sub-problems that are pure in the sense that they can be solved in one
component of the combination. Indeed a same variable could then be solved differently in each theory. To
avoid this problem, a variable is considered as a constant in one theory while solved in the other. This
motivates the need for each theory, of a unification algorithm taking into account additional free constants
in the signature. In general, recombining the solutions obtained in each theory presents another difficulty
due to cycles that may occur, for instance if x1 is instantiated to f(x2) in the first theory and x2 by g(x1) in
the second. This problem is solved thanks to a linear restriction, that is an ordering on variables that must
also be taken into account by the unification algorithms.

11.1 Combination problem for unification

The problem attacked in this chapter is how to combine two unification process defined on two different
equational theories in order to get a unification procedure in the union of the two theories. Let us formalise
some definitions and notations.

Definition 11.1 Let F1 and F2 be two mono-sorted first-order signatures, E1 and E2 be sets of F1 and F2

axioms respectively. The combined theory is defined by the quotient term algebra T (F1 ∪ F2,X)/ =E1∪E2 .

All along this section, we assume the following hypotheses.

Hypotheses 1
1) The first-order signatures F1 and F2 are finite and disjoint.
2) The theories defined by E1 and E2 are consistent.

We assume given a unification algorithms in each (consistent) equational theory and want to reuse them
for designing a unification procedure for E1 ∪ E2 on T (F1 ∪ F2,X). Given an heterogeneous equational
problem whose terms are in T (F1 ∪ F2,X), the most natural idea is to split the problem into subproblems
which only contains symbols from one signature. Such terms are called pure.

January 28, 2006 rewriting solving proving

136 Modular semantic unification

Definition 11.2 Let F = F1 ∪ F2. A term t of T (F ∪ X) is i-pure (for i = 1, 2) if t contains only function
symbols from Fi and possibly variables of X .

An equation (s =? t) is i-pure if s and t are.
A term with its top symbol in Fi is called i-term. Alien subterms of a i-term are j-(sub)terms such that

each prefix symbol is in Fi.

Example 11.1 Let F1 = {f} and F2 = {g}. The term f(y, g(z, g(x))) is a 1-term and g(z, g(x)) is an alien
subterm.

The equations (g(z, g(x)) =? z), (g(z, g(x)) =? g(y, y)) are 2-pure, The equation (x =? z) is both 1-pure
and 2-pure.

Some other notions must be defined.

Definition 11.3

• The set of alien positions of a term t is

AlienPos(t) = {ω 6= ε | t(ω) /∈ Fi ∪ X et ∀ω′ ∈ Pos(t), ω′ < ω ⇒ t(ω′) ∈ Fi, i = 1, 2}.

• The set of alien subterms of a term t is AST (t) = {t|ω | ω ∈ AlienPos(t)}.

• The number of layers of theories ht(t) of a term t is 0 if AST (t) = ∅, else ht(t) = 1+maxs∈AST (t) ht(s).

We first focus on a simple case, where the three steps necessary to perform unification in the combined
theory are detailled. The first step is to split the initial heterogeneous equational problem Γ into two
subproblems Γ1 and Γ2 respectively 1-pure and 2-pure. This is performed thanks to an operation called
abstraction. The second step consists in solving each subproblem in its component. The third step is the
combination of the obtained solutions. This is the more delicate point since conflicts between theories and
cycles may occur at this step.

11.2 Combination of simple theories

In simple theories [Kir85a], the difficulty due to cycles may be avoided, since cycles have by definition no
solution.

Definition 11.4 A theory E is simple if for any term t the problem x =?
E t[x]ω with ω 6= ε has no solution.

The empty theory is simple, as well as C and AC.
This hypothesis implies strong syntactic restriction of the axioms of E.

Proposition 11.1 A simple theory is regular and collapse-free.

Proof: If E is collapse, then there exists an E-equality x =E t[x] and the identity substitution is solution
of x =? t[x]. If E is not regular, then there exists an E-equality l =E r[x] with x /∈ V(l) and {x 7→ l}
is solution of x =? r[x]. 2

The converse does not hold since the theory {a = f(a)} is not simple, although regular and collapse-free.
The problem of stating whether an arbitrary theory belongs to the class of simple theories has been shown
undecidable [BHSS90].

11.2.1 Abstraction

As already said, the first step is to split a problem Γ into pure subproblems. So an equation is decomposed
into a conjunction of pure equations by introducing new equations of the form x =? t where t is an alien
subterm and x is a variable that does not appear yet. This is formalised thanks to the notion of abstraction.

Definition 11.5 A variable abstraction is a one-to-one mapping π from the quotient set of terms
(T (F1 ∪ F2,X)/E1 ∪ E2 to a subset of X .

The term tπi , called i-abstraction of the term t, is inductively defined as follows:
• if t = x ∈ X then tπi = x,
• if t = f(s1, . . . , sn) and f ∈ Fi then tπi = f(sπi

1 , . . . , s
πi
n)

• if t = f(s1, . . . , sn) and f 6∈ Fi then tπi = π(t).

January 28, 2006 rewriting solving proving

11.2 Combination of simple theories 137

Example 11.2 Let F1 = {f} and F2 = {g}. The 1-abstraction of the term t = f(g(x), y) is the term
f(z, y). Its 2-abstraction is a variable z′.

Given a substitution σ, σπi denotes its i-abstraction defined by σπi(x) = (σ(x))πi for any variable x in
Dom(σ).

The next lemma states some useful and easy properties of i-abstraction.

Lemma 11.1

• tπi is a term in T (Fi,X).

• If t is i-pure, then (σ(t))πi = σπi(t) for any substitution σ in T (F ,X).

Iterating abstraction as long as possible yields two pure equational problems that should be solved in
each component.

11.2.2 Solving in one component

The method which consists in solving a i-pure equation with respect to the equational theory Ei is obviously
correct: we get substitutions which are unifiers since =Ei

is included in =E . Care must be taken that
this method is also complete: each unifier must be an instance of at least one of these substitutions. This
method has been shown complete for the combination of disjoint regular and collapse-free equational theories
in [Yel87].

Lemma 11.2 Let E1 and E2 be collapse-free. If s←→E1∪E2 t, then sπi
∗←→E1∪E2 t

πi .

Proof: Assume that s is an i-term. If the ←→E1∪E2 step occurs in an alien subterm of s, then sπi = tπi ,
since the subterm obtained by replacement remains an alien subterm for t, thanks to the assumption
that E1 and E2 are collapse-free. If the←→E1∪E2 step occurs at a position above all alien positions in s,
then this an←→Ei

step, where alien subterms of s only occur in the instanciation. So the same←→Ei

step applies from sπi to tπi and t is a i-term since Ei is collapse-free. So we also get sπj = tπj ∈ X for
j 6= i. 2

A replacement of equal by equal in a i-pure term is done via an Ei axiom to get an i-pure term.

Lemma 11.3 Let E1 and E2 be regular and collapse-free. If s ∈ T (Fi,X) and s ←→E1∪E2 t, then t ∈
T (Fi,X) and s←→Ei

t.

Proof: Since Ej is collapse-free, the ←→E1∪E2 step cannot be a ←→Ej
step. In addition no alien subterm

may be introduced in t by a ←→Ei
step since Ei is regular, so t is i-pure. 2

From Lemmas 11.2 and 11.3, it follows that to any equational proof in E1 ∪ E2 corresponds a proof in
Ei on abstracted terms.

Lemma 11.4 Let E1 and E2 be regular and collapse-free. For any terms s and t,

s =E1∪E2 t⇔ sπi =E1∪E2 t
πi ⇔ sπi =Ei

tπi .

This allows to prove completeness of solving in each component, expressed as follows:

Proposition 11.2 Let E1 and E2 be regular and collapse-free. For any s and t i-pure terms and any
substitution σ,

σ(s) =E1∪E2 σ(t)⇔ σπi(s) =Ei
σπi(t).

Proof: Since the terms s and t are i-purs, (σ(s))πi = σπi(s) and (σ(t))πi = σπi(t) . 2

The substitution σ is an instance of σπi since σ =E1∪E2 σ
πiπ−1.

Once the problems Γ1 and Γ2 are solved in their respective theories, it must be checked that from two
solutions issued from each componant, a solution can be built in the union of theories.

January 28, 2006 rewriting solving proving

138 Modular semantic unification

11.2.3 Combination of solutions

In the case of simple theories a conjunction of solved forms either is already a solved form in the union, or
has no solution because it contains a conflict of theories or a cycle.

If a variable is instantiated in both theories simultaneously, then the problem has no solution, thanks to
the next result:

Proposition 11.3 If E1 and E2 are collapse-free, there exists no equality s =E1∪E2 t with s(ε) ∈ F1 and
t(ε) ∈ F2.

Proof: If s =E1∪E2 t with s(ε) ∈ F1 and t(ε) ∈ F2, then sπ1 =E1 t
π1 with tπ1 ∈ X since t(ε) ∈ F2. The

theory E1 would then be collapse, which contradicts the hypothesis. 2

If the problem contains a cycle, then it has no solution, since the disjoint union of simple theories is yet
a simple theory.

Proposition 11.4 Let E1 and E2 be regular and collapse-free. If E1 and E2 are two simple theories, then
E1 ∪ E2 is simple.

Proof: We prove by induction on the number n of layers of theories in t, that an equation x =?
E1∪E2

t[x]ω
has no solution. Assume that there exists a substitution σ such that σ(x) =E1∪E2 σ(t)[σ(x)]ω .

• If n = 0, then t is i-pure and σ(x) =E1∪E2 σ(t)[σ(x)] implies σπi(x) =Ei
σπi(t)[σπi(x)], which

contradicts the hypothesis on Ei.

• Otherwise, on may assume without loss of generality that σ(x)(ε), t(ε) ∈ Fi by Proposition 11.3.
Then thanks to Lemma 11.4, σπi(x) =Ei

(σ(t)[σ(x)]ω)πi .

If there is no alien position between ε and ω, then σπi(x) =Ei
σπi(t)[σπi (x)], which contradicts

the hypothesis on Ei.

If there is an alien position between ε and ω, then some variable y abstracts a term containing
σ(x) as strict subterm. The same variable must also abstract an alien subterm of σ(x) since Ei
is regular and collapse-free. As a consequence, there exists a solution to an equation y =? u[y],
where u is a term that has stricly less layers of theories than t. By induction hypothesis, this is
impossible.

2

As a consequence, a cycle occurring in a problem which is a conjunction of solved forms has no solution.
Actually assuming that theories are simple is a little too strong to obtain the fact that a cycle has no solution.
It is enough to assume that both theories are regular and collapse-free. The algorithm given below actually
works for the union of regular and collapse-free theories [Bou90a].

11.2.4 Unification algorithm for the union of two regular and collapse-free the-
ories

The algorithm has strong similarities with unification in empty theory without replacement. An equational
problem Γ = ∃~x : P , or more precisely its unquantified part P is transformed by the following rules as
described below:

• Rules Variable Abstraction and Impure Equation transform the problem into a conjunction of pure prob-
lems.

• The rule Ei-Res solves the i-pure sub-problem in the theory Ei,

• The rule Conflict is similar to the rule with the same name for the empty theory, except that here it
applies if the terms have their top symbols in different theories.

• The rule Cycle is identical to the rule with the same name for the empty theory.

Let Γ be the initial unification problem and Γ1 ∧Γ2 the conjunction of problems respectively 1-pure and
2-pure obtained by repeated application of rules Variable Abstraction and Impure Equation.

Proposition 11.5 Applying to a unification problem Γ the rules Variable Abstraction et Impure Equation

with an arbitrary control terminates and returns a unification problem ∃~x : Γ1 ∧ Γ2 equivalent to Γ.

January 28, 2006 rewriting solving proving

11.3 General combination of unification with disjoint signatures 139

Variable Abstraction

P ∧ s =? t
∃x : P ∧ s =? t[x]ω ∧ x =? t|ω

if

{
ω ∈ AlienPos(t)
x is a new variable

Impure Equation

P ∧ s =? t
∃x : P ∧ x =? s ∧ x =? t

if

{
s ∈ T (F1,X)\X , t ∈ T (F2,X)\X
x is a new variable

Ei-Res+

Pi
∃~xi : σ̂i

if σi ∈ CSUEi
(Pi) and ~xi = V(σ̂i)\V(Pi).

VarRep

P ∧ x =? y
P{x 7→ y} ∧ x =? y

if x, y ∈ V(P)

Conflict
P ∧ x =? s ∧ x =? t

F if s(ε) ∈ F1, t(ε) ∈ F2

Cycle

P ∧ x1 =? t1[x2]p1 ∧ · · ·xn =? tn[x1]pn

F if pi 6= ε for some i ∈ {1, . . . , n}

Figure 11.1: Set of rules RS for unification in the union of disjoint regular and collapse-free theories

A normal form for {Variable Abstraction, Impure Equation} is a unification problem without heteroge-
neous equations. Considering the new variables as existencially quantified variables, Variable Abstraction and
Impure Equation obviously preserve the sets of solutions.

The rules of RS in Figure 11.1 transform a problem into an equivalent one according to Proposi-
tions 11.3, 11.4 and 11.5. Il s’agit encore de vérifier qu’une forme normale est une forme séquentiellement
résolue (et réciproquement).

Lemma 11.5 ([Bou90a]) If the rules of of RS applied with an arbitrary control to a problem Γ terminate,
then the result is a disjonction of unification problems ∃~x : P where P is in tree solved form.

Theorem 11.1 If E1 and E2 are two simple (or regular and collapse-free) theories on disjoint signatures,
then E1 ∪E2-unification is finitary iff Ei-unification (i = 1, 2) is finitary.

11.3 General combination of unification with disjoint signatures

In the previous section, strong conditions were assumed on the theories to be combined. The goal is now
to deal with the general case of disjoint signatures but without restriction of the form of axioms. In this
context, new problems appear:

• an alien subterm does not always remain alien in a step of replacement of equal by equal,

• a i-pure term may be equal to a j-term, i 6= j, thanks to a collapse axiom,

• a new alien subterm may be introduced by replacement of equal by equal.

In order to provide an operational way to work in the equational theory E1 ∪ E2, the idea is to impose
directionality on the use of equations. The following construction was already used in [Bou90b, Bou90a,
BS92].

Let us define F = F1 ∪F2. Assume given a simplification ordering, total on terms of T (F ∪X), denoted
by >. It can be built by taking the union of two simplification orderings on each signature. Both E1 and
E2 can be turned into ordered rewrite systems w.r.t. > using ordered completion [BDP89]. Let

E>i = {σ(l)→ σ(r) | l =Ei
r, σ : X 7→ T (F ∪ X), σ(l) > σ(r)}.

E>1 and E>2 are convergent on T (F ∪ X) by construction. We restrict hereafter to the cases where their
union is convergent too: this is the case if F1 and F2 are disjoint, because there is no critical pair between
E>1 and E>2 and since simple termination is a modular property. The other interesting case is when the two

January 28, 2006 rewriting solving proving

140 Modular semantic unification

signatures share only a finite number of constants [Rin92, Rin93]. A third case worth considering would be
the case where E>1 and E>2 share constructors. Again simple termination plus confluence is modular [KO92].

Let us state more precisely hypotheses and results needed in the following.

11.3.1 Properties of the ordered rewrite system

In order to prove that solving a pure equation in the related component of the combination is correct and
complete, we need the confluence and termination of the ordered system E>1 ∪ E>2 .

Hypothesis 2 > is a simplification ordering total on T (F ∪ X) such that variables are minimal for >.

With these hypotheses, we can state:

Proposition 11.6 If l → r ∈ E>1 ∪ E>2 and l(ε) ∈ Fi then l → r ∈ E>i .

Proof: Consider the rule ψ(g) → ψ(d) in E>i such that the top symbol of ψ(g) is in Fj and g ∈ T (Fi,X)
then g is necessarily a variable x. Since Ei is consistent, the variable x occurs necessarily in d. Therefore
ψ(x) is a subterm of ψ(d). Since > is a simplification ordering, which satisfies the so-called subterm
property, we have ψ(g) = ψ(x) < ψ(d) which leads to a contradiction. 2

Proposition 11.7 E>1 ∪ E>2 is convergent on T (F ∪ X).

Proof: Termination: Let s and t be terms in T (F ∪X). If s→R t then s→E>
1
t or s→E>

2
t. In both cases,

s > t where > is nœtherian on T (F ∪ X).
Confluence: Since R is terminating, it is sufficient to prove that R is locally confluent. Two cases must
be considered (other ones are obvious).

First, we have a peak s←E>
i
t→E>

i
u, where (s, u) are instances of a critical pair (l, r), which is also

a theorem of Ei. Hence s = ψ(l), u = ψ(r) and s→ u or u→ s is a rule in E>i .

Second, we have a peak s ←E>
i
t →E>

j
u. Let us assume without loss of generality that the rule in

E>i is applied at the position ε. Thus t = ψ(g) and s = ψ(d) where g =Ei
d and g, d ∈ T (Fi,X).

According to Proposition 11.6, the rule in E>j is necessarily applied at a position with a symbol in
Fj. Hence there is a variable x ∈ V(g) at a position ω, a substitution ψ′ and a position υ such that
u = ψ(g)[ψ′(r)]ω·υ with ψ(x)|υ = ψ′(l) and ψ′(l)→ ψ′(r) ∈ E>j . Let σ be the substitution defined by
σ(y) = ψ(y) for y 6= x and σ(x) = ψ(x)[ψ′(r)]υ . Then

s
∗−→ψ′(l)→ψ′(r) σ(s)←→ε,σ(g)←→σ(d) σ(u)

∗←−ψ′(r)←ψ′(l) u.

2

Let us now define R as the rewrite system included into E>1 ∪ E>2 and defined by

R =

2⋃

i=1

{σ(l)→ σ(r) | l =Ei
r, σ : X 7→ T (F ∪ X), σ(l) > σ(r),

σ(x) is E>1 ∪ E>2 -normalized for any x ∈ V(r)\V(l)}.

The restriction to normalized instances for variables in V(r)\V(l) ensures that the reduction of a term
does not introduce new reducible alien subterms.

Corollary 11.1 Given two terms s and t in T (F ∪ X), s =E1∪E2 t if and only if s ↓R= t ↓R.

Now deciding an i-pure equality in E1 ∪E2 can be performed by normalization using the ordered system
R built from E>1 and E>2 . The R-normal form of a term σ(t) where t is i-pure and σ is a R-normalized
substitution, is obtained by applying only rewrite steps with rules from E>i and alien subterms occurring
only in the substitution part. It is then possible to do a similar proof with axioms from Ei on terms where
alien subterms have been replaced with new variables. Indeed equal subterms have to be replaced by the
same variable. This is the purpose of variable abstraction described in the next section.

January 28, 2006 rewriting solving proving

11.3 General combination of unification with disjoint signatures 141

11.3.2 Abstraction

Again an heterogeneous equational problem is decomposed into a conjunction of pure subproblems by in-
troducing new equations of the form x =? t where t is an alien subterm in an equation and x is a new
variable. Since we now choose t ↓R as the representant of an equivalence class modulo E1 ∪ E2, the notion
of abstraction has to be modified accordingly.

Definition 11.6 A variable abstraction is a one-to-one mapping π between the set of R-normalized terms
T ↓R= {u ↓R | u ∈ T (F ∪ X) and u ↓R∈ T (F ∪ X)\X} and a subset of X . π−1 denotes the substitution
with a possibly infinite domain which corresponds to the inverse of π.

The term tπi , called i-abstraction of the term t, is inductively defined as follows:
• if t = x ∈ X then tπi = x,
• if t = f(s1, . . . , sn) and f ∈ Fi then tπi = f(sπi

1 , . . . , s
πi
n)

• else if t ↓R /∈ X then tπi = π(t ↓R) else tπi = t ↓R.

Example 11.3 Let us consider F1 = {1,×}, F2 = {>,+}, E1 = {x× 1 = x} , E2 = {x+> = >} and the
heterogeneous term t = (y × (y + >)) × 1. Its 1-abstraction tπ1 is (y × >) × 1 since (y + >) ↓R= >. Its
2-abstraction tπ2 is z since t ↓R= y ×>.

The next lemma states another property of i-abstraction.

Lemma 11.6 If t is R-normalized then t = π−1(tπi). So, if σ is R-normalized then σ = π−1σπi , which
means σπi ≤XT (F ,X) σ.

11.3.3 Solving in one component

As before solving a i-pure equation with respect to the equational theory Ei is obviously correct, but
completeness must be checked with a more sophisticated method, but similar ideas.

Lemma 11.7 Let s be a i-term where alien subterms are R-normalized. Then

• s→R t such that t is either a j-term R-normalized or a i-term where alien subterms are R-normalized.

• sπi =Ei
tπi .

Proof: By assumption, all alien subterms are in normal form. Then, if a rule in R may be applied, it is
necessarily at a position with a non-constant symbol in Fi. According to Proposition 11.6, this rule is
in E>i . Thanks to the definition of R, no new alien subterm is introduced during a rewriting step. So
irreducibility of alien subterms is preserved during the rewrite step. Since alien subterms always belong
to instantiated parts of rules, the same proof holds, now with ”replacement of equals for equals”, when
alien subterms are substituted with (new) variables. This step corresponds to the application of a
variable abstraction. Hence sπi =Ei

tπi . 2

Corollary 11.2 If s is a i-term where alien subterms are R-normalized then sπi =Ei
(s ↓R)πi .

Proof: Thanks to Lemma 11.7 and nœtherian induction on →R. 2

Corollary 11.3 For any i-pure term s and any R-normalized substitution σ, σπi(s) = (σ(s) ↓R)πi .

Proof: Alien subterms of σ(s) are R-normalized and σπi(s) = (σ(s))πi . 2

We are now able to prove that any unifier in E1∪E2 of a i-pure equation (s =? t) corresponds to a unifier
in Ei.

Proposition 11.8 Let s and t be two i-pure terms and σ a R-normalized substitution. Then

σ(s) =E1∪E2 σ(t)⇔ σπi(s) =Ei
σπi(t).

Proof: (⇐) is obvious (correctness): σπi(s) =Ei
σπi(t) ⇒ π−1(σπi(s)) =Ei

π−1(σπi(t)). This equality is
identical to σ(s) =Ei

σ(t). Then, we just argue that a Ei-theorem is also a E-theorem. This is the
only assertion we need for proving that, for a i-pure equation, a Ei-unifier is also a E-unifier.

Let us prove (⇒) (completeness). If σ(s) =E1∪E2 σ(t) then σ(s) ↓R= σ(t) ↓R and so,

σπi(s) =Ei
(σ(s) ↓R)πi = (σ(t) ↓R)πi =Ei

σπi(t).

2

Note that σπi ≤XE1∪E2
σ. Hence a complete set of Ei-unifiers of a i-pure equational problem (s =? t) is a

complete set of (E1 ∪ E2)-unifiers this equation.

January 28, 2006 rewriting solving proving

142 Modular semantic unification

11.3.4 Combination of solutions

By repeatedly applying this transformation, an heterogeneous equational problem Γ is transformed into the
conjunction of a pure subproblems Γ1 and Γ2. The solving process should be applied on Γi, but some new
difficulties may be considered:
• Abstraction produces pure equational problems in each theory by introducing new variables to split

terms. These new variables are shared by the two theories and may further be instantiated in both of them.
So, all possible choices for instantiating a variable in a theory have to be considered. When a variable is
instantiated in i, it is considered as a constant in j 6= i. Unification in each component now needs more
than the assumed unification algorithm, since new free constant symbols of the signature have to be taken
into account. It is known that unification and general unification (unification with additional free constant
symbols) are in general not equivalent.
• The problem introduced by abstraction is that two distinct variables may be introduced that actually

denote two equal or equivalent terms. So care must be taken that distinct variables could be identified with
a solution as in the next example.

Example 11.4 Let us consider the combination of the 2-elements Boolean algebra with two free symbols
a, f . The equational problem (x + y =? x) ∧ (x =? f(z)) ∧ (y =? f(a)), where x and y are free constants in
the Boolean equation has no solution. But if x and y are variables introduced by abstraction, they may be
indeterministically instantiated in any theory. Then the equational problem (x =? y)∧ (x+ y =? x) ∧ (x =?

f(z)) ∧ (y =? f(a)), where x, y are identified and only y is considered as a free constant in the Boolean
equation, is equivalent to (x =? y) ∧ (y + y =? y) ∧ (y =? f(z)) ∧ (y =? f(a)) and then to the solved form
(x =? y) ∧ (y =? f(z)) ∧ (z =? a).

Thus, for the sake of completeness, before solving an equational problem in Ei, the problem must be
first split into a disjunction of problems obtained by variable identification. A variable identification is just
a substitution whose range is a set of variables.

Definition 11.7 An identification on a set of variables V is an idempotent substitution ξ such that
Dom(ξ) ⊆ V and Ran(ξ) ⊆ V . The set of all identifications on V is denoted by IDV .

• An additional problem occurs due to the fact that cycling equations between the two languages may
appear and must be solved. For instance, if (x1 =? t1[x2]) is solved in the first theory (where x2 is considered
as a free constant symbol) and (x2 =? t2[x1]) is solved in the second (where x1 is considered as a free constant
symbol), their propagation yields a cycle. This problem is avoided by a priori choosing a linear ordering on
the set V ∪C of all variables and constants introduced in the problem. Then to each constant a is associated
a set of variables Va = {x | x ∈ V and x < a}. Solving a problem of unification with linear restriction is
finding unifiers σ s.t. ∀x, a with x ∈ Va, then a does dot occur in σ(x). So in each theory a unification
algorithm with linear restriction is used to solve the equational problem Γi.

Definition 11.8 Let < be a linear ordering on V1 ⊕ V2 the disjoint union of two finite sets of variables
and an equational problem Γi such that V(Γi) ⊆ V1 ⊕ V2. A Ei-unifier with linear restriction of Γi is a
substitution σ such that

• ∀xj ∈ Vj , σ(xj) = xj ,

• ∀xj ∈ Vj , ∀xi ∈ Vi, xj /∈ σ(xi) if xi < xj .

The set of all these unifiers is denoted by SS<Ei
(Γi, Vj). Variables in Vj , j 6= i are said frozen.

Definition 11.9 A set of substitutions is a complete set of Ei-unifiers with linear restriction of the problem
Γi, denoted by CSS<Ei

(Γi, Vj), if

1. ∀σ ∈ CSS<Ei
(Γi, Vj), Dom(σ) ∩ VRan(σ) = ∅ and Dom(σ) ⊆ V(Γi).

2. CSS<Ei
(Γi, Vj) ⊆ SS<Ei

(Γi, Vj).

3. For any φ ∈ SS<Ei
(Γi, Vj), there exists σ ∈ CSS<Ei

(Γi, Vj) such that σ ≤V(Γi)
Ei

φ.

Two solutions in each component must be combined to get a solution in the combined language. A
combined solution is obtained from two partial solutions by transforming a dag solved form (the union of
the two parts) into a tree solved form where replacement has been performed.

January 28, 2006 rewriting solving proving

11.3 General combination of unification with disjoint signatures 143

Definition 11.10 The combined solution σ = σ1 � σ2 of Γ1 ∧ Γ2 obtained from σ1 ∈ SS<E1
(Γ1, V2) and

σ2 ∈ SS<E2
(Γ2, V1) is defined as follows: let x be a variable with theory index i and {y1, . . . , yn} be the set

of (smaller) variables with theory index j 6= i occurring in σi(x). Then

σ(x) = σi(x)[yk ←↩ σ(yk)]k=1,...,n.

Proposition 11.9 (Correctness) A combined solution σ = σ1 � σ2 of Γ1 ∧ Γ2 where σ1 ∈ SS<E1
(Γ1, V2) and

σ2 ∈ SS<E2
(Γ2, V1) is a unifier of Γ1 ∧ Γ2 in E1 ∪ E2.

Proof: By assumption, we have E1 |= σ1(Γ1) and E2 |= σ2(Γ2), so E1∪E2 |= σ1(Γ1) and E1∪E2 |= σ2(Γ2).

Then, by construction, σi ≤V(Γ1∧Γ2)
E1∪E2

σ1 � σ2 for i = 1, 2. So, we have also E1 ∪ E2 |= (σ1 � σ2)(Γ1)
and E1 ∪ E2 |= (σ1 � σ2)(Γ2). 2

We first give a decidability result: its proof states that for any solution of Γ1 ∧Γ2 in E1 ∪ E2, there exist
an identification and a linear restriction for which one can find a solution in each component.

Proposition 11.10 (Completeness) If σ is a R-normalized unifier of Γ1 ∧ Γ2 in E1 ∪E2, then there exist

• ξ ∈ IDV(Γ1∧Γ2),

• a linear restriction < on V1 ⊕ V2 = V(ξ(Γ1 ∧ Γ2)),

• σ1 ∈ SS<E1
(ξ(Γ1), V2), σ2 ∈ SS<E2

(ξ(Γ2), V1)

such that (σ1 � σ2) ◦ ξ ≤V(Γ1∧Γ2)
E1∪E2

σ.

Proof: We adopt the method used in [BS92] for proving that a unifier in the combined theory provides a
unifier with linear restriction in each component theory. Let σ be a R-normalized unifier of Γ1 ∧ Γ2.
We may assume without loss of generality that σ(x) 6= σ(y) for two different variables x and y in
V(Γ1 ∧ Γ2). Otherwise x and y have to be first identified by ξ. The variable abstraction π may be
chosen as follows: π(σ(x)) = x for x ∈ V(Γ1 ∧Γ2). In this way, an alien subterm σ(x) is abstracted by
x. The subterm ordering is used for the linear ordering: x < y if σ(x) is a strict subterm of σ(y). Let
us now consider the substitutions σ1 and σ2 defined as follows:

σi = {x 7→ σπi(x)}

and the linear restriction on V1 ⊕ V2 with Vi = Dom(σi). We must verify that σ1 and σ2 are unifiers.
By assumption, we have

E1 ∪ E2 |= σ(Γ1) ∧ σ(Γ2)

and so

E1 |= σπ1(Γ1) and E2 |= σπ2(Γ2),

according to Proposition 11.8, which means

E1 |= σ1(Γ1) and E2 |= σ2(Γ2),

since σπi(Γi) = σi(Γi). These unifiers satisfy the linear restriction: if y ∈ σi(x) (i = 1, 2) with y ∈ Vj
(j 6= i) then σ(y) is a subterm of σ(x). Since σ(x) 6= σ(y), we have y < x. 2

Corollary 11.4 Unification in the combined theory E1∪E2 is decidable if unification with linear restriction
is decidable in E1 and E2.

The last part of the proof amounts to show that combining unifiers in complete sets of s unifiers provides
a complete set of unifiers of Γ1 ∧ Γ2.

Proposition 11.11 The set of combined solutions of Γ1 ∧ Γ2

{σ = σ1 � σ2 | σ1 ∈ CSS<E1
(Γ1, V2), σ2 ∈ CSS<E2

(Γ2, V1)}

is a complete set of combined solutions.

January 28, 2006 rewriting solving proving

144 Modular semantic unification

Proof: A similar proof is developped in [BS92]. Let σ′ = σ′1 � σ′2 with σ′i ∈ SS<Ei
(Γi, Vj). There exists

σi ∈ CSS<Ei
(Γi, Vj) such that σi ≤Vi

Ei
σ′i. We must show that σ ≤V1⊕V2

E1∪E2
σ′. Let γ1, γ2 be the two

substitutions verifying
σ′i =Vi

Ei
γiσi

for i, j = 1, 2 and i 6= j. These substitutions do not instantiate variables in V1 ⊕ V2: Dom(γ1) ∩ (V1 ⊕
V2) = ∅ and Dom(γ2) ∩ (V1 ⊕ V2) = ∅. Moreover, we can assume without loss of generality that γ1

(resp. γ2) is idempotent and instantiate two disjoint sets of variables, that is γ1γ1 = γ1, γ2γ2 = γ2 and
Dom(γ1) ∩ Dom(γ2) = ∅.
Let us now prove by nœtherian induction on < that

∀y ∈ V1 ⊕ V2, σ
′(y) =E1∪E2 γ1γ2σ(y).

This hypothesis holds for the minimal variable z in Vi with i = 1, 2 since

σ′(z) = σ′i(z) =Ei
γiσi(z) =E1∪E2 γ1γ2σi(z) = γ1γ2σ(z).

When this hypothesis holds for all variables y < x, the definition of a combined solution states that

σ′(x) = σ′i(x)[yk ←↩ σ′(yk)]k=1,...,n

= γiσi(x)[yk ←↩ σ′(yk)]k=1,...,n

=E1∪E2 γiσi(x)[yk ←↩ γ1γ2σ(yk)]k=1,...,n

= γ1γ2(σi(x)[yk ←↩ σ(yk)]k=1,...,n)

= γ1γ2σ(x).

2

The union of all possible complete sets of combined solutions according to the non-deterministic choice
of identifications and linear orderings provides a complete set of unifiers.

Corollary 11.5 Unification in the combined theory E1 ∪E2 is finitary if unification with linear restriction
is finitary in E1 and E2.

11.3.5 Rules for unification in the combined theory

The rules for unification in the union of arbitrary disjoint equational theories are given in Figure 11.2. There
are mainly two steps called Purification and Combination that produce a symbolic solution in dag-solved form.
A third step yields then a tree-solved form by applying as long as possible the Replacement rule. Applying
these three steps sequentially obviously terminates and leads to a complete set of solutions.

The deterministic Purification step transforms a problem Γ into an equivalent conjonction of two pure
equational problems Γ1 ∧ Γ2, each of them solvable in one component.

The non-deterministic Combination step is devoted to solve and combine solutions from each component.
The parameters for this last step are:

• A conjunction of i-pure equational problems Γi (i = 1, 2).

• A set of variables V1 instantiated in E1 and frozen in E2.

• A set of variables V2 instantiated in E2 and frozen in E1.

• A linear ordering < on the disjoint union V1 ⊕ V2 of V1 and V2 which is the occur-check ordering of
the expected solution.

The conjonction of tree solved forms obtained at the Combination step leads to a unique tree solved form
by applying repeatedly the Replacement rule.

The next result which is derived from [BS92], states that dag solved forms obtained after the Combination

step represent a complete set of unifiers.

Theorem 11.2 Let Γ1 and Γ2 be respectively the 1-pure and 2-pure equational problems obtained by purifi-
cation from the original Γ in E1 ∪ E2. The set of substitutions (σ1 � σ2) ◦ ξ with all possible

• identifications ξ ∈ IDV(Γ1∧Γ2),

January 28, 2006 rewriting solving proving

11.3 General combination of unification with disjoint signatures 145

1. Purification

Apply as long as possible the following deterministic rules

• Variable Abstraction

P ∧ s =? t
∃x : P ∧ s =? t[x]ω ∧ x =? t|ω

if

{
t(ω) ∈ Fi, t(ε) ∈ Fj , i 6= j
x is a new variable.

• Impure Equation

P ∧ s =? t
∃x : P ∧ x =? s ∧ x =? t

if

{
s ∈ T (F1,X)\X , t ∈ T (F2,X)\X
x is a new variable.

2. Combination of solved forms

Consider all possible

• identifications ξ ∈ IDV(P1∧P2),

• linear restrictions < on V1 ⊕ V2 = V(ξ(P1) ∧ ξ(P2))

and apply the following rule

Solve
(P1 ∧ P2)

(ξ̂ ∧ σ̂1 ∧ σ̂2)
if σi ∈ CSS<Ei

(ξ(Pi), Vj)

3. Tree solved form

Replacement

P ∧ x =? t
{x 7→ t}(P) ∧ x =? t

if x ∈ V(P)

Figure 11.2: The combination rules for unification in E1 ∪E2

January 28, 2006 rewriting solving proving

146 Modular semantic unification

• linear restrictions < on V1 ⊕ V2 = V(ξ(Γ1) ∧ ξ(Γ2)),

• substitutions σi ∈ CSS<Ei
(ξ(Γi), Vj)

is a complete set of (E1 ∪ E2)-unifiers of Γ.

Example 11.5 Let F1 = {∗} and F2 = {h}, E1 = {x∗(y∗z) = (x∗y)∗z} and E2 = ∅. Solve the equational
problem (h(x) ∗ y =? y ∗ h(z1 ∗ z2)) in E1 ∪ E2.

11.4 Conclusion

A different approach for the problem of cycles has been proposed by Boudet [Bou90b, Bou90a]: assume
again that (x1 =? t1[x2]) is solved in the first theory and (x2 =? t2[x1]) is solved in the second. Briefly
speaking, the problem is solved a posteriori by an elimination algorithm that for instance tries to find a term
u equivalent to an instance of t2 in the first theory but which does not contain x1 any more. This allows
breaking the cycle and going on.

These results on the unification in the union of equational theories with disjoint signatures have been
extended to signatures sharing some constants [Rin92, KR94a], then sharing some constructors [DKR93]. On
the other hand, combination techniques have also been extended to the problem of combining two constraint
languages and their solvers [KR92, Rin93]. In this context, it is important to allow shared constants in the
two domains of interest.

January 28, 2006 rewriting solving proving

Chapter 12

Syntactic theories

We will show in this chapter how unification procedures can be automatically deduced from the form of
the axioms defining the theory, provided the theory has a particular property called syntacticness. This
condition can be checked on an appropriate notion of critical pairs and a completion process deduced from
this critical pair check. It allows computing a syntactic presentation of the theory from which the mutation
operation of an equation can be deduced and thus the appropriate instance of the general unification rules
will provide a unification procedure for the theory.

12.1 Syntacticness

12.1.1 Definitions and basic properties

Syntacticness is a property about the form of proofs in an equational theory. In order to define the kind of
proofs we are interested in, let us first introduce our notations:

Definition 12.1 Let t, t′ be two terms and E be a set of equational axioms.

1. t←→Λ
E t
′ denotes a one step proof with one equational replacement at occurrence Λ.

2. t
δ←→

Λ

E t
′ denotes a one step proof with either one or no application at occurrence Λ.

3. t
∗←→6=Λ

E t′ denotes a proof without application of an axiom at the top occurrence.

4. t
∗←→δΛ

E t′ denotes a proof with at most one application of an axiom at the top occurrence, i.e

t
∗←→6=Λ

E
δ←→

Λ

E
∗←→6=Λ

E t′.

If for example E = {a = b} then: a←→Λ
E b and g(a)

1←→
6=Λ

E g(b).

The following notion of syntacticness has been introduced by C. Kirchner [Kir85a] and is so called because,
as we will see, it allows to describe a unification procedure using the syntactic form of an appropriate
presentation of the theory.

Definition 12.2 A set of axioms E is syntactic or resolvent when:

∗←→E⊆ ∗←→6=Λ

E
δ←→

Λ

E
∗←→ 6=Λ

E .

An equational theory is syntactic when it admits a finite and syntactic presentation. A proof is syntactic
when it has only one application of an axiom at the top occurrence.

Let us insist on the finiteness condition on the presentation in the previous definition of a syntactic
theory. Without this condition, any equational equational theory would be syntactic since the whole theory
itself (which is in general an infinite set of equational axioms) could be chosen as resolvent presentation. On
the contrary, a resolvent presentation may be finite or not.

January 28, 2006 rewriting solving proving

148 Syntactic theories

Example 12.1
1– The previous theory E = {a = b} is clearly syntactic.
2– Another less immediate example is the associativity theory for which we will prove that the standard

presentation A(+) is syntactic. For example, the following proof:

t = ((a+ (b+ c)) + d) + (e+ f) ←→Λ
A (a+ (b+ c)) + (d+ (e+ f))

1←→A

((a+ b) + c) + (d+ (e+ f)) ←→Λ
A (a+ b) + (c+ (d+ (e+ f))) = t′,

with two steps at the top occurrence can be transformed into the following syntactic proof:

t = ((a+ (b+ c)) + d) + (e+ f)
11←→A (((a + b) + c) + d) + (e+ f)

1←→A

((a+ b) + (c+ d)) + (e+ f) ←→Λ
A (a+ b) + ((c+ d) + (e+ f))

2←→A

(a+ b) + (c+ (d+ (e+ f))) = t′.

3– As this will be proven formally later, another simple example of syntactic theory is the commutative
theory C(+).

Before coming to the first properties of syntactic theories, let us introduce the vectorial notation that
we will be using in this chapter in order to ease the expression of formulas. We are denoting ~t a tuple of
terms (t1, . . . , tn) and its length n is written |~t|. By extension and when clear from the context ~t may also
represent the set {t1, . . . , tn}. A typical use of this syntactic facility is to note the term f(t1, . . . , tn) by f~t.
Note that the natural n is in general dependent of the context and unspecified explicitly; usually we do not
really care about its precise value. This notation is extended to equations in the following way: ~v =? ~u with
|~u| = |~v| = n, denotes the system v1 =? u1 ∧ . . . ∧ vn =? un.

We can now state the first basic property of syntactic theories which is that equality is decomposable:

Lemma 12.1 Let E be a set of equational axioms in T (F ,X). The theory T H(E) is syntactic if and only
if the following equivalence is satisfied for each E-equality:

f(~t) =E g(~u)⇔






•
{
f = g and
∀i ∈ [1..arity(f)], ti =E ui

or

•






∃l = r ∈ E, ∃σ such that
f = σl(Λ)
and
σr(Λ) = g
and
∀i ∈ [1..arity(f)], ti =E σl|i
and
∀i ∈ [1..arity(g)], σr|i =E ui

with f, g ∈ F ∪ X .

Proof: Follows directly from the definition of syntacticity. 2

Example 12.2 This last result implies in particular that almost-free theories (c.f. Section 2.4.8) with
equational axioms of the form f(~u) = f(~v), are syntactic.

Syntacticness can also be characterized precisely by the form of the E-equality proof of two terms: E is
resolvent iff for any two equal terms t and t′ there exists a proof of this equational theorem with at most
one application of an axiom at the top occurrence. Formally:

Proposition 12.1 A presentation E in T (F ,X) is resolvent if and only if:

←→Λ
E

∗←→ 6=Λ

E ←→Λ
E ⊆

∗←→6=Λ

E
δ←→

Λ

E
∗←→6=Λ

E .

Proof: If E is syntactic, then the conclusion is clear by the definition of syntacticness.
Conversely, assuming that a presentation satisfy the previous condition, one can eliminate by induction
all the couples of consecutive ←→Λ

E steps, which results in a syntactic proof. 2

Collapse axioms play a particular role with respect to syntacticness.

January 28, 2006 rewriting solving proving

12.1 Syntacticness 149

Lemma 12.2 Let E be a consistent presentation in T (F ,X). If l = x with x ∈ X is a collapse axiom
applied at the top position in a proof, i.e. if t←→Λ

l=x t
′ ←→g=d u then there exists a syntactic proof where

this collapse axiom is applied at the end:

t
n←→6=Λ

g=d t”←→Λ
l=x u,

where n is the number of disjunct positions of the variable x in l.

Proof: Clear application of the definitions. 2

It is also useful to precise how non-syntactic theories behave with respect to the proof form. In order to
state the next result we need to introduce the following definition:

Definition 12.3 For a given presentation E in T (F ,X), a proof t′
n←→ωi

E u′ is a subproof of the proof

t
∗←→E u if:

t
∗←→E s[t′]p

n←→p.ωi

E s[u′]p
∗←→E u

is a proof which can be obtained from t
∗←→E u by commuting axiom applications at disjunct positions.

Lemma 12.3 Let E be a presentation in T (F ,X). If E is non-syntactic then there exist two terms t, u
and a proof:

t←→Λ
l=f(~r) t

′ ∗←→6=Λ

E u′←→Λ
f(~g)=d u,

such that t =E u has no syntactic proof and any subproof of t′ =E u
′ is syntactic.

Proof: Since E is not syntactic there exists a proof

t←→Λ
l=l′ t

′ n←→6=Λ

E u′←→Λ
d′=d u, (12.1)

that has no syntactic proof.
Because of lemma 12.2, l′ and d′ are not variables and thus the proof 12.1 is of the form:

t←→Λ
l=f(~r) t

′ n←→6=Λ

E u′←→Λ
f(~g)=d u. (12.2)

Let us now prove that there exists a proof like 12.2 such that any of the subproofs of t′ =E u′ is
syntactic. Thus let us consider such a proof of minimal length and assume by contradiction that there
exists a non syntactic subproof of t′ =E u′. If n = 0 or n = 1 then this is clearly impossible. If n > 1,
then there exists a subproof of t′ =E u′ of the form

v←→Λ
E v
′ k←→

6=Λ

E r′←→Λ
E r

such that k < n−3. But then we have found a smaller proof than the one considered, which contradicts
the hypothesis of minimality on the length of the proof considered. 2

12.1.2 Undecidability results

In his thesis F. Klay [Kla92], has shown that all the general properties concerning syntactic theories are
undecidable. The following results summarize these negative properties:

Theorem 12.1 [Kla92]

For a presentation E in T (F ,X) and its associated equational theory T H(E) it is undecidable if:

1. E is resolvent,

2. T H(E) is syntactic.

Moreover even when a theory is syntactic, collapse free and linear, the word problem is not decidable in
general.

January 28, 2006 rewriting solving proving

150 Syntactic theories

12.2 Unification in syntactic theories

We are mainly interested in syntactic theories since they allow a form of mutation directly deduced from
the form of the axioms. This mutation can be considered as a more general form of the decomposition we
have introduced above for the syntactic theory, or conversely we can now see the decomposition rule as the
mutation operation for the empty theory.

Given a syntactic presentation, in order to express the mutation rules, we need to introduce a new
unification symbol that allows to precise the positions where the equality steps are allowed during the
solving process.

Definition 12.4 For a set of equational axioms E and two terms t and t′, the solutions of the equation
t = 6=Λ? t′ are as follow:

SolE(t = 6=Λ? t′) = {σ | there exists a proof σ(t)
∗←→6=Λ

E σ(t′)}.
The rules presented in Figure 12.1 give a version of the most general mutation rule for unification in

syntactic theories. We give them without reference to the system P and disjunction D in which the redexes
appear.

Example 12.3 If we consider for E the single axiom of commutativity of the symbol +, then by application
of Mut2 to equation e = (u+ v =? u′ + v′) we get:





{
u=?u′

v=?v′




x=?v
y=?u
x=?u′

y=?v′

(decomposition w.r.t. y + x = x+ y)






x=?u
y=?v
x=?v′

y=?u′

(decomposition w.r.t. x+ y = y + x)

These mutations rules preserves the completeness provided that the set of axioms E is resolvent as stated
by the following result:

Theorem 12.2 If E is a resolvent set of axioms in T (F ,X), then the rules in SyntacticMutation preserve
the set of E-unifiers.

Proof: This follows almost directly from the definition of syntacticness. A complete proof can be found
in [Kla92]. 2

What is moreover interesting is that in fact the previous set of rules allows to characterize syntactic
theories:

Proposition 12.2 For a given set of axioms E in T (F ,X), if the rules in SyntacticMutation preserve
the set of E-unifiers of any unification problem then the presentation E is resolvent.

Proof: By contradiction: Assuming that the rules in SyntacticMutation do not preserve the set of E-
unifiers allows to build an equational theorem with no syntactic proof in E, and this contradicts the
hypothesis. 2

Since the previous set of transformation rules gives us a mutation for syntactic theories it is natural to
complete the mutation rules with merging and replacement rules in order to get a unification procedure.
But the difficulty at this stage is to prove that the resulting set of rules is terminating, i.e. that it will allow
to find by normalization a solved form representing a substitution smaller that any given E-unifier. Indeed
this is still an open problem which intuitive difficulty relies on the fact that the replacement and merging
rules do not preserve the form of the proof. For example there is a priori no direct connection between the
syntactic proofs of σ(x) =E σ(t) and σ(x) =E σ(t′) and a syntactic proof of σ(t) =E σ(t′). Solving this
problem will help in proving improvements of the Gallier-Snyder general unification procedure that we are
describing in Section 14.1.1.

Nevertheless, we have at least a unification procedure for syntactic theories and we will show later useful
examples of application of it. We are now describing in the following section tools to prove, if possible in an
automatic way, that a theory is syntactic.

January 28, 2006 rewriting solving proving

12.2 Unification in syntactic theories 151

Dec1 f(~t) = 6=Λ? f(~u)
7→7→
~t =? ~u

Dec2 f(~t) = 6=Λ? x
7→7→
∃~v, ~t =? ~v ∧ f(~v) = 6=Λ? x

if x ∈ Var(f(~t))

Mut1 f(~t) =? f(~u)
7→7→

~t =? ~u ∨∨

f(~l)=f(~r)∈E

∃Var(~l, ~r), (~t =? ~l ∧ ~r =? ~u) ∨
∨

f(~l)=y∈E

∃Var(~l), (~t =? ~l ∧ y = 6=Λ? f(~u)) ∨
∨

y=f(~r)∈E

∃Var(~r), (f(~t) = 6=Λ? y ∧ ~r =? ~u)

Mut2 f(~t) =? g(~u)
7→7→ ∨

f(~l)=g(~r)∈E

∃Var(~l, ~r), (~t =? ~l ∧ ~r =? ~u) ∨
∨

f(~l)=y∈E

∃Var(~l), (~t =? ~l ∧ y = 6=Λ? g(~u)) ∨
∨

y=g(~r)∈E

∃Var(~r), (f(~t) = 6=Λ? y ∧ ~r =? ~u)

if f 6= g

Cycle f(~t) =? x
7→7→
∃~v, (~t =? ~v ∧ f(~v) = 6=Λ? x) ∨∨

f(~l)=g(~r)∈E

∃Var(~l, ~r), (~t =? ~l ∧ g(~r) = 6=Λ? x) ∨
∨

f(~l)=y∈E

∃Var(~l), (~t =? ~l ∧ x = 6=Λ? y) ∨
∨

y=g(~r)∈E

∃Var(~r), (f(~t) = 6=Λ? y ∧ g(~r) = 6=Λ? x)

if x ∈ Var(f(~t))

Figure 12.1: SyntacticMutation: Rules for syntactic mutation

January 28, 2006 rewriting solving proving

152 Syntactic theories

12.3 General Equations

In this section, we investigate the relationship between unifiability of certain kind of equations of the form
f(v1, . . . , vn) =? g(v′1, . . . , v

′
m) that are called general, and the syntacticness of an equational theory T H(E).

The main theorem, states that a theory is syntactic if and only if the general equations have finite complete
set of E-solutions. This result is constructive in the sense that from the E-solutions of the general equations,
a resolvent presentation is computed. This is applied to several theories both on the positive and negative
sides, in particular in order to show that distributivity is not syntactic. On the contrary we will see that
the theory of associativity and commutativity is syntactic, which allows to infer a new matching algorithm
where there is no need to solve directly linear Diophantine equations [Hul79].

12.3.1 Definition

General equations are the most general kind of equation that one can built on a given signature, this justifies
their name.

Definition 12.5 Let E be a set of equational axioms in T (F ,X), V = {v1, . . . , vn, v′1, . . . , v′m} a set of (of
course distinct) variables, n and m the arities of the symbols f and g in F . A general unification equation
is of the form:

f(v1, . . . , vn) =? g(v′1, . . . , v
′
m)

denoted GenU(f, g, V). For V = {v, v1, . . . , vn}, a general matching equation is of the form:

f(v1, . . . , vn)�? v,

It is denoted GenM(f, V).
When it is clear from the context, we speak of general equation. For W a set of variables containing

V , we denote CUWE (f, g, V) a complete set of E-unifiers, away from W , of the general equation equation
f(v1, . . . , vn) =? g(v′1, . . . , v

′
m). Similarly CMW

E (f, V) denotes a complete set of E-matches, away from W ,
of the general equation f(v1, . . . , vn) =? v.

Example 12.4 If we consider the set of axioms C(+) then CUW
C(+)(+,+, V) is the minimal complete set of

unifiers of the general equation v1 + v2 =? v3 + v4 and it is equal to:

CUW
C(+)(+,+, V) =











v1 7→x1

v2 7→x2

v3 7→x1

v4 7→x2






v1 7→x1

v2 7→x2

v3 7→x2

v4 7→x1

The solutions of general equations allow to describe a mutation transformation that hopefully may sim-
plify the system. This is stated in the next result:

Lemma 12.4 Let E be a set of equational axioms in T (F ,X), e = (f(~t) =? g(~u)) a unification problem
and f(v1, . . . , vn) =? g(v′1, . . . , v

′
m) the corresponding general equation. If W is a set of variables such that

W ⊆ Var(e) then the following transformation preserve the set of solutions:

Mut f(~t) =? g(~u) 7→7→
∨

σ∈CUW
E

(f,g,V)

∃(~v,~v′,Ran(σ)), ~t =? σ(~v) ∧ σ(~v′) =? ~u.

Proof: Variable abstraction preserve the set of solutions thus:

f(~t) =? g(~u)⇔E ∃(~v,~v′), f(~v) =? g(~v′) ∧ ~v =? ~t ∧ ~v′ =? ~u.

Then, f(~v) =? g(~v′) can be replaced by its solved form and we get;

f(~t) =? g(~u)
⇔E

∃(~v,~v′), (
∨
σ∈CUW

E (f,g,V) ∃Ran(σ), ~v =? σ(~v) ∧ ~v′ =? σ(~v′)) ∧
~v =? ~t ∧ ~v′ =? ~u.

January 28, 2006 rewriting solving proving

12.3 General Equations 153

Equivalence is preserved because of the hypothesis made on W and the variables in consideration that
avoid any conflict. Then the last problem is normalized in its disjunctive normal form and merged if
necessary, and we get the result. 2

Exercice 44 — Apply the previous result to the case of commutativity using Example 12.4. What additional trans-

formation of the mutation rule is needed to obtain ComMutate given in the set of rules CommutativeUnification?

Answer:

12.3.2 Unifiers of general equations

In this section we are describing the E-solutions of general equations when the presentation E is resolvent.
The dual operation, consisting to deduce from the solutions of general equations a syntactic presentation,
will be described in the next section.

Definition 12.6 Let E be a set of axioms in T (F ,X), V = {v1, v′1, v2, v′2, . . .} and W = {w1, w2, . . .} two
countable sets of distinct new variables. For all f , g in F we define the set of substitutions

ΣU (f, g, E, V,W) = ΣUc (f, g, E, V,W) ∪ ΣUnc(f, g, E, V,W)

as follows:
• If f 6= g then:

ΣUnc(f, g, E, V,W) = {{~v 7→ ~l, ~v′ 7→ ~r}|f(~l) = g(~r) ∈ E ∪ E−1}
ΣUc (f, g, E, V,W) = {{~v 7→ ({x 7→ g(~w)}(~l)), ~v′ 7→ ~w}|f(~l) = x ∈ E ∪ E−1}

∪
{{~v′ 7→ ({x 7→ f(~w)}(~r)), ~v 7→ ~w}|x = g(~r) ∈ E ∪ E−1}

• If f = g then:

ΣUnc(f, f, E, V,W) = {{~v 7→ ~l, ~v′ 7→ ~r}|f(~l) = f(~r) ∈ E ∪ E−1}
∪
{~v 7→ ~w,~v′ 7→ ~w}

ΣUc (f, f, E, V,W) = {{~v 7→ ({x 7→ f(~w)}(~l)), ~v′ 7→ ~w}|f(~l) = x ∈ E ∪ E−1}
∪
{{~v′ 7→ ({x 7→ f(~w)}(~r)), ~v 7→ ~w}|x = f(~r) ∈ E ∪ E−1}

Example 12.5 A mettre

The following property is an important consequence of the definitions above:

Lemma 12.5 [Kla92]
If the presentation E in T (F ,X) is resolvent then for all f, g ∈ F , the set ΣU (f, g, E, V,W) is a complete

set of E-unifiers of the general equation GenU(f, g, V).

Proof: Let e = GenU(f, g, V). Any substitution σ ∈ ΣU (f, g, E, V,W) is an E-unifier of e since σ(e) is
either an axiom or an instance of a collapse axiom.
In order to prove completeness, let α be any E-unifier of e. Since E is resolvent, there exists a syntactic
proof of α(e):

α(f(~v))
∗←→6=Λ

E f(~t)
δ←→

Λ

E g(~u)
∗←→6=Λ

E α(g(~v′)). (12.3)

• If δ = 0 then f = g and α(~v) =E α(~v′). In this case the substitution

σ = {~v 7→ ~w,~v′ 7→ ~w} ∈ ΣUnc(f, f, E, V,W)

satisfy for ρ = {~w 7→ α(~v)}:
α(~v′) =E α(~v) = ρσ(~v) = ρσ(~v′),

and thus σ ≤Var(e)E α.
• If δ = 1 then let l = r be the equational axiom applied at occurrence Λ using the substitution φ is
the proof 12.3.

January 28, 2006 rewriting solving proving

154 Syntactic theories

• If l = r is a non collapse axiom of the form f(~l) = g(~r) then α(~v) =E φ(~l) and φ(~r) =E α(~v′).
With the substitution:

σ = {~v 7→ ~l, ~v′ 7→ ~r} ∈ ΣUnc(f, g, E, V,W)

we can write:
α(~v) =E φ(~l) = φσ(~v)

and,
α(~v′) =E φ(~r) = φσ(~v′),

and thus σ ≤Var(e)E α.

• If l = r is a collapse axiom of the form f(~l) = x, then let us take the substitution:

φ′ = φ|Var(l)\{x} ∪ {~w 7→ ~u}

where the ~w are new distinct variables. This substitution is such that φ =Var(
~l) φ′.{x 7→ g(~w)}

and thus α(~v) =E φ
′.{x 7→ g(~w)}(~l) and φ′(~w) = ~u =E α(~v′). Now, considering the substitution:

σ = {~v 7→ ({x 7→ g(~w)}(~l)), ~v′ 7→ ~w} ∈ ΣUc (f, g, E, V,W),

we get:
α(~v) =E φ(~l) = φ′.{x 7→ g(~w)}(~l) = φ′σ(~v),

and
α(~v′) =E φ

′(~w) = φ′σ(~v′),

which proves that σ ≤Var(e)E α.
Finally if the collapse axiom is applied in the other direction the proof is similar.

2

In a similar way we are introducing the solutions of general matching equations:

Definition 12.7 Let E be a set of axioms in T (F ,X) and V = {v, v1, v2, . . .} a countable set of distinct
new variables. For all f in F we define the set of substitutions:

ΣM(f,E, V) = {{~v 7→ ({x 7→ v}(~l))} | f(~l) = x ∈ E ∪ E−1}.

As for general unification equations we get a completeness result. The proof technique is quite similar to
those of the previous lemma and we do not give it here.

Lemma 12.6 [Kla92]
Let E be a resolvent set of axioms in T (F ,X), then for all f in F , ΣM(f,E, V) is a complete set of

E-matches of the general match equation GenM(f, V) = (f(v1, . . . , vn)�? v).

From the two previous results we can now deduce:

Corollary 12.1 Let T H(E) be a syntactic theory. Then all the general equations have a finite complete
set of E-unifiers.

Proof: This follows from the fact that the theory being syntactic, there exists a finite and resolvent pre-
sentation of it. By application of the previous lemmas, we thus get a finite number of elements in the
complete set of E-unifiers. 2

12.3.3 General equations and syntacticness

We have seen in the previous section how to compute the E-unifiers of general equations (either unification
or matching equations) from a resolvent presentation. We are of course interested in the dual search of a
resolvent presentation starting from a complete set of E-unifiers of general equations. This is the purpose
of this section which main results come from [KK90, Kla92].

The following set of axioms is defined as the instances of the general equations by the elements of one of
its complete set of E-unifiers.

January 28, 2006 rewriting solving proving

12.3 General Equations 155

Definition 12.8 If E is a set of equational axioms in T (F ,X), we define a general presentation R(E) as
the following set of axioms:

R(E) = E ∪
⋃

f,g∈F

⋃

σ∈CUW
E

(f,g,V)

σ(f(~v)) = σ(g(~v′))
⋃

f∈F

⋃

σ∈CMW
E

(f,V)

σ(f(~v)) = v.

From this definition follows immediately the next very useful property:

Proposition 12.3 The equational theory generated by E and any of its general presentation R(E) are the
same: T H(E) = T H(R(E)).

Proof: By definition of CUWE (f, g, V) and CMW
E (f, V), all the elements in R(E) that are not in E are

instance of a general equation by one of its E-unifier, thus they are equal modulo E. 2

The fundamental property of general presentations is that they are resolvent.

Proposition 12.4 For E any consistent equational presentation in T (F ,X), R(E) is resolvent.

Proof: Let us consider each of the possible cases for an equality in E:

• If it is of the form f(~t) =E g(~u) then the substitution α = {~v 7→ ~t, ~v′ 7→ ~u} is a E-unifier of the
general equation f(~v) =? g(~v′). Thus there exists σ ∈ CUWE (f, g, V), with V = {v1, v′1, . . . , vn, v′n}
such that σ ≤VE α, which means that there exists ρ such that ρσ =V

E α. By definition of R(E)
there exists a proof:

f(~t) = αf(~v)
∗←→6=Λ

E ρσf(~v)←→Λ
R(E) ρσg(~v

′)
∗←→6=Λ

E αg(~v′) = g(~u),

which is resolvent by definition.

• If it is of the form f(~t) =E x, then the proof works in a similar manner using the appropriate
general matching equation.

• The only remaining case is x =E x since E is assumed to be consistent, and this case is trivial.

2

As a clear consequence we get:

Corollary 12.2 Let E be a presentation in T (F ,X). If all the general equations have a finite complete set
of E-unifiers then T H(E) is a syntactic theory.

We can be more precise in the sense that only general unification equations have to be considered:

Proposition 12.5 Let E be a presentation in T (F ,X), if unification is finitary for E then T H(E) is a
syntactic theory.

Proof: What we shall prove is that if unification is finitary in E then all the general matching equations are
finitary (i.e. have a finite complete set of E-solutions). Let f(v1, . . . , vn)�? v be a general matching
equation. Since E-unification is assumed to be finitary there exists a finite complete set Σ of E-unifiers
of the equation f(v1, . . . , vn) =? v. Let

Σ′ = {{x 7→ v}σ|~v | σ ∈ Σ and σ(v) =E x and x ∈ X}.
Since Σ is finite, Σ′ is necessary finite too and it is clearly a set of E-matches of the general matching
equation. Moreover it is a complete set of matches since any match is a unifier when the variables of
the two members of the equation are distinct. 2

Finally let us state the main result:

Theorem 12.3 Let E be a presentation in T (F ,X), then the two following properties are equivalent:

1 T H(E) is a syntactic theory,

2 All the general equations have a finite complete set of E-solutions.

If the theory is collapse free, this second condition specializes to:

2’ All the general unification equations have a finite complete set of E-unifiers.

Proof: The only difficulty consists to remark that when the theory is collapse free, then no general matching
equation can have E-solutions. 2

January 28, 2006 rewriting solving proving

156 Syntactic theories

12.3.4 Applications

As applications of the previous results, let us give two main examples. The first one concerns associative-
commutative theories which are syntactic and the second one concerns (left and right) distributivity which
is an example of non syntactic theory.

AC theories are syntactic

Considering the case of an operator symbol + satisfying AC(+), we know from Section 13.1 that AC-
unification is finitary. Moreover the (minimal) complete set of AC-unifier of the only general (unification)
equation of interest v1 + v2 =? v′1 + v′2 is given on page 167. It is thus very easy to compute the following
syntactic presentation R(AC(+)) of this theory:






w1 + w2 = w1 + w2

w1 + w2 = w2 + w1

w1 + (w2 + w3) = (w1 + w3) + w2

(w1 + w2) + w3 = w1 + (w2 + w3)
(w1 + w2) + w3 = (w1 + w3) + w2

w1 + (w2 + w3) = w3 + (w1 + w2)
(w1 + w3) + (w2 + w4) = (w1 + w4) + (w2 + w3)

We can remark that this set is redundant (in particular the first axiom is useless). This presentation of AC
theories has been given first in [KK90] and can be used to give an interesting version of the AC-matching
algorithm. Its application to AC-unification is still an open problem since the rough mutation transformation
generated in this case produces a non terminating procedure.

Distributivity is not syntactic

Left and right distributivity are unitary collapse free theories. They are thus syntactic. Curiously, when put
together these two axioms

D =

{
x ∗ (y + z) = (x ∗ y) + (x ∗ z)
(y + z) ∗ x = (y ∗ x) + (z ∗ x)

generate a non syntactic theory. Let us show why by proving that the general equation v1 ∗ v2 =? v3 ∗ v4
is not finitary D-unifying since there is an infinite set Σ which is included in a minimal complete set of
D-solutions of this equation. If P is the set of prime numbers (in N) we have:

Σ =
⋃
i∈P






v1 7→
i∑

j=1

u1

v2 7→ u2

v3 7→ u1

v4 7→
i∑

j=1

u2

where

n∑

j=1

x = ((· · · ((x+ x) + x) · · ·+ x) + x)︸ ︷︷ ︸
n times

The substitutions of this set are obviously ≤D-uncomparable and are D-solutions of the general equation
v1 ∗ v2 =? v3 ∗ v4. We now prove that Σ is included in a minimal complete set of D-unifiers of the general
equation or in other words that for all σ ∈ Σ it does not exist a D-solution ρ such that ρ <D σ. By
contradiction suppose that such a substitution exists and note the following points:

• Since no axiom can be applied to the terms of the codomain of σ, the terms of the codomain of ρ must
have the same structure:

ρ =






v1 7→
n∑

j=1

xj

v2 7→y
v3 7→x

v4 7→
m∑

j=1

yj

January 28, 2006 rewriting solving proving

12.4 Λ-confluence 157

• Since ρ is a D-solution of v1 ∗ v2 =? v3 ∗ v4 we must have:

(

n∑

j=1

xj) ∗ y =D x ∗ (

m∑

j=1

yj)

or equivalently:
n∑

j=1

(xj ∗ y) =

m∑

j=1

(x ∗ yj)

This means that n = m and ∀j ∈ [1..n], xj = x and ∀j ∈ [1..m], yj = y.

Thus ρ has the form:

ρ =






v1 7→
n∑

j=1

x

v2 7→y
v3 7→x

v4 7→
n∑

j=1

y

and it is easy to see that there is σ′ ∈ Σ such that σ′ ≤D ρ. This leads to a contradiction since the elements
of Σ are uncomparable.

So we have an example where a combination of non-disjoint syntactic theories is a non-syntactic theory.
T. Nipkow [Nip90a] has shown that if the signatures of the theories are disjoint then the combination of
syntactic theories is a syntactic theory.
Exercice 45 — Let E be the the following set of equational axioms:

A = {fg(x) = f(x)}.

Prove that the generated theory is non-syntactic because the general equation f(v1) =? f(v2) is not finitary E-
unifying.

Hint : Consider the following set of A-solutions of this equation:

σ0 =



v1 7→ x
v2 7→ x

, σ1 =



v1 7→x
v2 7→g(x)

,

σ2 =



v1 7→x
v2 7→g(g(x))

, · · ·

σn =



v1 7→x
v2 7→gn(x)

, · · · .

Answer:

12.4 Λ-confluence

Because of the undecidable nature of syntacticness, it is natural to search for sufficient conditions making
this notion decidable. The first one has been given in the case of collapse free theories by [Kir85a, Kir86]
and is based on the notion of Λ-confluence. We detail here this notion in the general case after the work of
F. Klay [Kla92].

12.4.1 Definitions

The first sufficient condition we give is simply a condition on the occurrences of applications of the axioms
in the equality proof of two terms. From that we deduce the second sufficient condition which consists in a
localization of the previous check using an appropriate notion of critical pairs.

Definition 12.9 A set of equational axioms E in T (F ,X) is said Λ-confluent if the following two conditions
are satisfied for any terms t0, t1, t2:

1. If
t1←→Λ

E t0←→Λ
E t2,

then there exists terms w and w′ such that:

t1
∗←→6=Λ

E w
δ←→

Λ

E w
′ ∗←→6=Λ

E t2.

January 28, 2006 rewriting solving proving

158 Syntactic theories

2. If

t1
∗←→6=Λ

E t0←→Λ
E t2,

then there exists t3 such that

t1
δ←→

Λ

E t3
∗←→6=Λ

E t2.

As a simple application of Lemma 12.2, one can see that if a presentation contains only collapse axioms then
it is Λ-confluent.
This definition has an immediate consequence:

Lemma 12.7 If E is a set of axioms in T (F ,X) which is Λ-confluent then E is resolvent.

Proof: By induction on the number of axioms applications at occurrence Λ in one proof of t =E t′. 2

But even more interesting is the fact that Λ-confluence induces a particular proof form for any equational
theorem. This particular proof has the property that the occurrence of application of an axiom increases in
the term as the proof is going on:

Proposition 12.6 Let E be a set of axioms in T (F ,X). E is Λ-confluent iff for all E-equality t =E t
′, there

exists a proof:
t = t0 ←→p1

A t1 ←→p2
A t2 . . . tn−1 ←→pn

A tn = t′ (12.4)

such that for all i, j ∈ [1..n], i < j ⇒ pi < pj or pi 1 pj .

Proof: If an equational theorem has a proof like 12.4 then obviously the theory is Λ-confluent.
Conversely, let us prove first that if a theory is Λ-confluent, any equational theorem t = t′ has a proof
of the form:

t
δ←→

Λ

E
∗←→6=Λ

E t′.

For this let us define for any proof

t
n1←→6=Λ

E r←→Λ
E s

∗←→E t′ (12.5)

of t = t′, n2 the length of the prefix proof without Λ application of axiom, and n1 the number of
application of an axiom at occurrence Λ. Let us made an induction on (n1, n2) compared with the
lexicographic order on couples of naturals.

• For (0, 0) and (1, 0) the result is clear.

• Otherwise,

– If n2 > 0, then by definition of Λ-confluence there exists a proof deduced from 12.5 which is
of the form:

t
δ←→

Λ

E s
′←→6=Λ

E s
∗←→E t′

which complexity is either (n1 − 1, n′2) or (n1, 0) for which we can apply the induction hy-
pothesis.

– If n2 = 0 and n1 > 0, then we can assume that the proof is of the form:

t←→Λ
E s←→Λ

E s
′ ∗←→E t′

in which case by definition this can be transformed in a proof:

t
δ←→

Λ

E s
′ ∗←→E t′

which complexity is (n1 − 1, n′2).

This proves that any equational theorem t = t′ has a proof of the form: t
δ←→

Λ

E
∗←→6=Λ

E t′. The result
is then obtained by a simple structural induction on t′. 2

This last result is the fundamental tool in order to prove:

Proposition 12.7 [Kla92]
If E is a Λ-confluent and regular presentation in T (F ,X) then matching is decidable modulo E.

January 28, 2006 rewriting solving proving

12.4 Λ-confluence 159

12.4.2 Localization of Λ-confluence

We localize now the test of Λ-confluence.

Definition 12.10 A critical pair

σ(g[l]p)←→p
l=r σ(g)←→Λ

g=d σ(d)

for a set E of equational axioms in T (F ,X) is said Λ-confluent if there exists a proof

σ(g[l]p)
δ←→

Λ

E u
∗←→6=Λ

E σ(d).

Proposition 12.8 [Kir85a, DK91]
Let E be a linear presentation in T (F ,X). E is a Λ-confluent set of axioms if and only if any critical

pair is Λ-confluent.

Proof: Λ-confluence immediately implies Λ-confluence of critical pairs.
Conversely,

• If t←→Λ
E ←→Λ

E t
′ then the conclusion is clear by application of the definition of Λ-confluence of

critical pairs.

• If t
n←→6=Λ

E ←→Λ
E t
′ then let us made the proof by induction on n.

– If n = 0 this is clear.

– If n > 0, then the proof is of the form:

t
n−1←→

6=Λ

E u[µ(l)]p←→6=Λ
l=r u←→Λ

g=d t
′.

Let p be the position of application of l = r in u.
If p 6∈ Dom(g) then the two last steps of the proof commute since g is assumed to be linear
and the induction hypothesis can be applied on the resulting proof.
If p ∈ Dom(g) then, since the critical pair is Λ-confluent, the proof can be replaced by the
proof:

t
n−1←→

6=Λ

E
δ←→

Λ

E ←→6=Λ
E t′,

on which the induction hypothesis allows to conclude.

2

Furthermore the Λ-confluence of a linear presentation E in T (F ,X) is decidable. This comes from the fact
that if E is a Λ-confluent presentation then following Proposition 12.6 every critical pair (u, v) has a proof
of the form:

u = t0 ←→p1
A t1 ←→p2

A t2 . . . tn−1 ←→pn

A tn = v

such that for all i, j ∈ [1..n], i < j ⇒ pi < pj or pi 1 pj . The existence of such a proof is decidable since the
terms u and v are finite.

So we get a sufficient decidable condition for a set of axioms to be resolvent:

Corollary 12.3 Any set of axioms E in T (F ,X) such that every critical pair between two elements of E is
Λ-confluent is resolvent.

This allows to test automatically if a set of axioms is resolvent. As a consequence, this gives a way to
compute automatically the mutation process attached to the theory generated by E. For this kind of theories
we are able to build automatically an E-unification procedure which termination should be further proven.

Example 12.6 One should notice that we can not overcome the linearity restriction in the previous results
as shown by the following example found by Didier Rémy. Let E = {a = f(x, x), b = c}, there is no

critical pairs and the proof f(c, b)←→6=Λ
E f(b, b)←→Λ

E a can not be transformed in a proof of the form

f(c, b)
δ←→

Λ

E
∗←→6=Λ

E a.

January 28, 2006 rewriting solving proving

160 Syntactic theories

UNIF-COMPLETION = proc (E : set of axioms) returns (set of axioms)
B : set of axioms := ∅
While E 6= ∅ do

choose an axiom (l = r) in E
Compute the critical pairs of l = r on itself and with the elements
of B
Add any critical pair non Λ-confluent under E ∪B into E
Add l = r into B

enddo
return(B)

end UNIF-COMPLETION

Figure 12.2: Completion into a resolvent set of axioms

NewCP Ax ∪ {g = d}, P c,B 7→7→ Ax, Pc ∪ PC,B ∪ (g = d)
where PC is the set of Λ-

critical pairs obtained
by superposing g = d
with the elements of
(Ax ∪B).

ConfluentCP Ax, Pc ∪ {u, v}, B 7→7→ Ax, Pc,B
if (u, v) is Λ− confluent for Ax ∪B

TrivialCP Ax, Pc ∪ {u, u}, B 7→7→ Ax, Pc,B
NonConfluentCP Ax, Pc ∪ {u, v}, B 7→7→ (Ax ∪ {u = v}), P c,B

if (u, v) is not Λ−confluent for (Ax ∪B)

Figure 12.3: UnificationCompletion: Rules for computing unification procedures.

12.4.3 A unification completion procedure

As usual [KB70, Hue81, JK84] and as described in Chapter 16, we deduce from the previous critical pair
check, a completion procedure which returns, whenever it terminates, a resolvent set of axioms.

Starting from a set of axioms E, the procedure UNIF-COMPLETION described in Figure 12.2 computes
the E-critical pairs and checks if they are Λ-confluent. If not, it adds to E the axiom allowing to make the
critical pair Λ-confluent.

If UNIF-COMPLETION terminates, it returns a finite and resolvent set of axioms. Otherwise, provided
a fairness hypothesis on the choice of the axioms into E, the infinite set of axioms generated is resolvent.
UNIF-COMPLETION is an instance of a general completion scheme described by the transformation rules
set UnificationCompletion in Figure 12.3. The completeness and correctness of these transformations is
made in [DK91] using the orderings for equational proofs as described in Chapter 15. A given strategy in the
application of the rules of UnificationCompletion, together with data representations, fix a completion
procedure.

The transformation rules of the syntactic completion procedures are transforming 3-tuples (Ax, Pc,B)
where Ax is initially the set of axioms to be completed, Pc the set of critical pairs for which we are testing
the Λ−confluence and B the resolvent set of axioms deduced from Ax. We give them here is order to show
an interesting application of the completion technique to unification problems. Further details are given
in [DK91].

Example 12.7 Let us consider the case (easy but useful) of a set of commutativity axioms:

C = {x+i y = y +i x |i ∈ I}

This problem has been first studied by J.Siekmann [Sie79] for I reduced to one element. C is resolvent
since clearly all critical pairs are Λ-confluent. Any equation e = (u+i v =? u′+i v

′) can thus be transformed

January 28, 2006 rewriting solving proving

12.5 Extended presentations 161

into the C-equivalent disjunction of systems:

Mut(e) =





{
u=?u′

v=?v′{
u=?v′

v=?u′

The mutation rule can be computed from this last decomposition scheme and unification algorithms described
as we have done in Section 10.5.4.

12.5 Extended presentations

In this section we are presenting another approach to prove syntacticness based on the idea of T. Nipkow
[Nip90a] to use an extended signature to check syntacticness.

Definition 12.11 Let E be a presentation in T (F ,X), and l = f(~r), f(~g) = d be two axioms in E. We are
denoting

l = f(~r) ↓ΛE f(~g) = d⇔ (∀σ, σ(~r) =E σ(~g)⇒ σ(l)
∗←→δΛ

E σ(d)).

This allows to give another characterization of syntactic theories:

Lemma 12.8 For a presentation E in T (F ,X), E is syntactic iff

∀l = f(~r), f(~g) = d ∈ E ∪ E−1, l = f(~r) ↓ΛE f(~g) = d.

Proof: It is an easy consequence of the last definition and of syntacticness. 2

The goal of the next definition is to formalize the use of variables as constants.

Definition 12.12 For any term algebra T (F ,X), let X be a set of new constants (i.e. function symbols of
arity 0 and such that F ∩ X = ∅) such that there exists a bijection ζ : X → X . By extension, this induces
an isomorphism ζ : T (F ,X)→ T (F ∪ X) and for any term t, we denote ζ(t) by t.

Proposition 12.9 Let E be a presentation in T (F ,X), and l = f(~r), f(~g) = d be two axioms in E. Let
E = E ∪ E′ where E′ = {r1 = g1, . . . , rn = gn}. If there exists a proof:

l
∗←→δ0Λ

E t1 ←→p1
E′ u1 . . . uk−1

∗←→δk−1Λ

E tk ←→pk

E′ uk
∗←→δkΛ

E d (12.6)

where Σi=ki=0δk ≤ 1 and ∀i ∈ [1..k], pi 6= Λ, then

l = f(~r) ↓ΛE f(~g) = d.

Proof: Let σ be a substitution such that σ(~r) =E σ(~g), whe shall prove that σ(l)
∗←→δΛ

E σ(d).
With respect to the proof 12.6 the proof goes by induction on k and shows that there exists a proof of
σ(l) =E σ(d) having exactly Σi=ki=0δk Λ-applications of axioms.

• If k = 0, then l
∗←→δ0Λ

E d⇒ σ(l)
∗←→δ0Λ

E σ(d).
• If k > 0, then by induction hypothesis:

σ(l)
∗←→δΛ

E σ(tk) and σ(uk)
∗←→δkΛ

E σ(d)

with δ′ = Σi=k−1
i=0 δk and thus δ′ + δk ≤ 1. Moreover since tk ←→pk

E′ uk there exists i such that
tk|pk

= µ(ri) and uk|pk
= µ(gi). By hypothesis we have in particular for i; σ(ri) =E σ(gi). This allows

to write:

σ(tk|pk
) = σ(µ(ri)) =σ (µ(gi)) = σ(uk|pk

)

which proves that:

σ(l)
∗←→δΛ

E σ(tk)
∗←→6=Λ

E σ(uk)
∗←→δkΛ

E σ(d).

2

January 28, 2006 rewriting solving proving

162 Syntactic theories

12.6 Applications

12.6.1 Transitivity

12.6.2 Shallow theories

12.6.3 AC matching

12.6.4 Acyclic theories

12.6.5 Touffues theories

January 28, 2006 rewriting solving proving

Chapter 13

Restricted semantic unification

13.1 Associative-Commutative unification

13.1.1 Introduction

Associative-commutative unification (in short AC-unification) is solving equations when a finite set of func-
tions symbols (+i)i∈I are associative and commutative, that is satisfy AC(+i):

(x+i y) +i z=x+i (y +i z)
x+i y=y +i x

This unification problem has been the more intensively studied after the empty theory for at least two
reasons. The first one is that the associative and commutative axioms are associated in many algebraic
structures of interest for theorem proving or algebraic specifications. The second and more technical one
is that, in term rewriting applications, one cannot dissociate associativity from commutativity because
the rewriting relation associated to (left or right) associativity modulo commutativity is not terminating.
Indeed, the rewriting relation −→R/C is not terminating as the reader can see considering the rewrite rule
(x + y) + z → x + (y + z) and the equational axiom C(+) = {x+ y = y + x}. We have then the following
derivation:

(x+ y) + z → x+ (y + z) =C (z + y) + x→ z + (y + x) =C (x+ y) + z.

Thus one should work modulo associativity and commutativity both as equational axioms.
But solving associative-commutative equations is a difficult problem unlike what happens for commuta-

tivity only. Difficulties are localized firstly in the discovery of complete AC-unification procedures, secondly
in the proof of their termination, thirdly in managing the algorithmic complexity of the problem. The
first AC-unification algorithms have been discovered independently by Livesey and J.Siekmann [LS76] and
M.Stickel [Sti76, Sti81]. They are mainly differing by the way generalization is handled: Stickel generalizes
using variables and thus transforms an AC-equation into an homogeneous linear diophantine equation, while
Livesey and Siekmann consider certain variables as constants, so that an AC-equation is transformed into an
inhomogeneous linear diophantine equation. Termination of Stickel’s algorithm in presence of free symbols
has been proved almost ten years after his discovery by F.Fages [Fag84] whose complexity measure has been
extended to prove the termination of Robinson-like combination of unification algorithms, as we have seen
previously. Fages’s complexity measure has also been used to prove the termination of an improvement of the
Livesey-Siekmann AC-unification algorithm in [HS85]. AC-unification has been proved to be NP-complete
by D.Kapur and Narandran [KN86] and big efforts have been spent in order to handle efficiently reasonable
AC-problems [Hul80c, CL87].

In this context, we will show in this section that the rule based framework that has been developed
before, can be used to study associative-commutative unification. As a consequence of the previous study on
the combination of unification algorithms, we are only studying the problem of AC-unification in presence
of one AC-symbol.

13.1.2 Preparation and simplification of the problem

In what follows, ∗ in an associative-commutative symbol and F = {∗}. In other words, we consider only
terms in T = T ({∗},X). A system of multiequations built on T is called an ACT -system or shortly an
AC-system.

January 28, 2006 rewriting solving proving

164 Restricted semantic unification

Definition 13.1 The flattened form of the term t ∈ T is the pair {∗, {x1, . . . , xn}} composed of the symbol
∗ and the multiset of variables occurring in t. It is also denoted ∗(x1, . . . , xn) or x1 ∗ . . . ∗ xn.

Example 13.1 The flattened form of (x ∗ y) ∗ (x ∗ z) is ∗(x, x, y, z).

Since ∗ is AC, it is left and right-regular, and thus this property allows to simplify the equations:

Lemma 13.1 For all variables x, x1, . . . , xn, x
′
1, . . . , x

′
p we have

x ∗ x1 ∗ . . . ∗ xn =? x ∗ x′1 ∗ . . . ∗ x′p ⇔AC x1 ∗ . . . ∗ xn =? x′1 ∗ . . . ∗ x′p
Note that this result is valid for any repeated term, a remark that an implemantation should use eagerly.

Example 13.2 f(a, b) + x+ y + x =? x+ z + f(a, b) is simplified into x+ y =? z.

The first step for AC-full-decomposition is thus flattening and simplification.

13.1.3 Solving strategies for AC problems

Parallel versus sequential solving

Let S be the system:

S =

{
x ∗ y =? u ∗ v
x ∗ y′ =? u ∗ v′

If the two equations are concurrently (and thus independently) solved, one gets a disjunction of systems
containing in particular the system:






x =? x1 ∗ x2 =? x′1 ∗ x′2
u =? x1 ∗ x3 =? x′1 ∗ x′3
y =? x3 ∗ x4

v =? x2 ∗ x4

y′ =? x′3 ∗ x′4
v′ =? x′2 ∗ x′4

But the two first multiequations are the same as the equations of S, up to a renaming of the variables.
Of course one can sequentialy solve each equation and instanciate with the solutions the other equations

in the system. But as we will see later, this is extremely expensive and moreover it leads to quite redondant
complete set of AC-unifiers.

The key idea, in order to get rid of this phenomena, is to solve directly the whole system instead of one
equation after another. In fact this approach is very natural in our framework.

Necessity of replacement

Provided an algorithm for solving systems of diophantine equations is chosen, one may think that the AC-
mutation process will terminate. But this is not true since fully decomposed equation (i.e. of the form
x =? t) may interfer with solving the remaining of the ACT -system, as in the following example.

Example 13.3 Let:

S =

{
x ∗ y =? z ∗ t
x =? z ∗ u

By replacing the first equation by one of the systems obtained by solving it, one gets after merging:

S′ =






x =? z ∗ u =? x1 ∗ x2

z =? x1 ∗ x3

y =? x3 ∗ x4

t =? x2 ∗ x4

and one recognizes in the two first equations of S′, a renaming of the equations of S.

So it is not sufficient to solve systems of non-fully decomposed equations independently of the fully
decomposed ones in the system. One needs either to solve the system as a whole, thus including all the equa-
tions of the system, or to replace the already known constraints on variables into the non-fully decomposed
equations. In the case of the previous example, we get then:

January 28, 2006 rewriting solving proving

13.1 Associative-Commutative unification 165

Example 13.4 (Continued)

S′′ =

{
z ∗ u ∗ y =? z ∗ t
x =? z ∗ u

which can be simplified and trivially solved.

These two previous remarks about the termination of the AC-solving process show in particular that one
can not parallelize naively the AC-unification algorithm and that either one must solve maximal systems
of equations as a whole, or that each equation has to be solved one by one with an eager application of
replacement.

13.1.4 Associative-commutative unification

We are now showing the relationship between AC-systems and systems of diophantine homogenous linear
solution, also called in the following dio-systems.

Reduction to diophantine systems

Let S be the following simplified and flattened ACT -system:

S = (u1 ∗ . . . ∗ um =? v1 ∗ . . . ∗ vp)k∈[1..q]

where the ui, vj are (possibly similar) variables from X .
Since ∗ is associative-commutative, S can also be written:

S = (ak1u1 ∗ . . . ∗ aknum =? bk1v1 ∗ . . . ∗ bkpvp)k∈[1..q]

where ajiu stands for u ∗ . . . ∗ u︸ ︷︷ ︸
aj

i

and for all k ∈ [1..q], the coefficients (aki)i∈[1..m] and (bkj)j∈[1..p] are naturals.

By definition, for any term t, 0t is the empty term Λ. We suppose furthermore that this empty term is by
convention an identity for ∗: ∀t ∈ T , t ∗ Λ = t.

Example 13.5 The following is a system of two equations with four variables:

S0 =

{
2x ∗ 3y =? 2z ∗ 2u
u ∗ 5y =? 3z ∗ x

If X = (x1, . . . , xn)
t are the distinct variables of the system S, it is more convenient to write S under

the form:

AX = Λ,

where A is an integer q × n matrix.

Example 13.6 (13.5 continued) The previous system S0 is written:

(
2 3 −2 −2
−1 5 −3 1

)




x
y
z
u





The solutions of the system S are necessarily of the form:

xi =
∏

r∈R

δirzr, with δir ∈ N,
∑

r∈R

δir 6= 0 and ∀r ∈ R, zr ∈ X − Var(S) (13.1)

for some finite set of indexes R. Denoting Z = (z1, . . . , z|R|)
t and ∆ the matrix (δir)

1≤i≤n
r∈R , the solutions

satisfy the relation:

X = ∆Z.

January 28, 2006 rewriting solving proving

166 Restricted semantic unification

An AC-solution has to satisfy:

∀k ∈ [1..q]
∏

i

aki (
∏

r∈R

δirzr) = Λ

⇔
∀k ∈ [1..q]

∏

r

(
∑

i

aki δ
i
r)zr = Λ

The coefficients of each zr have thus to be identically nul:

∀k ∈ [1..q], ∀r ∈ R
∑

i

aki δ
i
r = 0

which states that the δir are solutions of the diophantine linear homogeneous system:

AX = 0 (13.2)

which is denoted Sd and where X = (xi)i∈[1..n] are the unknows ranging over N.
Since Clifford and Preston [CP61] have shown that the set of solutions of such a system is a finitely

generated monoid, we are in fact interested in the set of minimal solutions of such a system for the order
induced on the cartesien product by the natural order on naturals:

X ≤ Y⇔ ∀i, xi ≤ yi.

Back to terms

Supposing the system of diophantine equations Sd solved (this point is reached in the next section) one have
then to compute from its solutions, the initial system on terms S complete set of solutions.

Let U = {ul|l ∈ L}, the finite set of minimal solutions of the diophantine system Sd. Each solution is
then of the form: ∑

l∈L

λlul with λl ∈ N

so that, by definition of the δr:

∀r, ∀i, ∃λrl , δir =
∑

l∈L

λrl u
i
l

where the λrl can be zero. Combining 13.1 and the last equality we get:

∀i, xi =
∏

r∈R

∑

l∈L

λrl u
i
lzr =

∑

l∈L

uil(
∏

r∈R

λrl zr).

For all l ∈ L, let ζl be a new variable, it is more general than the term:
∏

r∈R

λrl zr

and thus the substitution:
∀i, xi 7→

∏

l∈L

ζlu
i
l

would be a solution of the initial problem S, more general than any other AC-solution. But one should take
care of the fact that the λrl may be zero, which means that ζl is then the empty term. And there is 2|L|

possible choice for the ζl to be, or not be, the null term. For all these possibilities one have only to keep
those such that:

∀i, xi 6= Λ,

i.e. the variable xi should be instanciated with a not the empty term. This is the major difference with the
case of associative, commutative and identity (AC1) unification.

Finaly we get the following result:

Theorem 13.1 The set of substitutions:

Σ = {σ|σ(xi) =
∏

l

uilζl with ζl = Λ or zl and ∀i ∈ [1..n],
∏

l

uilζl 6= Λ},

is a complete set of AC-unifiers of S.

Proof: By construction of Σ, all its elements are AC-solutions of S. We have thus to show the completeness
of Σ. Let α be any AC-solution of S. Its components should satisfy 13.1 and by definition of the λrl ,
there exists σ ∈ Σ such that σ ≤Var(S) α. 2

January 28, 2006 rewriting solving proving

13.1 Associative-Commutative unification 167

An example

Let us solve the equation x ∗ y =? u ∗ v where ∗ is an AC symbol and x, y, u, v are variables.
The diophantine equation to be solved is X+Y =? U+V which have as minimal complete set of solutions:

{(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1)}.

Let us represent the situation in the following matrix:

x y u v
1 0 1 0 ζ1
1 0 0 1 ζ2
0 1 1 0 ζ3
0 1 0 1 ζ4

where a (term) variable ζi is associated to each solution of the diophantine equation.
Now for clarity we represent all the possibilities for the ζi to be the empty term or not. The empty rows

are corresponding to the case where one of the variable x(= ζ1 ∗ ζ2), y(= ζ3 ∗ ζ4), u(= ζ1 ∗ ζ3), v(= ζ2 ∗ ζ4)
has for value the empty term.

ζ1 0 1
ζ2 0 1 0 1
ζ3 0 1 0 1 0 1 0 1
ζ4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x ζ2 ζ2 ζ1 ζ1 ζ1 ∗ ζ2 ζ1 ∗ ζ2 ζ1 ∗ ζ2
y ζ3 ζ3 ∗ ζ4 ζ4 ζ3 ∗ ζ4 ζ4 ζ3 ζ3 ∗ ζ4
u ζ3 ζ3 ζ1 ζ1 ∗ ζ3 ζ1 ζ1 ∗ ζ3 ζ1 ∗ ζ3
v ζ2 ζ2 ∗ ζ4 ζ4 ζ4 ζ2 ∗ ζ4 ζ2 ζ2 ∗ ζ4

Which prove that the complet set of AC-unifier (minimal in this case but, unfortunately this is not true in
general) of the equation x ∗ y =? u ∗ v consists of the following seven substitutions:






x7→ζ2
y 7→ζ3
u 7→ζ3
v 7→ζ2






x7→ζ2
y 7→ζ3 ∗ ζ4
u 7→ζ3
v 7→ζ2 ∗ ζ4






x7→ζ1 ∗ ζ2
y 7→ζ3 ∗ ζ4
u 7→ζ1 ∗ ζ3
v 7→ζ2 ∗ ζ4






x7→ζ1
y 7→ζ4
u 7→ζ1
v 7→ζ4






x7→ζ1
y 7→ζ3 ∗ ζ4
u 7→ζ1 ∗ ζ3
v 7→ζ4





x7→ζ1 ∗ ζ2
y 7→ζ4
u 7→ζ1
v 7→ζ2 ∗ ζ4






x7→ζ1 ∗ ζ2
y 7→ζ3
u 7→ζ1 ∗ ζ3
v 7→ζ2

One can see on this simple example that solving linear diophantine system of equations is only one part
of the problem. The second important one is to combine properly (i.e. without introducing empty term)
these solutions. Since there is no way to avoid checking that a column is not full of zero by interaction of
the value of λl and the component of a dio-solution, this combination process is exponential in the number
of minimal solution of the diophantine equation associated to the problem.

13.1.5 Solving systems of Diophantine equations

Localization of the minimal solutions

When the system is reduced to one equation (k = 1), then the minimal solutions X1, . . . , Xm, Y1, . . . , Yp of
the equation: ∑

1≤i≤m

aiXi =?
∑

1≤j≤p

bjYj ,

are bounded as follow:
∑

i=1,...,m

Xi ≤ max
j=1,...,p

bj and
∑

j=1,...,p

Yi ≤ max
i=1,...,m

ai

as proved by J.-L. Lambert [Lam87b], improving the bound:

max
i=1,...,m

Xi ≤ max
j=1,...,p

bj and max
j=1,...,p

Yi ≤ max
i=1,...,m

ai,

January 28, 2006 rewriting solving proving

168 Restricted semantic unification

given by G. Huet [Hue78].

For a system of diophantine equations S = (AX =? 0), let l = max1≤i≤n,1≤j≤k |aij |. J.-F. Romeuf has
proved [Rom88] that the minimal solutions (Zi)1≤i≤n of the system S satisfy:

max
1≤i≤n

Zi ≤ (2l)2
n−1

This is satisfactory from a theoretical point of view, but this bound is quite large:

Example 13.7 In the system S0 above, l = 5 and n = 2 so that the bound is (2× 5)2
2−1 = 1000, which is

quite large for such a small system.

We do not address here the problem of solving linear homogeneous diophantine equations with constrains
as in [Hul80c] or linear inhomogeneous equations as in [Büt85]. A way to nicely implement AC-unification
(as well as AC-matching) is described in [Eke93].

Solving systems of homogeneous and linear diophantine equations

The problem is now to solve systems of multiequations built on terms of T without any equation of the form
x =? t where x is a variable. This problem can be reduced to two steps:

1. the solving of linear homogeneous diophantine equations, followed by

2. the correct combination of the diophantine equations solutions in order to get a complete set of AC-
solutions.

This reduction has been detailed in [Hul80c, Büt85] for example. The second subproblem is specifically
addressed in [CL87].

The major difficulty that occurs in solving linear diophantine equations is to bound the search space.
There are two possibilities: the first one is to extend Huet’s algorithm for the solving of diophantine equations
to handle systems of multiequations and this can be done in several ways:

1. Find a generalization to non-trivial systems of Huet’s [Hue78] or Lambert’s [Lam87b] bounds of the
minimal solutions, but this seems non-trivial.

2. Solve each diophantine equation sequentially using Huet’s or Lambert’s algorithm and replace the result
in the other ones. But it is close to the previous (Stickel-like) approach since, up to data representation
and combination of diophantine solutions, it is similar to solve diophantine equations and AC-equations
in T .

3. Solve the system like in real or rational vector space using the Gauss elimination method. This approach
has the drawback to be quite sensible to the way the Gauss eliminations are performed. We are not
developping the point here, but only give an example:
Assume that we want to solve the system:

{
2x+ 3y =? 2z
x+ 5y =? 3z

It is equivalent to:
{

6z − 10y + 3y =? 2z
x =? 3z − 5y

⇔






y =? 4k
z =? 7k
x =? 3z − 5y

for all k in N.

The second possibility is to give algorithms for solving directly systems of linear Diophantine equations.
One has been given by [CD91] and generalizes to systems the algorithm of A. Fortenbacher [For83, Lan87]
improved in [CF90]. Another one has been given by [Dom91b] using geometrical arguments, and [Pot91] has
given an algorithm based on Grobner basis.

January 28, 2006 rewriting solving proving

13.1 Associative-Commutative unification 169

13.1.6 Conclusion

This approach to associative-commutative unification has the great advantage to (1) benefit of the accumu-
lation of constraints consisting of multiple non-fully decomposed equations, so that the search space involved
by the solving of the diophantine equations is dramatically cut down and (2) to factorize multiple combina-
tion steps needed to built the AC-solutions from the diophantine solutions. Let us show the point on the
following example where the algorithm we have presented and Stickel’s one are used comparatively:

Example 13.8 Suppose that ∗ is associative commutative, that f is a free symbol and let us solve the
equation e = (f(x ∗ y, x ∗ b) =? f(u ∗ v, u ∗ a))

• by decomposition and generalization we get:

S = {x ∗ y =? u ∗ v, x ∗ x1 =? u ∗ x2, x1 =? b, x2 =? a}

and after solving the associated system of two diophantine equations we get directly, (roughly speaking
in one step) as complete set of AC-solution:

µ1={x 7→ a, u 7→ b, v 7→ a, y 7→ b}
µ2={x 7→ a, u 7→ b, v 7→ (z1 ∗ a), y 7→ (z1 ∗ b)}
µ3={u 7→ (b ∗ z3), x 7→ (a ∗ z3), v 7→ a, y 7→ b}
µ4={u 7→ (b ∗ a), x 7→ (a ∗ a), v 7→ (z1 ∗ a), y 7→ (z1 ∗ b)}

• With Stickel’s algorithm, the equation x ∗ y =? u ∗ v is first solved into

σ1={v 7→ x, u 7→ y}
σ2={u 7→ (y ∗ z3), x 7→ (v ∗ z3)}
σ3={u 7→ x, v 7→ y}
σ4={v 7→ (y ∗ z2), x 7→ (z2 ∗ u)}
σ5={u 7→ (z2 ∗ x), y 7→ (v ∗ z2)}
σ6={v 7→ (z1 ∗ x), y 7→ (z1 ∗ u)}
σ7={u 7→ (z2 ∗ z4), v 7→ (z1 ∗ z3), x 7→ (z3 ∗ z4), y 7→ (z1 ∗ z2)}

The terms of the equation x ∗ b =? u ∗ a have then to be successively instantiated by each of these
substitutions and the equations obtained, that are generally more complex than the original one, have
to be solved. For example the equation σ7(x∗x1) =? σ7(u∗x2), that has a complete set of AC-solutions
of seven elements, has to be solved.

In this particular case, the first approach requires to solve one ACT -system of two AC-equations and thus
to apply one solving step for a system of two linear diophantine equations and one combination step, while
Stickel’s algorithm requires to solve sequentially eight AC-equations and thus eight linear diophantine equa-
tions and eight combination problems.

13.1.7 Improvements

The basic algorithm that we have described can be improved mainly with a more careful generalization than
the one introduced. As we said before, the free symbols may be considered as part of a given theory –for
example associativity-commutativity–. In this case the diophantine equations to be solved are inhomogeneous
and it is of great interest, since in this case, the search space largely cut down and the strategy guided and
thus more efficient. Let us take the geometric interpretation of a diophantine equation on three variables. If
it is homogeneous, it is of the form ax + by + cz = 0 which is the equation of an hyperplan containing the
origin point (0, 0, 0): in that case, one must bound the search space to find a basis of the set of solution,
that is a basis of the set of points in the hyperplan that have natural coordinates: no side of the hyperplan
is prohibited. But suppose now that the equation is inhomogeneous i.e. of the form ax + by + cz = d. In
that case on can try all the possible paths from the origin to a point of the hyperplan whose coordinate are
naturals, in such a way that all the points of the path are in the same half plan as the origin. Furthermore,
in the case where generalization is restricted as much as possible, the search space is also cut down, since the
variables issued from generalization have not to be considered and merged after with the initial constraint
[HS85, Her87].

January 28, 2006 rewriting solving proving

170 Restricted semantic unification

13.2 Boolean unification

13.2.1 Introduction

We consider in this section the problem of solving equations in specific algebras with finite domains, rather
than on the term algebra as it is the case for standard unification. But the algebras considered here have in
common with the term algebra an important property: unification is unitary, which means that any equation
has a most general unifier, up to substitution equivalence. This unifier is a substitution in a quotient term
algebra and schematizes all the solutions of the given equation. One of the main difficulty to build this
unifier will be to minimize the set of variables used in the image of the substitution.

Unification in these algebras open rich domains to resolution-based theorem prover or programming
languages: design of digital cicuits, combinatorics, multi-valued logic and propositional logic, mathematics
over finite fields,. . . .

In the first part of this chapter, we focus our attention on boolean rings. Methods for finding unifiers for
boolean equations are known from a long time, going back to Boole himself in 1847 [Boo47] or to Löwenhein
in 1908 [Löw08]. An algorithm for computing the most general unifier of a boolean equation, based on Boole’s
method, is described in [BS87]. A survey on Boolean unification can be found in [MN89]. Implementations
of efficient Boolean unification algorithms are described in [RT90, Rau90]. After describing the algebraic
structure of boolean rings, we consider unification in boolean rings and more specifically in the two-elements
boolean ring, usually called boolean unification.

In the second part of the chapter, we consider boolean algebras and their generalization called primal
algebras. Examples are finite fields, in particular modular arithmetic, Post algebras, matrix rings over finite
fields. The unification problem in the class of primal algebras and in their varieties is extensively studied
in [Nip90b]. Unification in finite algebras is detailed in [BES+90, Rin90].

13.2.2 Boolean rings

The class of boolean rings is defined by the next set of axioms BR built on the set of function symbols
FBR = {0, 1, ·,⊕}.

BR =






x⊕ 0 = x
x⊕ x = 0
x · 0 = 0
x · 1 = x
x · x = x

x · (y ⊕ z) = (x · y)⊕ (x · z)
x · y = y · x

(x · y) · z = x · (y · z)
x⊕ y = y ⊕ x

(x⊕ y)⊕ z = x⊕ (y ⊕ z)

Definition 13.2 A boolean ring B = (B,FBR) is defined by a non-empty carrier B and a set of operators
FBR and is a model of BR.

The set of axioms BR has the property to be equivalent to a class rewrite system given by the following
rewrite rules, as proved by Hsiang and Dershowitz [HD83].

x⊕ 0 → x

x⊕ x → 0

x · 0 → 0

x · 1 → x

x · x → x

x · (y ⊕ z) → (x · y)⊕ (x · z)

and the associativity and commutativity axioms of · and ⊕:

x · y = y · x

January 28, 2006 rewriting solving proving

13.2 Boolean unification 171

(x · y) · z = x · (y · z)
x⊕ y = y ⊕ x

(x⊕ y)⊕ z = x⊕ (y ⊕ z)
This class rewrite system is convergent modulo AC and can be used to decide equality in boolean rings.

13.2.3 Unification in boolean rings

The unification problem in boolean rings, and more precisely in the initial boolean ring T (FBR)/BR, is
often called boolean unification and has attracted considerable interest for its applications: it is of practical
relevance for manipulating hardware descriptions and solving formulas of propositional calculus; its imple-
mentation in constraint logic programming languages allowed the handling of Boolean constraints (CHIP,
Prolog III) or sets constraints (CAL).

Boolean terms are built on the set of function symbols FBR = {0, 1, ·,⊕} and a set of variables X . Let
us denote by t(x) any boolean term whose variables x1, . . . , xn are linearly ordered and x = (x1, . . . , xn). So
t(x) is a function of the variables x1, . . . , xn. Given a boolean ring B = (B,FBR) of carrier B, each boolean
term t(x1, . . . , xn) is interpreted as a function tB : Bn → B, where Bn denotes the n times cartesian product
of the domain B. From now on, we focus on the case where B = {0, 1}.
Definition 13.3 A boolean equation is of the form t1 =? t2 where t1 and t2 are boolean terms. Let
V = Var(t1)∪Var(t2) be the set of variables in the equation. A solution of t1 =? t2 is an assignment α of V
into T (FBR) (extended to an homomorphism from T (FBR,V) to T (FBR)/BR) such that B |= α(t1) = α(t2).
A unifier of t1 =? t2 is a substitution σ of T (FBR,X) such that σ(t1) =BR σ(t2).

Example 13.9 Consider the equation x · y ⊕ z =? 0. V = {x, y, z}. A solution is for instance
α = (x 7→ 0)(y 7→ 1)(z 7→ 0) and a unifier would be σ = (z 7→ x · y).
However the techniques developed below also permit to solve equations in boolean rings finitely generated

by a set of constants C. In this case, equations t1 =? t2 involves terms t1 and t2 of T (FBR, C ∪ X). A
solution of t1 =? t2 is an assignment α of V into T (FBR, C) (or T (FBR ∪ C)) such that α(t1) = α(t2) holds
in the boolean ring generated by C. A unifier of t1 =? t2 is a substitution σ of T (FBR, C ∪ X) such that
σ(t1) =BR σ(t2).

The first step of equation solving in a boolean ring is first to transform the equation t1 =? t2 to a matching
problem t =? 0, thanks to the properties of these structures:

Lemma 13.2 The two equations t1 =? t2 and t1 ⊕ t2 =? 0 are equivalent.

Proof: Solutions of t1 =? t2 are solutions of t1 ⊕ t2 =? t2 ⊕ t2, which are solutions of t1 ⊕ t2 =? 0, thanks
to the axiom x ⊕ x = 0. Solutions of t1 ⊕ t2 =? 0 are then solutions of t1 ⊕ t2 ⊕ t1 =? t1, which are
solutions of t1 =? t2, again thanks to the axiom x⊕ x = 0. 2

So we are left to solve equations with a right-hand side equal to 0, so actually to solve a matching
problem.

Unification in boolean ring is unitary, as proved below. But since equivalence classes modulo BR are
infinite, there exist in general an infinite number of most general unifiers which are equivalent. The following
criterion may be applied to select one of them.

Definition 13.4 A unifier σ of t =? 0 is reproductive if for any b solution of t =? 0, i.e. t(b) = 0, σ satisfies

(σ(x1)(b), . . . , σ(xn)(b)) = b.

This property is enough to prove that a unifier is a most general unifier.

Proposition 13.1 A reproductive unifier is a most general unifier.

Proof: Assuming that φ is a unifier and σ a reproductive unifier, we prove that σ ≤V(t)
BR φ.

Let VRan(φ) = {y1, . . . , ym} be the variables occurring in the image of φ. For any m-tuple b′, φ(b′) is
a solution of (t =? 0). Since σ is reproductive, we get

∀b′, ∀i = 1, . . . , n, σ(xi)(φ(b′) = (φ(b′))i

So ∀xi ∈ V(t), φ(σ(xi)) =BR φ(xi) and as a consequence σ ≤V(t)
BR φ. 2

In this framework there are two methods for computing a most general unifier for a boolean equation
t(x) =? 0: the successive variable elimination method originally defined by Boole [Boo47], and the use of a
particular solution as proposed by Löwenheim [Löw08]. Both compute reproductive unifiers.

January 28, 2006 rewriting solving proving

172 Restricted semantic unification

Boole’s method

The successive variable elimination method, due to Boole, relies on the next ideas:

1. The equation t(x1, . . . , xn) =? 0 is equivalent to another equation where the first variable is isolated,
i.e. of the form a · x1 ⊕ b, where a = t(0, x2, . . . , xn)⊕ t(1, x2, . . . , xn) and b = t(0, x2, . . . , xn).

2. The equation t(x1, . . . , xn) =? 0 has a solution iff t(0, x2, . . . , xn) · t(1, x2, . . . , xn) =? 0 has a solution.

These two facts lead to the explicit construction of the most general unifier when the equation is satisfiable.

Theorem 13.2 [Boo47] Boolean unification is unitary: Any satisfiable equation t(x1, . . . , xn) =? 0 has a
most general unifier.

The substitution σ defined by

σ = {x1 7→ (t(0, x2, . . . , xn)⊕ t(1, x2, . . . , xn)⊕ 1) · x1 ⊕ t(0, x2, . . . , xn)}σ′,

where σ′ is a most general unifier of

t(0, x2, . . . , xn) · t(1, x2, . . . , xn) =? 0

is a most general unifier of t =? 0.

Proof: The result is proved by induction on the number n of variables in t.

If n = 0, then t is either 1 and the equation has no solution, or t is 0 and the identity is a unifier which
is reproductive.

Let us assume now that any equation with n− 1 variables has a reproductive unifier.

Let a = t(0, x2, . . . , xn) ⊕ t(1, x2, . . . , xn) and b = t(0, x2, . . . , xn). We can check that
∀x1, . . . , xn, t(x1, . . . , xn) =BR a · x1 ⊕ b: either x1 = 0 and t(0, x2, . . . , xn) =BR b, or x1 = 1
and t(1, x2, . . . , xn) =BR t(0, x2, . . . , xn)⊕ t(1, x2, . . . , xn)⊕ t(0, x2, . . . , xn).
Moreover σ can be written as σ = {x1 7→ (a⊕ 1) · x1 ⊕ b}σ′, or again σ = {x1 7→ (σ′(a)⊕ 1) · σ′(x1)⊕
σ′(b)} ∪ σ′, since Dom(σ′) = {x2, . . . , xn} = Var(a) = Var(b). Note also that σ′ being defined on
{x2, . . . , xn}, σ(a) = σ′(a) and σ(b) = σ′(b).
Moreover let us prove that (σ′(a) · σ′(b))⊕ σ′(b) =BR 0:
since (a · b)⊕ b = ((t(0, x2, . . . , xn)⊕ t(1, x2, . . . , xn)) · t(0, x2, . . . , xn))⊕ t(0, x2, . . . , xn)
=BR (t(0, x2, . . . , xn) · t(0, x2, . . . , xn))⊕ (t(1, x2, . . . , xn) · t(0, x2, . . . , xn))⊕ t(0, x2, . . . , xn)
=BR (t(1, x2, . . . , xn) · t(0, x2, . . . , xn)), and by definition of σ′, we get the result.

With these notations, let us prove that σ is a solution of t(x1, . . . , xn) =? 0 or equivalently of a·x1⊕b =?

0.
(σ(a) · σ(x1))⊕ σ(b) = (σ(a) · ((σ′(a)⊕ 1) · σ′(x1)⊕ σ′(b)))⊕ σ(b)
=BR (σ′(a) · ((σ′(a)⊕ 1) · σ′(x1)⊕ σ′(b)))⊕ σ′(b)
=BR (σ′(a) · ((σ′(a)⊕ 1) · σ′(x1)))⊕ (σ′(a) · σ′(b))⊕ σ′(b),
=BR (σ′(a) · ((σ′(a)⊕ 1) · σ′(x1))) =BR ((σ′(a) · σ′(a))⊕ σ′(a)) · σ′(x1) =BR 0.

The second step is to prove that σ is reproductive. Let b be a solution of t =? 0.
Either b = (0, b2, . . . , bn) and σ(x1)(b) = t(0, b2, . . . , bn) =BR 0,
or b = (1, b2, . . . , bn) and σ(x1)(b) = t(0, b2, . . . , bn)⊕ t(0, b2, . . . , bn)⊕ 1 =BR 1.
Since we have assumed σ′ reproductive, and b being a solution of b =? 0

(σ(x1)(b), σ
′(x2)(b), . . . , σ

′(xn)(b)) = (σ(x1)(b), b2, . . . , bn) = (b1, . . . , bn).

2

Example 13.10 Consider the term t = (x1 ⊕ x2) · x1. Then t(0, x2) = 0 and t(1, x2) = (1⊕ x2). The most
general unifier is given by

σ = {x1 7→ (0⊕ 1⊕ x2 ⊕ 1) · x1}σ′

where σ′ is the most general unifier of 0 · (1 ⊕ x2) =? 0. Since 0 · (1 ⊕ x2) =BR 0, the identity substitution
can be chosen for σ′. After simplification, σ = {x1 7→ x2 · x1}. Indeed one can verify that

σ(t) = ((x2 · x1)⊕ x2) · (x2 · x1) =BR (x2 · x1)⊕ (x2 · x1) =BR 0.

January 28, 2006 rewriting solving proving

13.2 Boolean unification 173

Example 13.11 Let us prove that the equation x⊕ y ⊕ x · y ⊕ c =? 0 is satisfiable in the free boolean ring
generated by c. Let t(x, y) = x ⊕ y ⊕ x · y ⊕ c. Then t(0, y) = y ⊕ c and t(1, y) = 1 ⊕ c. Let consider now
u(y) = (y ⊕ c) · (1 ⊕ c) = y ⊕ c · y. u(0) being 0, the equation u(0) · u(1) =? 0 is satisfiable, so the initial
equation is satisfiable too.

Let us now compute the most general unifier using the previous method. The most general unifier for
u(y) =? 0 is σ1(y) = ((u(0)⊕ u(1)⊕ 1) · y ⊕ u(0)) = (c · y).

The most general unifier for t(x, y) =? 0 is given by:
σ(y) = σ1(y) = c · y)
σ(x) = (t(0, σ1(y))⊕ t(1, σ1(y))⊕ 1) · x⊕ t(0, σ1(y))
= (t(0, c · y)⊕ t(1, c · y)⊕ 1) · x⊕ (t(0, c · y))
=BR ((c · y ⊕ c)⊕ (1⊕ (c · y)⊕ (c · y))⊕ c⊕ 1) · x1 ⊕ (c · y ⊕ c)
=BR ((c · y) · x⊕ (c · y)⊕ c.

The previous theorem directly provides an algorithm, described by Büttner and Simonis [BS87]. The
algorithm transforms the equation to solve into an equivalent problem in which a selected variable has been
eliminated. This transformation is iterated until a trivial problem is obtained.
Notation: Let us denote tx=0 the result of applying to the term t the substitution (x 7→ 0) and respectively
by tx=1 the result of applying to the term t the substitution (x 7→ 1).

D := t
σ := Identity
If D =BR 1 then t =? 0 unsatisfiable
else while D 6=BR 0 do

choose a new x ∈ Var(D)
σ := (x 7→ Dx=0 ⊕ x · (Dx=0 ⊕Dx=1 ⊕ 1)) ◦ σ
D := Dx=0 ·Dx=1

enddo
endif
return σ

Example 13.12 Let us solve the equation

x1 ⊕ x2 ⊕ (x1 · x2) =? 0

Eliminating first x1 gives σ := (x1 7→ x2 ⊕ x1 · x2) since
Dx1=0 ⊕ x1 · (Dx1=0 ⊕Dx1=1 ⊕ 1) = x2 ⊕ x1 · (x2 ⊕ 1⊕ x2 ⊕ x2 ⊕ 1) = x2 ⊕ x1 · x2.
The new equation to solve is now x2 =? 0 since: Dx1=0 ·Dx1=1 = x2 · (1⊕ x2 ⊕ x2) = x2.
Eliminating then x2 gives σ := (x2 7→ 0)(x1 7→ x2 ⊕ x1 · x2) and Dx1=0 ·Dx1=1 = 0.
The returned substitution is thus σ := (x2 7→ 0)(x1 7→ 0).

In this algorithm, the choice of the variable that is eliminated is not determined. The following example
shows that different most general unifiers can be obtained according to different choices for eliminating
variables.

Example 13.13 Consider the equation x1 · x2 ⊕ x3 =? 0. Eliminating first x3 leads to σ := (x3 7→ x1 · x2)
since Dx3=0 ⊕ x3 · ((Dx3=0 ⊕Dx3=1 ⊕ 1) = x1 · x2 ⊕ x3 · (x1 · x2 ⊕ x1 · x2 ⊕ 1⊕ 1) = x1 · x2.

Then D := 0 and the returned substitution is σ1 = (x3 7→ x1 · x2).
Choosing instead to eliminate first x1 leads to σ := (x1 7→ x3⊕(x1·x2)⊕x1) andDx1=0·Dx1=1 = x2·x3⊕x3.
Eliminating then x2 leads to σ := (x2 7→ x3 ⊕ (x2 · x3) ⊕ x2)(x1 7→ x3 ⊕ (x1 · x2) ⊕ x1). Then D :=

x3 · (x3 ⊕ x3) =BR 0 and the returned substitution is σ2 = (x1 7→ x3 ⊕ x1 · (x3 ⊕ (x2 · x3)⊕ x2)⊕ x1)(x2 7→
x3 ⊕ (x2 · x3)⊕ x2).

Let us denote by u1 the boolean term x3 ⊕ x1 · (x3 ⊕ (x2 · x3) ⊕ x2) ⊕ x1 and by u2 the boolean term
x3 ⊕ (x2 · x3) ⊕ x2. Defining now α = (x1 7→ u1)(x2 7→ u2), it is easy to verify that ασ1 = σ2[{x1, x2, x3}],
since u1 · u2 =BR x3.

Conversely defining β = (x3 7→ x1 ·x2)(x1 7→ x1)(x2 7→ x2), it is easy to verify that βσ2 = σ1[{x1, x2, x3}].
This proves that the two computed unifiers are equivalent.

Lövenheim’s method

The Löwenheim’s algorithm consists of finding a particular solution of the equation and substituting it in a
general formula.

January 28, 2006 rewriting solving proving

174 Restricted semantic unification

Theorem 13.3 Let b be a particular solution of the equation t(x) =? 0. Then the vector of functions

σ(x) = x⊕ t(x) · (x ⊕ b)
is a most general solution of the equation.

In the formulation of the previous theorem, note that the definition of ⊕ and · has been extended to
operate on vectors of functions. To illustrate how this method works, let us consider an example from [MN89].

Example 13.14 Let c ·x⊕d·y⊕c=? 0 be the equation to solve. A particular solution is (x 7→ 1)(y 7→ 0). So
the most general solution computed with Löwenheim’s formula is: σ(x) = (x, y)⊕c·x⊕d·y⊕c·((x, y)⊕(1, 0)) =
(x⊕((c·x)⊕(d·y)⊕c)·(x⊕1), y⊕((c·x)⊕(d·y)⊕c)·y) = (x⊕(d·x·y)⊕(c·x)⊕(d·y)⊕c, y⊕(c·x·y)⊕(d·y)⊕(c·y)).

The problem left aside is to find a particular solution for a given boolean equation, which is known to be
an NP-complete problem. More development on this point and further references can be found in [MN89].

A quick comparison of Löwenheim and Boole’s methods immediately reveals that the first one provides
more complex substitutions than the first. This is partly due to the fact that the expression of the result
contains always as many variables as in the initial equation, which is not the case for Boole’s method. Solving
the equation x⊕ y =? 0 illustrates this remark:

Example 13.15 For the equation x⊕y =? 0, Boole’s method yields the most general unifier σ(x, y) = (y, y)
if x is eliminated first or σ(x, y) = (x, x) if y is eliminated first. With Löwenheim’s formula, choosing the
particular solution (x, y) = (0, 0) gives σ0(x, y) = (x·y, x·y) and choosing the particular solution (x, y) = (1, 1)
gives σ1(x, y) = (x · y⊕ x⊕ y, x · y⊕ x⊕ y). Note that σ1σ0 = σ1[{x, y}] and σ0σ1 = σ0[{x, y}], which proves
that these two unifiers are equivalent.

13.2.4 Boolean algebras

Several presentations for boolean algebras laws can be given, but all of them include axioms for associativity
and commutativity of + and ·, distributivity, absorption and complementation laws, and for unit and zero
elements. For instance, boolean algebras are models of the following set of axioms BA built on the set of
function symbols FBA = {0, 1, ·,+, }̄:

x+ 0 = x

x · 1 = x

x · (y + z) = (x · y) + (x · z)
x+ (y · z) = (x + y) · (x + z)

(x+ y) · y = y

(x · y) + y = y

x+ x̄ = 1

x · x̄ = 0

x · y = y · x
(x · y) · z = x · (y · z)

x+ y = y + x

(x+ y) + z = x+ (y + z)

Definition 13.5 A boolean algebra B is defined by a non-empty carrier B and a set of operators FBA and
is a model of BA.

The two first axioms of BA can be replaced by the following ones:

x+ 1 = 1

x · 0 = 0

Some other properties also hold in boolean algebras:

x+ x = x

x · x = x

x+ y = x̄ · ȳ
x · y = x̄+ ȳ

¯̄x = x

January 28, 2006 rewriting solving proving

13.2 Boolean unification 175

But in order to get a decision procedure for equality of boolean formulas through rewriting, the structure
of boolean ring is needed. This can be obtained by defining a new operator ⊕ related to the previous ones
by the following axiom:

x⊕ y = (x+ y) · (x · y)
or equivalently

x⊕ y = (x̄ · y) + (x · ȳ)
So a first possible method to solve equations in boolean algebra is to enrich the signature with the new

symbol ⊕, to use the previous unification method in boolean rings and to translate back the solution by
eliminating ⊕. Another method is described below in the more general framework of primal algebras.

13.2.5 Primal algebras

We now generalize the class of boolean algebras to primal algebras, and propose another unification method
that further allows doing unification in finite algebras. An algebra is finite when its carrier and its set of
functions are both finite. It can be given a richer structure of primal algebra, in which every finitary function
on the carrier can be composed from the basic operations. The 2-elements Boolean algebra is the simplest
example of primal algebra, since every truth-function can be expressed in terms of the basic connectives, for
instance · (and) and ¯ (not).

Let us first make clear the relationship between finite algebras, primal algebras and Boolean algebras.
The main result is Theorem 13.5 that states an isomorphism between a primal algebra and an adequate term
algebra.

Let F be a set of function symbols, X a set of variables, and A an F -algebra, whose carrier is denoted
by A. T (F ,X) is the free F -algebra over X .

An assignment α is a mapping from X to A; it uniquely extends to an homomorphism α from T (F ,X)
to A. The set of all assignments is denoted by ASSXA or ASSA, when X is clear from the context.

A term t built on a set of function symbols F and m variable symbols in an ordered set of variables X ,
defines a function tA : Am → A as follows:

∀(a1, . . . , am) ∈ Am, tA(a1, . . . , am) = α(t),

where α is an assignment such that ∀i ∈ [1 . . .m], α(xi) = ai (also denoted by (xi 7→ ai)). Conversely,

Definition 13.6 [Nip90b] An F -algebra A is primal if any finitary function on its carrier A with an arity
greater than 0 is equal to tA for some t in T (F ,X).

Given a primal F -algebra A such that F is a finite set of finitary function symbols, its carrier A is
necessarily finite. In the sequel, only finite primal algebras are considered. To any finite algebra, we can
associate a primal algebra with the same carrier and an extended set of function symbols.

Definition 13.7 Given the F -algebra A with the carrier A = {0, . . . , n − 1}, the enriched finite algebra A
is defined by the carrier A, and the set of function symbols

F = F ∪ {⊥, [1], . . . , [n− 2],>, C0, . . . , Cn−1,+, ·}

interpreted as follows:
⊥A = 0
>A = n− 1
∀i ∈ A \ {0, n− 1}, [i]A = i
∀i ∈ A, ∀x ∈ A, CiA(x) = if x = i then n− 1 else 0
∀(x, y) ∈ A2, x+A y = max(x, y)
∀(x, y) ∈ A2, x ·A y = min(x, y).

Example 13.16 The algebra defined by the carrier A = {0, 1} together with the set of additional operators
of Definition 13.7 is the 2-elements Boolean algebra. C0 corresponds to ¯ (not) and C1 is the identity.

The algebra A is primal [Nip90b], since any function f : Am → A is equal to the functional interpretation
of the term ∑

(a1,...,am)∈Am

Ca1(x1) · · ·Cam
(xm) · [f(a1, . . . , am)] (POST)

January 28, 2006 rewriting solving proving

176 Restricted semantic unification

where [f(a1, . . . , am)] denotes the operator corresponding to the value taken by the function f on (a1, . . . , am).
Intuitively, this term represents the truth table of the function f . It may be obtained by decomposing first

f(x1, . . . , xm) = C0(x1) · f(0, x2, . . . , xm) +C1(x1) · f(1, x2, . . . , xm) + . . . Cn−1(x1) · f(n− 1, x2, . . . , xm)
and iterating further the decomposition in each term of the sum.
We now exhibit a finite set AF of equational axioms such that each term t ∈ T (F ,X), is equal modulo

AF to a specific canonical form, which is the POST decomposition of tA.

Definition 13.8 Let AF be the finite set of axioms on T (F ,X):

x+ (y + z) = (x+ y) + z x+⊥ = x
x+ y = y + x x+> = >

x · (y · z) = (x · y) · z x · ⊥ = ⊥
x · y = y · x x · > = x

x · (y + z) = x · y + x · z x+ x = x
x+ (y · z) = (x+ y) · (x+ z) x · x = x

∀f ∈ Fp, ∀i ∈ A, Ci(f(x1, . . . , xp)) =
∑

fA(i1,...,ip)=i

Ci1(x1) · · ·Cip(xp)

∀i ∈ A, Ci([i]) = >
∀(i, j) ∈ A2, i 6= j, Ci(x) · Cj(x) = ⊥

n−1∑

i=0

Ci(x) = >
n−1∑

i=0

Ci(x) · [i] = x

Example 13.17 If we consider the carrier size n = 2 and F = ∅, the set of axioms given above generates
the Boolean theory.

In order to simplify notation, the product
∏
x∈V Cα(x)(x) will be denoted by

∏
α(V) and called atom,

which is a usual terminology in Boolean algebras.

Theorem 13.4 [KR94a] Any term t in T (F ,X) is equal modulo AF to its canonical form:

∑

{α:V(t)→A}

∏

x∈V(t)

Cα(x)(x) · [α(t)].

Example 13.18 With A = {0, 1}, the term t = x+ y · z is decomposed into the following canonical form:
t =AF C0(x) ·C0(y) ·C0(z) · 0 +C0(x) ·C0(y) ·C1(z) · 0 +C0(x) ·C1(y) ·C0(z) · 0 +C0(x) ·C1(y) ·C1(z) ·

1 + C1(x) · C0(y) · C0(z) · 1 + C1(x) · C0(y) · C1(z) · 1 + C1(x) · C1(y) · C0(z) · 1 + C1(x) · C1(y) · C1(z) · 1.
=AF C0(x) ·C1(y) ·C1(z) + C1(x) · C0(y) · C0(z) +C1(x) · C0(y) · C1(z) +C1(x) ·C1(y) ·C0(z) + C1(x) ·

C1(y) · C1(z).
Another notation is often used in Boolean algebras with the convention that C0(v) = v and C1(v) = v

for any variable v. Then t =AF x · y · z + x · y · z + x · y · z + x · y · z + x · y · z.

As usual with Boolean algebras, the empty sum is by definition equal to ⊥ and the empty product equal
to >. Then, if t is a ground term, we have

t =AF

∑

{α:∅→A}

> · [α(t)] =AF [α(t)],

where α denotes the unique homomorphism from T (F) to A since T (F) is the initial algebra of the class of
F -algebras.

The canonical form of t must be compared to the previous POST decomposition where f corresponds

to tA and f(a1, . . . , am) to α(t).
Theorem 13.4 leads to the next result, useful in the context of constraint solving in primal algebras,

since it justifies to work at the level of terms instead of functions and values. It explains in particular why
unification in the 2-elements Boolean algebra performs unification in the class of Boolean algebras. A similar
property holds between the enriched finite algebra A and the class of models satisfying axioms in AF .

January 28, 2006 rewriting solving proving

13.2 Boolean unification 177

Theorem 13.5 [KR94a] The F-algebras A and T (F ,X)/ =AF have the same equational theorems: for
any universally quantified equality (t = t′), A |= (t = t′) iff t =AF t′. Moreover, A and T (F)/ =AF are
isomorphic.

Corollary 13.1 The presentation (F , AF) is ω-complete, i.e. the algebras T (F ,X)/=AF and T (F)/=AF

have the same equational theorems: for any universally quantified equality (t = t′), T (F)/=AF |= (t = t′) iff
t =AF t

′.

Theorems 13.4 and 13.5 can be obtained as consequences of more general results on the variety of primal
algebras given in [Fos53].

Unification in primal algebras has been studied in [Nip90b] by generalizing algorithms for solving equa-
tions in finite Boolean rings and algebras. We give here a different proof technique derived from [BES+90],
where a method is proposed for computing a most general unifier in a primal algebra whose carrier is of
cardinality n. We describe the method in the case of equation solving, but it works as well if other constraints
expressed with predicates defined on the carrier of the algebra are considered.

In the context of a finite algebra, the set Sol(e) of solutions of an equation e is usually easy to compute
since the carrier A is finite: just consider all assignments of variables to their possible values and check for
each of them whether the equation is satisfied. But we are rather interested in a more compact representation
of the set of solutions, provided by a complete set of unifiers, or even better by a most general unifier. To
analyze the problem, let us first characterize a most general unifier σ of e thanks to a surjective mapping

between assignments from ASS
V(σ(e))
A to Sol(e).

For a given e, a substitution σ defines a mapping σe : ASS
V(σ(e))
A 7→ ASS

V(e)
A , which maps any

α ∈ ASS
V(σ(e))
A to the assignment defined by ∀x ∈ V(e), σe(α)(x) = α(σ(x)). This relation extends by

straightforward induction, to terms built on V(e).

Let Ran(σe) denote the range of σe: Ran(σe) = {σe(α)|α ∈ ASSV(σ(e))
A }.

Example 13.19 In the 2-elements Boolean algebra, consider the equation e = (x =? x + y) and the
substitution σ = {y 7→ x}. σe maps the assignment (x 7→ 0) onto (x 7→ 0)(y 7→ 0) and (x 7→ 1) onto
(x 7→ 1)(y 7→ 1).

The next result reduces the symbolic solving problem to a necessary and sufficient condition on σe.

Proposition 13.2 A substitution σ is a unifier of the equation e if and only if Ran(σe) ⊆ Sol(e)|V(e). If
there exists a substitution σ such that Ran(σe) = Sol(e)|V(e), σ is a most general unifier of e.

Proof: Let us assume that e is (t1 =? t2). A substitution σ is a unifier of e if and only if ∀α, α(σ(t1)) =
α(σ(t2))
if and only if ∀α, σe(α)(t1) = σe(α)(t2) if and only if Ran(σe) ⊆ Sol(e)|V(e). Indeed the equation e has
no unifier if Sol(e) is empty. Furthermore, there is a very simple way to be sure that two substitutions

are comparable with ≤V(e)
AF . Let σ and σ′ be two substitutions and e an equation. let us first prove

that

Ran(σ′e) ⊆ Ran(σe)

iff

σ ≤V(e)
AF σ′.

(⇒) An assignment from V(σ′(e)) to A is denoted by α′. By assumption, we have

∀α′∃α, ∀x ∈ V(e), α′(σ′(x)) = σ′e(α
′)(x) = σe(α)(x) = α(σ(x)).

So there exists

u : ASS
V(σ′(e))
A → ASS

V(σ(e))
A

such that

∀α′ ∀x ∈ V(e), α′(σ′(x)) = u(α′)(σ(x)).

Let µ be the substitution

{x 7→
∑

{α′:V(σ′(e))→A}

∏
α′(V(σ′(e))) · [u(α′)(x)]}x∈V(σ(e)).

January 28, 2006 rewriting solving proving

178 Restricted semantic unification

According to the definition of additional operators in F , we have µσ(e) = u. Then

∀α′ ∀x ∈ V(e), α′(µ(σ(x))) = µσ(e)(α′)(σ(x)) = u(α′)(σ(x)) = α′(σ′(x)).

So in the equational theory AF ,

∀x ∈ V(e), σ′(x) =AF µ(σ(x)).

(⇐) The notation is analogous to the if-part. Let us assume without loss of generality that V(µ(σ(e))) =
V(σ′(e)).

∀α′ ∀x ∈ V(e), σ′e(α
′)(x) = α′(σ′(x))

= α′(µ(σ(x)))

= µσ(e)(α
′)(σ(x))

= σe(µσ(e)(α
′))(x).

That is Ran(σ′e) ⊆ Ran(σe).

We get the result as corollary: if there exists a substitution σ such that Ran(σe) = Sol(e)|V(e), σ is a
(unique) most general unifier of e. 2

Now the problem is to prove the existence of such a substitution σ. This is done by giving explicitly the
construction of a mapping σe from assignments of new variables Y (introduced to express all assignments
α : V(σ(e)) 7→ A) to assignments of variables V(e). The number of new variables in Y must be chosen
as small as possible but satisfying the condition n|Y | ≥ |Sol(e)|V(e)|. Indeed since σe is a mapping, we
necessarily have

|ASSYA | ≥ |Ran(σe)| = |Sol(e)|V(e)|.
Moreover |ASSYA | is equal to |A||Y | where |A| = n. In the worst case, |Y | is equal to |V(e)|. Then any
surjective mapping of ASSYA onto Sol(e)|V(e) can be used as the mapping σe.

Example 13.20 In the 2-elements Boolean algebra, consider the equation e = (x + y · z =? x · y · z). An
assignment (for instance β = (x 7→ 0)(y 7→ 0)(z 7→ 0)) is next abusively denoted by its atom (x · y · z for β)).
The reader can check that Sol(e) = {x · y · z, x · y · z, x · y · z, x · y · z}.

Since |Sol(e)| = 4, the condition 2|Y | ≥ 4 implies |Y | = 2 as the smallest possibility. So let us consider
two new variables y1 and y2. Then the mapping σe can be chosen as follows:

σe(y1 · y2) = x · y · z σe(y1 · y2) = x · y · z σe(y1 · y2) = x · y · z σe(y1 · y2) = x · y · z

We are now able to explicit a most general unifier, thanks to the canonical form of σ(x) in the theory
AF , for each x ∈ V(e).

Theorem 13.6 Let e be an equation, Y a finite set of variables disjoint of V(e) and σe a mapping from

ASSYA to ASS
V(e)
A such that Ran(σe) = Sol(e)|V(e). The substitution

σ = {x 7→
∑

{α:Y→A}

∏
α(Y) · [σe(α)(x)]}x∈V(e)

is a most general unifier of e.

Proof: According to Theorem 13.4, for any x ∈ V(e),

σ(x) =AF

∑

{α:Y→A}

∏
α(Y) · [α(σ(x))]

and α(σ(x)) = σe(α)(x) by construction. The property of σ to be a most general unifier results from
Proposition 13.2. 2

Example 13.21 (Example 13.20 continued: e = (x + y · z =? x · y · z)). σe(α)(x) = 1 if α corresponds to
the atom y1 · y2, σe(α)(y) = 1 if α is y1 · y2 or y1 · y2, σe(α)(z) = 1 if α is y1 · y2 or y1 · y2. After simplication,
we get the most general unifier

(x 7→ y1 · y2)(y 7→ y1)(z 7→ y2).

January 28, 2006 rewriting solving proving

13.2 Boolean unification 179

In order to deal with the danger of exponential complexity, inherent to boolean algebra and similar
structures, a computational representation of primal algebras using directed acyclic graphs (dags) can be
used. Having fixed an ordering on its variables, a function t of m variables x1, . . . , xm is associated to a
n-ary tree: If t is a constant 0, . . . , n − 1, then the tree consists of just one node labelled 0, . . . , n − 1,
otherwise the tree for t is obtained by creating a new node whose sons are the trees associated respectively
to t(0, x2, . . . , xm), . . . , t(n − 1, x2, . . . , xm). To get a dag, duplicated subterms are eliminated. Such a tree
contains all the information on the decomposition of the function t. Each path in the tree leading to a
constant i ∈ [0, . . . , n − 1] corresponds to an atom of the POST decomposition (i.e. an assignment) for
which t takes the value i.
Exercice 46 — Build the binary tree associated to the boolean fonction f(x1, x2, x3) = x1 · x2 + x3 and the

associated dag.

Answer:

To conclude this section, several examples of unification in primal algebras are given. The first one deals
with modeling digital circuits and verifying their correctness. The following example comes from [DSvH87].

BJH

F

EY

A

L

M
O

PKIGX

N

Figure 13.1: Le circuit CROSS

Example 13.22 The CROSS circuit on Figure 13.1 is only composed of AND, OR and NOT gates. It thus
can be specified in Boolean algebra by the following set of equations:






G =? X
E =? Y
F =? X · Y
I =? G+ F
H =? E + F

K =? I
J =? H
M =? K + F
L =? J + F
O =? L+M
P =? K
N =? J
A =? P ·O
B =? N ·O

The unification algorithm applied to this system of equations computes the most general unifier

{X 7→ Y1, Y 7→ Y2, A 7→ Y2, B 7→ Y1}.

This provides a proof of the fact that the circuit really exchanges its entries. Another possible use of this
system is to express the outputs A,B (which are then the variables) with respect to entries X,Y (considered
as constants in this case).

Another example is a crypto-arithmetic puzzle, where arithmetic modulo is involved.

January 28, 2006 rewriting solving proving

180 Restricted semantic unification

Example 13.23 The lion and the unicorn:
”When Alice entered the forest of furgetfulness, she did not forget everything, only certain things. She

often forgot her name, and the most likely to forget was the day of the week. Now, the lion and the unicorn
were frequent visitors to this forest. These two are strange creatures. The lion lies Mondays, Tuesdays
and Wednesdays and tells the truth on the other days of the week. The unicorn, on the other hand lies on
Thursdays, Fridays and Saturdays, but tells the truth on the other days of the week. One day Alice met the
lion and the unicorn resting under a tree. They made the following statements:

Lion: Yesterday was one of my lying days.
Unicorn: Yesterday was one of my lying days.
From these statements, Alice who was a bright girl, was able to deduce the day (d) of the week. What

was it?”
In other words, the lion (resp. the unicorn) tells the truth today and lied yesterday, or lies today and

told the truth yesterday.
To every day of the week is associated an integer in [0, 6]: 0 for monday,. . ., 6 for sunday. The operator

+7 is addition modulo 7. If d ∈ [0, 6] corresponds to the day j, then d+7 6 corresponds to the previous day.
So the next problem has to be solved:

(d = 0 ∨ d = 1 ∨ d = 2) ∧ (d+7 6 = 3 ∨ d+7 6 = 4 ∨ d+7 6 = 5 ∨ d+7 6 = 6)

∨ (d+7 6 = 0 ∨ d+7 6 = 1 ∨ d+7 6 = 2) ∧ (d = 3 ∨ d = 4 ∨ d = 5 ∨ d = 6)
∧

(d = 3 ∨ d = 4 ∨ d = 5) ∧ (d+7 6 = 0 ∨ d+7 6 = 1 ∨ d+7 6 = 2 ∨ d+7 6 = 6)

∨ (d+7 6 = 3 ∨ d+7 6 = 4 ∨ d+7 6 = 5) ∧ (d = 0 ∨ d = 1 ∨ d = 2 ∨ d = 6)

In order to translate the problem in a primal algebra, the following properties are used:





x = i ⇔ Ci(x) = >
(t = >) ∨ (t′ = >) ⇔ t+ t′ = >
(t = >) ∧ (t′ = >) ⇔ t · t′ = >

So the previous problem is equivalent to:





> =? (C0(d) + C1(d) + C2(d)) · (C3(d+7 6) + C4(d+7 6) + C5(d+7 6) + C6(d+7 6))
+ (C0(d+7 6) + C1(d+7 6) + C2(d+7 6)) · (C3(d) + C4(d) + C5(d) + C6(d))

> =? (C3(d) + C4(d) + C5(d)) · (C0(d+7 6) + C1(d+7 6) + C2(d+7 6) + C6(d+7 6))
+ (C3(d+7 6) + C4(d+7 6) + C5(d+7 6)) · (C0(d) + C1(d) + C2(d) + C6(d))

The only solution is d = 3.

Example 13.24 Inverse of a matrix in arithmetic:

M =




1 2 3
1 1 1
2 1 1





M−1 =




a b c
d e f
g h i



 = ?

Carrier size : N = 4.





a+4 2 ·4 d+4 3 ·4 g =? 1
b+4 2 ·4 e+4 3 ·4 h =? 0
c+4 2 ·4 f +4 3 ·4 i =? 0
a+4 d+4 g =? 0
b+4 e+4 h =? 1
c+4 f +4 i =? 0
2 ·4 a+4 d+4 g =? 0
2 ·4 b+4 e+4 h =? 0
2 ·4 c+4 f +4 i =? 1

The returned solution is

a = 0, b = 3, c = 1, d = 3, e = 1, f = 2, g = 1, h = 1, i = 1.

January 28, 2006 rewriting solving proving

Chapter 14

Procedures for semantic unification

14.1 A Semidecision procedure

14.1.1 General E-unification

As we have seen, equational unification is undecidable since unification of ground terms boils down to the
word problem. It is indeed semi-decidable by interleaving production of substitutions with generation of
equational proofs. Gallier and Snyder gave a complete set of rules (GS-Unify) for computing a complete
set of unifiers to a unification problem P in an arbitrary theory E [GS87, GS89, Sny88].

Delete P ∧ s =?
E s 7→7→ P

Decompose P ∧ f(~s) =?
E f(~t) 7→7→ P ∧ s1 =?

E t1 ∧ . . . ∧ sn =?
E tn

Coalesce P ∧ x =?
E y 7→7→ {x 7→ y}P ∧ x =?

E y
if x, y ∈ Var(P) and x 6= y

Eliminate P ∧ x =?
E s 7→7→ {x 7→ s}P ∧ x =?

E s
if x 6∈ Var(s), s /∈ X and x ∈ Var(P)

LazyParamodulate P ∧ s =?
E t 7→7→ P ∧ s|p =?

E l ∧ s[r]p =?
E t

if s|p 6∈ X and s|p(Λ) = l(Λ)
where l = r ∈ E

GS-Unify: Gallier and Snyder’s rules for E-unification

A major tool used for E-unification is paramodulation, that is, the use of some equation in the set E.
Each time such an equation is used in the coming sets of rules, the assumption is tacitly made that the
variables of the equation are renamed to avoid possible captures.

Gallier and Snyder prove that for any E-unifier γ of a problem P , there exists a sequence of rules
(where Decomposition is always applied immediately after LazyParamodulate) whose result is a tree
solved form yielding an idempotent unifier σ ≤ γ. In this sense, the set of rules is complete. This result is
improved in [DJ90b] where a restrictive version of LazyParamodulate is proved to be complete. General
E-unification transformations have also been given in [Höl89].

Some improvements can be made on the above set for some sets E of equations: a failing path in the tree
of inferences is either infinite or else its leaf is labeled by a set of equations not in solved form. Some rules
may sometimes be added to the previous set in order to obtain failing leaves: The set of conflicting symbols
C is the largest subset of F × F such that (f, g) ∈ C if and only if the equation f(~s) = g(~t) has no unifier.

Conflict is, of course, sound and complete for conflicting symbols and hence can be added to the above
set in order to get failure nodes. In a similar way we can introduce the set of decomposable symbols, for
which Decompose is sound and complete. In this case the rules Mutate and Splice should not apply.
Hence a symbol f is decomposable if there are no collapse axioms, and f is not the top function symbol of a
left- or right- hand side of an equation. Decomposable symbols were introduced in [Kir84a], and conflicting
ones in [Mza85, Mza86].

14.2 Narrowing

Narrowing is a relation on terms which generalize rewriting in the way that it uses unification instead
of matching in order to fight a rule whose application results in the complete instanciation and one step

January 28, 2006 rewriting solving proving

182 Procedures for semantic unification

reduction on the narrowed term. This relation has been first introducted by M. Fay in order to perform
unification in equational theories presented by a confluent and terminating term rewriting system. It is one
of the main application of narrowing that we are presenting in details in this section. Another application
of narrowing is its use as an operational semantics of logic and functional programming languages like
BABEL [MNRA92], EQLOG [GM86] and SLOG [Fri85b] among many others.

Narrowing a term is finding the minimal instanciation of it such that one rewrite step becomes applicable,
and to apply it. This consists of replacing a non-variable subterm which unifies with a left-hand side of a
rewrite rule by the right-hand side, and instantiating the result with the computed most general unifier. If
this process is applied to an equation seen as a term with top symbol =?, and is iterated until finding an
equation whose both terms are syntactically unifiable, then the composition of the most general unifier with
all the substitutions computed during the narrowing sequence yields a unifier of the initial equation in the
equational theory. The narrowing process that builds all the possible narrowing derivations starting from
the equation to be solved, is a general unification method that yields complete sets of unifiers, provided that
the theory can be presented by a terminating and confluent rewrite system [Fay79, Hul80a, JKK83, MH92].
Furthermore, this method is incremental in that it allows building, from a unification algorithm in a theory
A, a unification procedure for a theory R ∪ A, provided the class rewrite system defined by R and A is
Church-Rosser and terminating modulo A [JKK83].

However, the drawback of such a general method is that it very often diverges and several attempts
have been made to restrict the size of the narrowing derivation tree [Hul80a, RKKL85, Rét87, DS88, You89,
NRS89, KB91, Chr92]. A very successful attempt to solve this problem has been made by J.-M. Hullot
in generalizing narrowing into basic narrowing. It has the main advantage to separate the solving of the
unification constraint from the narrowing process itself. It is in fact a particular case of deduction with
constraints, and is the first such process to have been designed [Hul80a].

In this section we present the two relations of narrowing and basic (or constraint) narrowing and their
application to the unification problem in equational theories presented by terminating and confluent term
rewrite system. We also shortly present the use of narrowing as operational semantics of logic and functional
languages.

14.2.1 Narrowing relations

Definition 14.1 (Narrowing)
A term t is narrowed into t′, at the non variable position p ∈ Dom(t), using the rewrite rule l → r

and the substitution σ, when σ is a most general unifier of t|p and l and t′ = σ(t[r]p). This is denoted
t ;[p,l→r,σ] t

′ and it is always assumed that there is no variable conflict between the rule and the term, i.e.

that Var(l, r) ∩ Var(t) = ∅.
For a given term rewriting system R, this generates a binary relation on terms called narrowing relation

and denoted ;R.

Note that narrowing is a natural extension of rewriting since unification is used instead of matching. As a
consequence the rewriting relation is always included in the narrowing one: −→R ⊆;R since, for terms with
disjoint sets of variables, a match is always a unifier.

Example 14.1 If we consider the rule f(f(x))→ x then the term f(y) narrows at position Λ:

f(y) ;[Λ,f(f(x))→x,{(x 7→z),(y 7→f(z))}] z.

On this example, we can notice that narrowing may introduce new variables, due to the unification step.
Now, if we narrow the term g(y, f(y)), we get the following derivation:

g(y, f(y)) ;[2,f(f(x))→x,{(x 7→z),(y 7→f(z))}] g(f(z), z)

;[1,f(f(x))→x,{(x 7→z′),(z 7→f(z′))}] g(z′, f(z′))

. . .

which shows that even if the term rewriting system is obviously terminating, the narrowing derivation may
not be so.

Exercice 47 — Use the system BasicArithmetic on page 118 to narrow the terms succe(succe(0)) + prede(0),

succe(succe(x)) + prede(0), succe(succe(x)) + prede(y).

The following notion of basic narrowing, due to J.-M. Hullot [Hul80a, Hul80c], is a restriction of the
narrowing relation.

January 28, 2006 rewriting solving proving

14.2 Narrowing 183

Definition 14.2 [Basic Narrowing]
Let t be a term and O be a set of non-variable occurences of t: O ⊆ Grd(t). Using the rule l → r of

the system R at occurence p, the narrowing step t ;[p,l→r,σ] t
′ is basic with respect to O if p ∈ O and the

resulting set of positions associated with t′ is:

O′ = O \ {q | q ≥ p} ∪ {p.q | q ∈ Grd(r)}.

This is denoted: (t,O) b;R
[p,l→r,σ] (t′,O′).

A basic narrowing derivation starting from t0 is a sequence of basic narrowing steps, where the initial set
of positions is the set of all non-variable positions of t0:

(t0,Grd(t0)) b;R (t1,O1)
b
;
R (t2,O2)

b
;
R . . .

In such a derivation, On is called the set of basic positions of tn.

One of the reason for introducing this new narrowing relation is that it terminates more often than
standard narrowing. For example coming back to the previous example, we get:

(g(y, f(y)), {Λ, 2}) b;[2,f(f(x))→x,{(x 7→z),(y 7→f(z))}] (g(f(z), z), {Λ}),

and this last term is no more narrowable with respect to the set of positions {Λ}.
Exercice 48 — Use the system BasicArithmetic on page 118 to narrow basically the terms succe(succe(0))+prede(0),

succe(succe(x)) + prede(0), succe(succe(x)) + prede(y).

Following [Hul80a], we will see later that basic narrowing is complete for equation solving modulo equa-
tional theories presented by a confluent and terminating term rewriting system.

Let us come now to another notion of narrowing which generalizes the previous narrowing relations and
allows us to give a more convenient definition of basic narrowing. We first need to introduce constrained
terms which are a special case of constrained formulas (see Section 7.6.2).

Definition 14.3 A constraint term (∃W, t ‖ c) is a couple made of a term t and a system of constraints c
together with a set of existentially quantified variables W . It schematizes the set of all instances of t by a
solution of c with no assumption on W , i.e.

{∃W,σ(t) | σ ∈ Sol(∃W, c)}.

The set of free variables of a constraint term (∃W, t ‖ c) is the union of the set of free variables of t and
the free variables set of c minus W : Var((∃W, t ‖ c)) = Var(t) ∪ Var(c) \W . When W is the empty set,
(∃W, t ‖ c) is simply denoted (∃, t ‖ c).

We consider in this chapter only constraint consisting of system of syntactic equations. This can be
extended to more general constraint languages and domains as proposed for example in [KK89, KKR90,
Cha94] and explained in Section 7.6.

Example 14.2 The formula τ = (f(x, f(a, x)) ‖ ∃z, f(x, z) =? f(g(a, y), f(a, y)) ∧ y =? g(u, b)) is a
constraint term. It schematizes the terms:

f(g(a, g(u, b)), f(a, g(a, g(u, b)))),
f(g(a, g(a, b)), f(a, g(a, g(a, b)))),
f(g(a, g(b, b)), f(a, g(a, g(b, b)))),
. . .

and Var(τ) = {x, y, u}.

Constraint terms allow giving a very simple and concise definition of a relation similar to basic narrowing
and called constraint narrowing:

Definition 14.4 (Constraint narrowing)
A constraint term (∃W, t[u]p ‖ c) c-narrows (narrows with constraints) into the constraint term

(∃W ∪ Var(l), t[r]p ‖ c ∧ u =?
∅ l) at the non-variable position p ∈ Grd(t), using the rewrite rule l → r

of the rewrite system R, if the system c ∧ u =?
∅ l is satisfiable and provided that the variables of the rule

and the constraint terms are disjoint: Var(l, r) ∩ Var((t ‖ c)) = ∅. This is denoted:

(∃W, t[u]p ‖ c) c;R
[p,l→r] (∃W ∪ Var(l), t[r]p ‖ c ∧ u =?

∅ l).

January 28, 2006 rewriting solving proving

184 Procedures for semantic unification

Example 14.3 If we consider as previously the rule f(f(x)) → x, then the term (f(y) ‖ T) c-narrows at
position Λ:

(∃, f(y) ‖ T) c;[Λ,f(f(x))→x] (∃{x}, x ‖ f(y) =?
∅ f(f(x))),

and similarly:

(∃, g(y, f(y)) ‖ T) c;[2,f(f(x))→x,{(x 7→z),(y 7→f(z))}] (∃{x}, g(y, x) ‖ f(y) =? f(f(x))).

As one can infer from the previous definitions and examples, there is a close relationship between basic
narrowing derivations and constraint narrowing ones. In fact, it follows directly from the definition of the
set of basic positions that the terms in a constraint narrowing derivation are a representation of the set of
basic positions:

Lemma 14.1 Let R be a term rewriting system and for all i, let ti, si be terms such that furthermore
s0 = t0. If:

(t0,Grd(t0)) b;R
[p1,l1→r1]

(t1,O1)
b
;
R
[p2,l2→r2] (t2,O2)

b
;
R
[p3,l3→r3]

. . . ,

and:
(∃W0, s0 ‖ T) c;R

[p1,l1→r1]
(∃W1, s1 ‖ c1) c;R

[p2,l2→r2]
(∃W2, s2 ‖ c2) c;R

[p3,l3→r3]
. . . ,

then si|Oi
= ti|Oi

, i.e. the terms si and ti are equal up to all positions in Oi, i.e. ∀p ∈ Oi, si(p) = ti(p).

Proof: By a straightforward application of the definitions of basic and constraint narrowing. 2

14.2.2 Narrowing versus rewriting

The relation between rewriting and narrowing can be made more precise than just the trivial relationship
−→R ⊆;R.

Lemma 14.2 For any term t and term rewriting system R, if t ;R
[m,g→d,σ] t

′ then σ(t)−→R
[m,g→d] t

′.

This can be pictured as follows:

σ(t)

[m,g→d]

$$HH
HH

HH
HHH

t
� [m,g→d,σ] //
?

σ

??��������
σ(t[d]m)

The dual of this property, i.e. the rewriting to narrowing correspondance schema is more subtle and has
been exhibited first by J.-M. Hullot [Hul80a, Hul80c].

Proposition 14.1 Let t0 be a term and ρ be a R-normalized substitution such that ρ(t0)−→R
[m,g→d] t

′
1.

Then there exist substitutions σ et µ such that:

1. t0 ;R
[m,g→d,σ] t1,

2. µ(t1) = t′1,

3. ρ =Var(t0) µσ,

4. µ is R-normalized.

ρ(t0)
g→d // t′1

t0
� [m,g→d,σ] //

_

ρ

OO

t1
_

µ

OO

Proof: Let us first prove that t0 is R-narrowable. Since ρ(t0) is R-reducible at position m using rule g → d
(which is always supposed such that Var(g) ∩Var(ρ(t0)) = ∅), there exists a substitution γ such that:

γg = ρ(t0)|m with Var(g) ∩ Dom(ρ) = ∅,
Var(g) ∩ Var(ρ(t0)) = ∅ and
Dom(γ) ⊆ Var(g).

By the previous (non restrictive) hypothesis, ρ(g) = g, Dom(γ) ∩ Var(ρ(t0)) = ∅, and we have:

γρg = γρ(t0)|m,

which shows that γρ is an unifier of g and t0|m. Since γ and ρ have been chosen with disjoint domains
(which is always possible), we have also γρ = γ + ρ.

January 28, 2006 rewriting solving proving

14.2 Narrowing 185

Since we need to preserve the set of variables under consideration, let us call themW = Var(g)∪Var(t0).
There exists a most general unifier σ of g and t0|m outside W , and a substitution δ such that:

δ.σ =Var(g)∪Var(t0|m) γ + ρ, (14.1)

which proves that t0 is R-narrowable using the rule g → d at position m.
In order to extend the relation (14.1) to the set of variables Var(g) ∪ Var(t0), as needed later on, let
us define:

δ(x) = ρ(x) if x ∈ X − (Var(g) ∪ Var(t0|m)).

This is consistent with (14.1) since σ has been chosen outside W and thus Ran(σ)∩W = ∅. With this
extension of δ, we now get:

δ.σ =X γ + ρ.

As a restriction of it, and thanks to the definition of γ:

δ.σ =Var(ρ(t0)) ρ. (14.2)

We can now prove the last statements of the theorem.
By defining µ to be δ, the relation (14.2) proves statement (3). Let us now check statement (2) i.e.
µ(t1) = t′1.

µ(t1) = µ.(σ(t0)[m← d]) by definition of t1,
= (µ.σ)t0[m← µσ(d)]
= ρ(t0)[m← ρ(d)] because of (14.2),
= t′1 by definition of t′1.

2

This result can be easily extended by induction on the number of steps to any rewriting derivation:

Corollary 14.1 Let t0 be a term and ρ be a R-normalized substitution such that:

ρ(t0)−→R
[m1,g1→d1] . . .−→R

[mn,gn→dn] tn.

Then there exist substitutions σi(i = 1, . . . , n) et µ such that:

1. t0 ;R
[m1,g1→d1,σ1]

t1 . . . ;
R
[mn,gn→dn,σn] tn,

2. µ(tn) = t′n,

3. ρ =Var(t0) µσn . . . σ1.

14.2.3 Narrowing for unification

We now use narrowing as a process to compute complete set of R-unifiers. This process is always correct
and we study in which cases it is complete.

In order to simplify the description of the process, we introduce, for any rewrite system R on T (F ,X),
a new rule x =?

R x → T in which the symbol =?
R is considered as a new symbol of the signature (i.e.

=?
R 6∈ F). Such a rule is applicable on an equation s =?

R t if and only if s and t are identical. A narrowing
step using this rule on an equation s =?

R t is possible iff s and t are syntacticaly unifiable. This leads to an
easy characterisation of R-unifiers:

Lemma 14.3 Let σ be a substitution, s and t be terms and R be any confluent rewrite system. Let

R̄ = R ∪ {x =?
R x→ T}. σ is a R-unifier of s and t if and only if σ(s =?

R t)
∗−→R̄

T.

Proof: If σ is a R-unifier of s and t then σ(s) =R σ(t) and since R is confluent:

∃u ∈ T (F ,X), σ(s)
∗−→R

uR
∗←− σ(t)

and thus:

σ(s =?
R t) = (σ(s) =?

R σ(t))
∗−→R

(u =?
R u)−→R̄

x=?
R
x→T

T.

Conversely, by definition of R̄, the derivation should be of the following form:

σ(s =?
R t) = (σ(s) =?

R σ(t))
∗−→R̄

(u =?
R v)−→R̄

x=?
Rx→T

T,

which means that u and v are syntactically equal terms and thus σ(s) =R u = v =R σ(t) which shows
that σ is a R-unifier of u and v. Notice that in this case the confluence hypothesis is useless. 2

January 28, 2006 rewriting solving proving

186 Procedures for semantic unification

We can now prove the correctness of narrowing with respect to the computation of R-unifiers. Note that
no hypothesis on the rewrite system R is required:

Theorem 14.1 (Correctness)
Let R be a term rewriting system and R̄ = R ∪ {x =?

R x→ T}. For any equation s =?
R t, if:

s =?
R t ;

R̄
[σ1] s1 =?

R t1 ;
R̄
[σ2] . . . ;

R̄
[σn] T,

then σn . . . σ1 is a R-unifier of s =?
R t.

Proof: By Lemma 14.2,
s =?

R t ;
R̄
[σ1] s1 =?

R t1 ;
R̄
[σ2] . . . ;

R̄
[σn] T

implies that σn . . . σ1(s =?
R t)

+−→
R̄

T. By Lemma 14.3 (as said, the confluence hypothesis is not
necessary for this direction), σn . . . σ1 is a R-unifier of s and t. 2

The completeness result is of course more complicated to prove and needs (at least in a first stage) to
assume the term rewrite system R both confluent and terminating:

Theorem 14.2 (Completeness)
Let R be a terminating and confluent term rewriting system and R̄ = R ∪ {x =? x → T}. If the

substitution σ is a R-unifier of the terms s and t, then there exists a narrowing derivation:

s =?
R t ;

R̄
[σ1]

. . . ;R̄
[σn] T

such that:
σn . . . σ1 ≤Var(s,t)R σ.

Proof: see [MH92]. It works in the same way as the completeness proof of constrained narrowing given
later in this chapter. 2

In this last result, the subscript R can be dropped out in σn . . . σ1 ≤Var(s,t)R σ when considering only
normalized substitutions. This allows then to conclude:

Corollary 14.2 Narrowing is complete for confluent term rewriting systems with respect to normalizable
substitutions.

Example 14.4 Consider the rewrite system R = {x+ 0→ x, x+ s(y) = s(x+ y)}. Then let us narrow the
equation x+ y =?

R s(0):

x+ y =?
R s(0) ;

R
Λ,x′+0→x′,{x′ 7→x,y 7→0} x =?

R s(0) ;
R̄
Λ,x=?

Rx→T,{x 7→s(0)} T,

and thus {x 7→ s(0), y 7→ 0} is proved to be a R-unifiers.
Note that the rewrite rule x + s(y) = s(x + y) can always narrow the term that it has just narrowed

and thus the narrowing process will not end on this quite simple example, but it discovers of course the two
solutions of the equation.

Exercice 49 — Use the system BasicArithmetic on page 118 to solve the equation x ∗ x =? x + x.

14.2.4 Constraint narrowing for unification

Similarly to the previous section, we now consider the problem of generating complete sets of R-unifiers
using the relation of constraint narrowing.

Since we consider constraint equation systems, let us first defined what a solution of such an entity is.
Note that we give the definition in the particular case where the constraint consists in a system of equations
in the empty theory. For a more general definition, see [KR93].

Definition 14.5 Let R be a term rewriting system on T (F ,X). A constrained system is a constraint term
(∃W,P ‖ c) where P =

∧
i=1,...,n si =?

R ti is a system of R-equations, i.e. a term in T (F ∪ { ∧ ,=?
R},X).

In general c can be any kind of constraint but, in the restricted case that we are dealing with here, it is a
system of equations in the empty theory: c =

∧
i=1,...,n si =?

∅ ti.
A R-unifier of a constrained system (∃W,P ‖ c) is a substitution σ which is ∅-unifier of (∃W, c) and

R-unifier of (∃W,P).

January 28, 2006 rewriting solving proving

14.2 Narrowing 187

For example (x =?
R y ‖ F) has no R-unifier. The R-solutions of (s =?

R t ‖ T) are the same as the
R-unifiers of s =?

R t.

Proposition 14.2 (Correctness)
Let R be a term rewriting system. If:

G = (∃W, s =?
R t ‖ c) c;R

[1.p,l→r] G
′ = (∃W ∪ Var(l), s[r]p =?

R t ‖ c ∧ s|p =?
∅ l),

then:

UR(G′) ⊆ UR(G).

Proof: Let σ be a R-unifier of G′. Then by definition, σ is an ∅-unifier of (∃W ∪ Var(l), c ∧ s|p =?
∅ l) and

thus of (∃W, c).
Now, the fact that σ is a R-unifier of (∃W, s =?

R t) comes from:

σ(t) =R σ(s[r]p) = σ(s)[σ(r)]p =R σ(s)[σ(l)]p = σ(s[l]p) = σ(s).

2

The completeness of the narrowing process with respect to R-unification is derived from the next results
that are quite similar to those of Section 14.2.3. The main and quite important difference relies on the way
the proofs are conducted. Results and proofs are then generalisable to more complicated constraint systems
like the one induced by associative-commutative equality. This is not at all the case of the other proof
methods, that several attempts to generalize have shown to be quite technical.

Proposition 14.3 Let R be a terminating term rewriting system, (∃W, t ‖ c) be a constraint term and ρ
be a R-normalized substitution such that ρ(t) is R-reducible and ρ is ∅-unifier of c. Then there exist:

• a rule l→ r ∈ R and an occurence m ∈ Grd(t),

• a substitution µ,

such that:

1. (∃W, t ‖ c) c;R
[m,l→r] (∃W ∪ Var(l), t[r]m ‖ c ∧ l =?

∅ t|m),

2. µ(t[r]m) = t′,

3. µ is R-normalized,

4. µ is an ∅-unifier of (∃W ∪ Var(l), c ∧ l =?
∅ t|m),

5. ρ =Var(t)∪Var(c) µ.

Proof: Since ρ(t) is reducible, let us take one of its innermost redex determined by a rule l → r is R and
an occurence m ∈ Grd(t). So we have ρ(t)−→R

[m,l→r] t
′, and there exists a substitution γ such that

(ρ(t))|m = γ(l) and t′ = ρ(t)[γ(r)]m. Since ρ is normalized, we necessarily have (ρ(t))|m = ρ(t|m). And
since ρ(t|m) = γ(l), t|m and l are ∅-unifiable. Notice that γ is necessarily R-normalized since m is an
innermost position of a redex in ρ(t).

Let us define the substitution µ on Var(t) ∪ Var(c) ∪ Var(l) by:

• µ =Var(t)∪Var(c) ρ and,

• µ =Var(l) γ.

Since µ =Var(t)∪Var(c) ρ, µ is ∅-unifier of c. By definition, µ is also ∅-unifier of t|m =?
∅ l and thus this

shows that µ is an ∅-unifier of c ∧ l =?
∅ t|m.

Now we simply have: µ(t[r]m) = µ(t)[µ(r)]m = ρ(t)[γ(r)]m = t′.

Last but not least, µ is R-normalized since ρ and γ are so. 2

This result extends easily, by induction based on the rewrite relation, to a derivation, yielding the following
result:

January 28, 2006 rewriting solving proving

188 Procedures for semantic unification

Corollary 14.3 Let R be a terminating term rewriting system, (∃W0, t0 ‖ c0) be a constrained term and ρ
be a R-normalized substitution such that ρ(t0) is R-reducible and ρ is a ∅-unifier of c. Then, there exists an
(innermost) rewriting derivation:

ρ(t0)−→R
[m1,g1→d1]

t′1 . . .−→R
[mn,gn→dn] t

′
n,

with tn irreducible, a constraint narrowing derivation:

(∃W0, t0 ‖ c0) c;R
[m1,g1→d1]

(∃W1, t1 ‖ c1) . . . c;R
[mn,gn→dn] (∃Wn, tn ‖ cn)

and substitutions µi such that for all i = 1..n:

1. µ0 = ρ =Var(t0)∪Var(c0) µi,

2. µi(ti) = t′i,

3. µi is R-normalized,

4. µi is ∅-solution of (∃Wi, ci).

We are now ready to apply these results to get completeness constraint narrowing with respect to R-
unification.

Theorem 14.3 Let R be a terminating and confluent term rewriting system and R̄ = R ∪ {x =? x → T}.
If the substitution σ is a R-unifier of the terms s and t, then there exists a constraint narrowing derivation:

(∃∅, s =?
R t ‖ T) c

;
R̄ . . . c;R̄ (∃Wn,T ‖ cn),

such that σ ∈ U∅(cn).

Proof: Since σ is a R-unifier of s and t, we have by confluence and termination of R̄:

σ(s =?
R t) = σ(s) =?

R σ(t)
∗−→R

u =?
R u−→R̄T,

and thus σ(s =?
R t) is R-reducible. We can apply Corollary 14.3 which leads to conclude that there

exists a constraint narrowing derivation leading to T:

(∃∅, s =?
R t ‖ T) c;R

[m1,g1→d1] (∃W1, s1 =?
R t1 ‖ c1) . . . c;R

[mn,gn→dn] (∃Wn,T ‖ cn)

since the last reduction (and thus also narrowing) should be applied with the rule x =?
R x→ T.

Furthermore, taking the notations of Corollary 14.3, µn =Var(s=
?
Rt) σ and µ is an ∅-unifier of (∃Wn, cn),

This yields the conclusion that σ ∈ U∅(cn). 2

Let us consider now the constraint narrowing tree whose root is labelled with the constrained term
(∃∅, s =?

R t ‖ T) and whose edges are all possible constraint narrowing derivations issued from a given node.
In this tree, which is in general infinite, a successful leave is by definition a node labelled by a constrained
term of the form: (∃W,T ‖ c). For a given equation s =?

R t, we denote SNT (s =?
R t) the set of all successful

nodes of the constraint narrowing tree issued from (∃∅, s =?
R t ‖ T).

Thanks to Theorem 14.3, we have:

UR(s =?
R t) ⊆

⋃

(∃W,T ‖ c)∈SNT (s=?
R
t)

U∅(c),

and since constraint narrowing is correct (by Lemma 14.2) we get the equality:

UR(s =?
R t) =

⋃

(∃W,T ‖ c)∈SNT (s=?
Rt)

U∅(c).

This justifies the following main result about constraint narrowing:

Corollary 14.4 The transformation rules described in Figure 14.1, applied in a non deterministic and fair
way to the constraint equation (∃∅, s =?

R t ‖ T), yield constraint equations of the form (∃W,T ‖ c) such that
the mgus of the c’s form altogether a complete set of R-unifiers of s =?

R t.

January 28, 2006 rewriting solving proving

14.2 Narrowing 189

Narrow (∃W, s =?
R t ‖ c)

7→7→
(∃W ∪ Var(l), s[r]p =?

R t ‖ c ∧ s|p =?
∅ l)

if (c ∧ (s|p =?
∅ l)) is satisfiable

Block (∃W, s =?
R t ‖ c)

7→7→
(∃W,T ‖ c ∧ s =?

∅ t)
if (c ∧ (s =?

∅ t)) is satisfiable

Figure 14.1: Narrowing: Unification via constrained narrowing

Note that in the set of rules Narrowing, the Block rule mimics exactly the application of the rule
x =?

R x→ T.

Example 14.5 If we consider the rewrite system R reduced to the only following rule: f(f(y)) → y, then
the constraint equation (∃∅, f(x) =?

R x ‖ T) is rewritten, using the rulesNarrowing as follows:

(∃∅, f(x) =?
R x ‖ T)

7→7→Narrow (∃{y}, y =?
R x ‖ f(f(y)) =?

∅ f(x))
7→7→Block (∃{y},T ‖ y =?

∅ x ∧ f(f(y)) =?
∅ f(x))

7→7→SyntacticUnification (∃{y},T ‖ F)

and thus the equation f(x) =?
R x has no R-unifier.

Exercice 50 — Use the system BasicArithmetic on page 118 to solve the equation x ∗ x =? x + x using constraint

narrowing.

Notice that the previous proof of completeness of constraint narrowing can be extended to equational
constraints. This allows dealing in particular with narrowing modulo associativity and commutativity.
Further Readings:

In detecting redundant narrowing derivations by the LSE-SL reducibility test [KB91, BKW93b], Krisher,
Bockmayr and Werner show that without further restriction on the canonical term rewriting system, a com-
plete strategy with better efficiency is achieved through reducibility tests that allow to detect redundancies in
the derivations. A study of narrowing strategies can be found in [BKW93a].

In the same context, another proposition is done by J.Chabin and P.Réty in Narrowing directed by
a graph of terms [CR91]. Their idea is to generalize the graph of top symbols used by Sivakumar and
Dershowitz [DS88], by a graph of terms built from the rewrite system and the equation to solve.

Combining narrowing and ordered completion is proposed in [Cha94] in order to design a goal oriented
approach.

Narrowing has been extended to narrowing in conditional equational theories [Hus85, Boc93].

Narrowing is also complete for weakly terminating rewrite systems as shown by A. Werner [Wer94].

14.2.5 Applications

Many approaches on the amalgamation of logic programming and functional programming are narrowing-
based [GM86, RKKL85, BL86, DG89]. For a survey, see [Han94]. Narrowing subsumes SLD-resolution and
constitutes a complete inference system if function definitions, considered as a rewrite system, are confluent
and terminating. In the framework of theories with constructors, refined strategies of narrowing can be
designed, such as innermost narrowing [Der83a, Fri85b, BGM87], basic innermost narrowing [Höl88, Han90],
and lazy narrowing [Red85, LPB+87, You89]. These restrictions have the following completeness results and
implementations:

• Innermost narrowing is complete in the case of total functions, provided the underlying theory has
a convergent rewrite system. An implementation of innermost narrowing coupled with rewriting is
provided in SLOG [Fri85b].

January 28, 2006 rewriting solving proving

190 Procedures for semantic unification

• Basic innermost narrowing is similar to innermost narrowing except that axioms of the form f(x) = f(y)
are used for every incompletely defined function f . Basic innermost narrowing is complete provided
the underlying theory has a convergent rewrite system [Höl88]. An implementation of basic innermost
narrowing coupled with rewriting is provided in the language ALF [Han90].

• Lazy narrowing is complete provided the underlying rewrite system is left-linear and non-ambiguous.
The languages K-LEAF [LPB+87] and BABEL [KLMR90] use two implementations of lazy narrowing.

From other points of view, narrowing can also be applied to solving equational disunification [Fer92] and
more generaly to the solving of constraint in combined algebraic domains [KR94b].

Many implementation of narrowing have been designed. Let us mention in particular [JD86, Lin89,
OS88].

January 28, 2006 rewriting solving proving

Part IV

Proving

January 28, 2006 rewriting solving proving

Chapter 15

Proof reduction

15.1 Introduction

This chapter introduces the main concepts underlying all completion processes presented in this book. The
goal is to reach a uniform point of view for all of them, which relies on standard notions of formulas, transition
rules, axioms and proofs.

In a first approximation, completion procedures transform sets of formulas, by applying transition rules
on them. But this view is too simple and must be refined to take into account the great variety of completion
processes. This goal is not so easy to achieve, because of apparently opposed notions that can be pointed
out:

• The different purposes of completion procedures: some of them transform the presentation of a theory.
They are aimed for instance at producing a confluent and terminating rewrite systems, or more generally
at saturating a set of formulas. Others are goal-directed processes for the proof of a given formula and
try to derive a contradiction or an inconsistency.

• Transition rules are of different kinds: some of them are expansion rules and increase the search space
by creating new formulas to be proved, others are contraction rules and make the search space smaller,
by eliminating redundant formulas. The last ones are crucial for efficiency but their use must be
carefully controlled in order to keep the property of completeness of the whole set of transition rules
with respect to the intended kind of proofs.

Section 15.2 introduces the notions of proofs and their transformation. The important notion is the
proof ordering that supports the view of completion procedures as proof reduction processes. Section 15.3
defines in general the concept of completion process and points out its relation with transformation of proofs.
Distinction is made between completion procedures for generating saturated presentations and completion
procedures for theorem proving by refutation. Common concepts of correctness, completeness and fairness
are defined.

15.2 Proof transformation

Given a finite set of sentences S called a presentation, the set of formulas that hold in S is called the theory
of S and denoted by Th(S).

Assume now that the presentation is composed of a set of rules R and a set of equalities P . So S = (R,P)
and we first focus on equational proofs.

Definition 15.1 A proof in S = (R,P) of an equality t = t′ is a sequence of terms {t0, ..., tn} such that
t0 = t, tn = t′ and for 0 < i ≤ n, one of ti−1 ←→P ti, ti−1 →R ti or ti−1 ←R ti holds. Each step is
justified by an axiom l = r ∈ P ∪ R, a position ωi in ti and a substitution σ such that ti|ω = σ(l) and
ti+1 = ti[ω ← σ(r)].

Example 15.1 Consider the rewrite system R:

f(x) → a

c → b.

January 28, 2006 rewriting solving proving

194 Proof reduction

and the set of equalities P :

a = b.

A proof of f(a) = c is for instance
f(a)→R a←→P b←R c

where axioms, position and substitutions are easy to find.

Letters P ,Q will be used to denote proofs and Λ will denote the empty proof, that is the sequence of
terms reduced to one term t. If P is the proof {t0, ..., tn}, P−1 then denotes the converse proof {tn, ..., t0},
σ(P) the proof {σ(t0), ..., σ(tn)} and t[P] the proof {t[t0], ..., t[tn]}. A subproof of P is any proof {ti, ..., tj}
with 0 ≤ i ≤ j ≤ n. We write P [Q] to denote that P contains Q as subproof.

So equational proofs may be defined as terms built on an extended alphabet in which ←, →, ←→ are
function symbols. A precise formalisation of this point of view can be found in [Dev91].

In general we are interested in specific kinds of proofs, for instance in rewrite proofs, of the form s
∗−→R

u
∗←−R t, or in characteristic inconsistencies such as true

∗←→ false. Such proofs will be characterized
as minimal proofs according to the notion of proof orderings described below. A proof ordering defines a
relation on proofs that is closed under substitutions and under contexts. A context may be a term context
but also a proof context if we consider ←→, ← and → as constructor operators for proofs.

Definition 15.2 [Bac87, BD94] A proof ordering is a well-founded binary relation =⇒ on the set of proofs
which satisfies

• for all proofs Q,Q′,P ,
Q =⇒ Q′ implies P [Q] =⇒ P [Q′].

• for all proofs Q,Q′ and any term t,

Q =⇒ Q′ implies t[Q] =⇒ t[Q′].

• for all proofs Q,Q′ and any substitution σ,

Q =⇒ Q′ implies σ(Q) =⇒ σ(Q′).

Proofs orderings are built by formalizing a rewrite relation applied on proofs (considered as terms) and
characterized by proof patterns (considered as rewrite rules). To avoid confusion, we will call this relation
proof transformation.

Definition 15.3 A proof pattern is a schema describing a class of subproofs.
A rewrite proof is characterized by the proof pattern s

∗−→R u
∗←−R t where s, t, u denote arbitrary terms.

A peak is characterized by the proof pattern t′′ ←−R t −→R t
′.

A proof transformation rule is a pair of proof patterns P =⇒ Q. A proof transformation system R is a
set of proof transformation rules.

The proof transformation relation is the rewrite relation generated by R, denoted =⇒R (or =⇒ when R
is clear from context).

Example 15.2 Exemples of proof patterns that will be useful are

t←→p=q
P t′ =⇒ t→p→q

R t′

t′ ←l→r
R t→g→d

R t′′ =⇒ t′ ←→p=q
P t′′

Consider again the rewrite system R:

f(x) → a

c → b.

and the set of equalities P :

a = b.

The proof of f(a) = c in S = (R,P)
f(a)→R a←→P b←R c

January 28, 2006 rewriting solving proving

15.3 Completion procedures 195

is transformed by =⇒ into the proof of f(a) = c in S′ = (R′, P ′)

f(a)→R′ a→R′ b←R′ c

where P ′ = ∅ and R′ is the rewrite system

f(x) → a

c → b

a → b.

The relation =⇒ is defined here on proofs of the presentation S = (R ∪R′, P ∪ P ′).

A proof transformation relation =⇒ is a proof ordering as soon as it is well-founded. Given a presentation
S = (R,P), proving that the proof transformation relation =⇒ terminates implies that any proof has a
normal form, which is minimal in the proof ordering. Termination will be proved by finding a complexity
measure c(P) for each proof P and a well-founded ordering >c on these measures, that satisfy the following
property: P =⇒ Q implies c(P) >c c(Q), for each proof transformation rule. Minimal proofs w.r.t. =⇒ will
correspond to proofs whose complexity measure is minimal.

As an example of the introduced formalism, the Church-Rosser property can now be expressed in the
following way: the rewriting relation →R is Church-Rosser on a set T of elements t, t′, ..., if any proof
t
∗←→R t′ has a rewrite proof. The rewriting relation →R is locally confluent if any peak t′′ ←−R t −→R t′

has a rewrite proof.

Example 15.3 Consider the rewrite system R:

f(x) → a

c → b.

and the set of equalities P :

a = b.

The proof of f(b) = a

f(b)←R f(c)→R a

can be transformed into a rewrite proof

f(b)→R a.

The notion of proof ordering will be most often used to compare two proofs of the same theorem in two
different specifications. But the definition also holds for comparing two proofs of different theorems. These
two uses correspond to different purposes of completion processes, explained in the next sections.

15.3 Completion procedures

Several completion procedures will be considered in the following chapters. They have different purposes but
comon features can be outlined and this section is intended to propose a general definition of a completion
procedure.

First a deduction process applied to a set of formulas of interest is characterized by transition rules
managed by a specific control.

Definition 15.4 A deduction process in a theory T is defined by
- a set of transition rules I that transform presentations S of T and sets of goals (that is formulas of

interest) G.
A transition rule is written as:

Name S;G 7→7→ S;G′

if Condition

- a control ST (also called search plan or deduction strategy) on transition rules.

January 28, 2006 rewriting solving proving

196 Proof reduction

The data given to a deduction process are pairs (S;G) where S is a presentation of the theory T , and G
is the set of formulas we are interested in. When either the presentation or the set of considered formulas
remains constant, we may omit to mention it in the transition rules.

A derivation by a deduction process is a sequence

(S0;G0) 7→7→(S1;G1) 7→7→ . . . 7→7→(Si;Gi) 7→7→(Si+1;Gi+1) . . .

where (Si+1;Gi+1) is deduced from (Si;Gi) by applying a transition rule.
A proof reduction process can be associated to such a derivation. This point of view relies on the

correspondance between the application of transition rules on presentations and goals and the proof trans-
formation on a set of proofs Φ. The proof transformation relation reflects the transition rules if, at each
transition step 7→7→, a given proof either does not change or is transformed into another one by =⇒.

Definition 15.5 The proof transformation relation =⇒ on Φ reflects 7→7→ if whenever (Si;Gi) 7→7→(Si+1;Gi+1)

and P is a minimal proof in Φ using Si∪Gi, then there is a proof P ′ using Si+1 ∪Gi+1, such that P ∗
=⇒ P ′.

Example 15.4 To illustrate how proofs of formulas are transformed concurrently with the transformation
of presentations, let us consider a very simple example of a theory initially defined by two constant rewrite
rules {a → b, a → c} and the proofs of two different formulas φ1 = (f(b) = f(c)) and φ2 = (g(a) = g(b)).
Presentations in the first column result from the application of some transition rules of the Knuth-Bendix
completion (namely Deduce, Orient, Simplify). Each transition rule is reflected by a proof transformation
that reduces the complexity of proofs, indicated below each proof.

Assume that > is a reduction ordering on terms such that a > b > c. For the first proof, it is enough
to choose as complexity measure of a rewrite step the first term: c(f(a) → f(c)) = {f(a)}, c(f(a) →
f(b)) = {f(a)} and c(f(b) ← f(a) → f(c)) = {{f(a)}, {f(a)}}. The complexity of an equality step
is given by the two terms: c(f(b) ←→ f(c)) = {f(b), f(c)}. Then using the multiset extension of >,
{{f(a)}, {f(a)}} >mult {{f(b), f(c)}}.

But this complexity is not powerful enough in the case of the second proof to establish that c(g(a)→ g(b))
is greater than c(g(a) → g(c) ← g(b)). So a second component is introduced which is here the rewrite rule
itself. c(g(a) → g(b)) = {(g(a), a → b)} and c(g(a) → g(c) ← g(b)) = {{(g(a), a → c)}, {g(b), b → c}}. We
need in addition to compare rewrite rule to state that (a→ b) is greater than (a→ c), which can be done by
stating an ordering on rewrite rules defined lexicographically comparing the left- and right-hand sides with
>: (a, b) >lex (a, c).

S φ1 φ2

a→ b f(b)← f(a)→ f(c) g(a)→ g(b)
a→ c

{{f(a)}, {f(a)}}

a→ b f(b)←→ f(c) g(a)→ g(b)
a→ c
b = c

{f(b), f(c)}

a→ b f(b)→ f(c) g(a)→ g(b)
a→ c
b→ c

{f(b)} {(g(a), a→ b)}

a→ c f(b)→ f(c) g(a)→ g(c)← g(b)
b→ c

{f(b)} {{(g(a), a→ c)},

{g(b), b→ c}}

Informally, a completion procedure C is a deduction process that preserves validity of formulas and reduces
proofs.

Definition 15.6 A completion procedure is a a deduction process C = (I, ST) such that, for any presentation
S0 of the theory T and any set of goal formulas G0, the derivation

(S0;G0) 7→7→
C

(S1;G1) 7→7→
C
... 7→7→

C
(Si;Gi)

has the following properties:

• monotonicity: ∀i ≥ 0, Th(Si+1) ⊆ Th(Si)

January 28, 2006 rewriting solving proving

15.3 Completion procedures 197

• relevance: ∀i ≥ 0, for any φ ∈ Φ, φ ∈ Th(Si) iff φ ∈ Th(Si+1)

• reduction: The proof transformation relation =⇒ that reflects 7→7→ terminates.

Let us know consider three completion processes and see how they are expressed in this framework.

Example 15.5 The Knuth-Bendix completion procedure transforms an equational presentation S0 of the
theory T into a rewrite rule presentation with the Church-Rosser property. In this resultig presentation, a
decision procedure for equational theorems is provided by rewriting. In that case, a derivation

S0 7→7→S1 7→7→ . . . 7→7→Si . . .

is reflected on the set Φ of all equational formulas, and the completion procedure is aimed at finding a rewrite
proof for each equational theorem.

A similar case is unfailing (or ordered) completion for which close results hold but restricted to the set
of ground terms.

Example 15.6 A different purpose of completion procedures is provided by the example of an unfailing
completion procedure used as a refutational theorem prover: the theorem to be proved (s = t) is first
negated, then skolemized and added as a goal to the presentation of the theory. Then the whole set of
formulas (S0; {s 6= t}) is transformed by the transition rules in order to derive a set of formulas (Si; {u 6= u})
that contains the contradiction {u 6= u}. In that case, the proof space Φ is the set of ground equational
theorems plus formulas of the form {s 6= t} which must be reduced to a normal form {u 6= u}.

Example 15.7 Another completion procedure, inductive completion, is aimed to prove an equational for-
mula (s = t) valid in the inductive theory of T , using a presentation of T which is a terminating and confluent
presentation on ground terms. In order to perform a proof by consistency (or more appropriately by lack of
inconsistency), the conjecture is added to the presentation R which is not modified during the process. Sets
of formulas Si are derived until no more transition rule is applicable, provided no inconsistency is detected
during the process. Different notions of inconsistency provide different kinds of inductive completion pro-
cesses. There the proof space is the set of equational theorems valid in the inductive theory of R ∪ {s = t}
but not in the inductive theory of R.

Two classes of transition rules can be distinguished: expansion and contraction rules. Expansion rules
strictly increases the sets of formulas in Si, while contraction ones are aimed at discarding redundant for-
mulas. Intuitively speaking, a formula is redundant if it can be deduced from other ones which are smaller,
for some well-chosen ordering on formulas.

Definition 15.7 Let � be a well-founded ordering on formulas. A formula F is redundant in S if there are
formulas F1, F2, . . . Fn ∈ S such that F1, F2, . . . Fn |= F and F � F1, F2, . . . Fn.

Using the proof transformation relation =⇒, the redundancy criterion may be formulated as fol-
lows [BD89b].

Definition 15.8 Let =⇒ be a well-founded proof transformation relation. An equality s = t is redundant
in E if s←→s=t t

∗
=⇒ s

∗←→E t.

Redundancy allows characterizing the notion of saturated presentation. A saturated set of formulas is a
set to which no non-trivial consequence can be added.

Definition 15.9 A presentation S is saturated under the deductive transition rules D ⊆ I if all formulas
deduced from S by applying D are redundant in S.

Usually non-redundancy and saturation will be required for the resulting sets of formulas in a completion
procedure. Let us consider the sets of all generated formulas S∗ =

⋃
i≥0 Si and G∗ =

⋃
i≥0Gi. Let also

S∞ and G∞ be respectively the sets of persisting formulas, i.e. the sets effectively generated by completion
starting from (S0;G0). Formally

S∞ =
⋃
i≥0

⋂
j>i

Sj and G∞ =
⋃
i≥0

⋂
j>i

Gj

Definition 15.10 A derivation is fair if all formulas deduced from (S∞;G∞) by applying D are redundant
in (S∗;G∗).

January 28, 2006 rewriting solving proving

198 Proof reduction

The concept of fairness was already present in the formal proof of completion given in [Hue81], but it
only recently emerges as a new research topic for completion-based provers, studied by itself and no more
as an accessory hypothesis. M.P. Bonacina and J. Hsiang state in [BH91] a framework to define fairness
of completion-based theorem proving strategies. They dissociate completeness of the transition rules and
fairness of the strategy (called search plan) and illustrate the notion of fairness by various completion-based
methods. A different approach is proposed by M. Hermann in [Her91] where fairness and correctness prop-
erties of transition rule-based completion strategies are expressed in the context of process logic. Additional
notions of success, failure and justice of a completion strategy are necessary to support the proofs of the
previous properties.

January 28, 2006 rewriting solving proving

Chapter 16

Completion of rewrite systems

16.1 Introduction

The Church-Rosser property of a terminating term rewriting system is equivalent to the local confluence
property. This property in turn can be checked on special patterns computed from pairs of rules and called
critical pairs. When a set of rewrite rules fails this test because some critical pair is not joinable, a special
rule tailored for this case is added to the system. This is the basic idea of the so-called completion procedure,
designed by Knuth and Bendix [KB70], building on ideas of Evans [Eva51]. Of course, adding a new rule
implies computing new critical pairs and the process is recursively applied. Whenever it stops, it comes
up with a locally confluent term rewriting system and if, in addition, termination has been incrementally
checked, the system is even confluent. Two other issues are possible: the process can find an equality that
cannot be oriented and then terminates in failure. It can also indefinitely discover non joinable critical pairs
and consequently endless add new rewrite rules.

The completion process was first studied from an operational point of view and several implementations
are running [HKK89]. It became clear, from experimentations, that a completion process is composed of
elementary tasks, such as rewriting a term in a rule or an equality, orienting an equality, computing a critical
pair. Moreover the efficiency of the general process is related to the strategies chosen for combining these
tasks. The next step was to consider each task as a transition rule that transforms sets of equalities and
rules, strategies being expressed by a control for application of these transition rules. Separating control
from transition rules made the proofs of correctness and completeness independent from strategies. As in
traditional proof theory, these transition rules are studied by looking at their effect on equational proofs.
The completion process then appears as a way to modify the axioms in order to reduce proofs in some normal
form, called a rewrite proof. This most abstract point of view is adopted here. It is based on the relation
between the transition rules system that describes the relation between successive pairs of sets R and P
computed by the process on one hand, and a transformation proof relation that reduces proofs to rewrite
proofs.

16.2 Critical pairs

Critical pairs are produced by overlaps of two redexes in a same term.

Definition 16.1 [Hue80] A non-variable term t′ and a term t overlap if there exists a position ω in Grd(t)
such that t|ω and t′ are unifiable.

Let (g → d) and (l→ r) be two rules with disjoint sets of variables, such that l and g overlap at position
ω of Grd(g) with the most general unifier ψ. The overlapped term ψ(g) produces the critical pair (p, q)
defined by p = ψ(g[ω ←↩ r]) and q = ψ(d).

If ω is not a position in g or if g|ω is a variable, then the rule (l → r) applies in the substitution part of
ψ(g) and the overlap is then called a variable overlap.

Note that a rule overlaps itself at the outermost position ε, producing a trivial critical pair.
Exercice 51 — Find all the critical pairs of the system

(x ∗ y) ∗ z → x ∗ (y ∗ z)

f(x) ∗ f(y) → f(x ∗ y)

January 28, 2006 rewriting solving proving

200 Completion of rewrite systems

Answer: Hint: Do not forget that a left-hand side can overlap itself.

Lemma 16.1 Critical pairs lemma [KB70, Hue80]
Let t, t′, t′′ be terms in T (F ,X) such that

t′ ←ω,α,l→r
R t→ε,β,g→d

R t′′

with ω ∈ Grd(g). Then, there exists a critical pair

(p, q) = (ψ(g[ω ←↩ r]), ψ(d))

of the rule (l → r) on the rule (g → d) at position ω such that ψ = mgu(l, g|ω) and βα �V ψ with
V = Var(g) ∪ Var(l). Therefore there exists a substitution τ such that t′ = τ(p) and t′′ = τ(q).

Proof: Since t = β(g) and t|ω = β(g)|ω = α(l), g|ω and l are unifiable by the unifier σ = βα. Let
ψ = mgu(l, g|ω) and τ such that τ(ψ(x)) = σ(x), ∀x ∈ Var(g) ∪ Var(l). By definition, there exists a
critical pair (p, q) = (ψ(g[ω ←↩ r]), ψ(d)) and t′ = τ(p) and t′′ = τ(q). 2

Notation: CP (R) will denote the set of all critical pairs between rules in R.

Definition 16.2 A critical pair (p, q) is said joinable (or sometimes convergent), which is denoted by u ↓R v,
if there exists a rewrite proof

p
∗−→R w

∗←−R q.

The next theorem is also called Newman’s lemma in the literature.

Theorem 16.1 [KB70, Hue80] A rewrite system R is locally confluent iff any critical pair of R is joinable.

Proof: The ‘only if’ part is obvious. For the ‘if’ part, consider a peak

t′ ←ω,α,l→r
R t→υ,β,g→d

R t′′

and the relative positions of the redexes t|ω and t|υ.

Disjoint case: Then the two reductions commute:

t′ →υ,β,g→d
R u←ω,α,l→r

R t′′.

Variable overlap case: We can assume without lost of generality that υ = ε. Thus t = β(g) and there
exists a variable x in g whose position in t is prefix of ω. Then β(x) contains the redex α(l) at some
position υ′. Let σ be the substitution defined by σ(y) = β(y) if y 6= x and σ(x) = β(x)[υ′ ←↩ α(r)].
Then

t′
∗−→R σ(g)→R σ(d)

∗←−R β(d) = t′′.

Critical overlap case: Again we can assume without lost of generality that υ = ε. Now ω ∈ Grd(g)
and Lemma 16.1 applies. Since all critical pairs are joinable, by monotony of the rewrite relation,

t′
∗−→R u

∗←−R t′′.

2

Since finite systems have a finite number of critical pairs, their local confluence is decidable. Moreover,
according to Theorem 16.1, a terminating rewrite system R is confluent iff all its critical pairs are joinable.
This was the idea of the superposition test proposed by Knuth and Bendix [KB70].
Exercice 52 — Prove that the system

(x ∗ y) ∗ z → x ∗ (y ∗ z)

f(x ∗ y) → f(x) ∗ f(y)

is confluent.

Answer: Hint: check termination and joinability of the only critical pair.

A system without (non-trivial) critical pair is said non-overlapping (or sometimes non-ambiguous). How-
ever the confluence needs termination.

January 28, 2006 rewriting solving proving

16.3 Transition rules for completion 201

Example 16.1 Consider the rewrite system R:

f(x, x) → a

f(x, g(x)) → b

c → g(c).

The corresponding rewrite relation does not terminate, since the term c has no normal form. The rewrite
relation is not confluent because f(c, c) has two normal forms a and b. However the system is non-overlapping
and thus locally confluent.

Exercice 53 — Consider the rewrite system R:

f(x, x) → g(x)

f(x, g(x)) → b

h(c, y) → f(h(y, c), h(y, y)).

Prove that it is locally confluent, that each term has at least one normal form. Find a counter-example of confluence.

Prove that the system is not terminating.

Exercice 54 — The goal of this exercise is to prove and illustrate the following result: the union of two terminating
rewrite systems R1 and R2 is terminating if R1 is left-linear, R2 is right-linear and there is no overlap between
left-hand sides of R1 and right-hand sides of R2.

1. Prove the following result:
If R1 is left-linear, R2 is right-linear and there is no overlap between left-hand sides of R1 and right-hand sides
of R2, then R1 quasi-commutes (see Definition 8.6) over R2.

2. Let R1 be:

a(0, x) → x

a(s(x), y) → s(a(x, y))

m(0, x) → 0

m(s(x), y) → a(m(x, y), y),

and R2 be:

x ≤ x → true

0 ≤ s(x) → true

s(x) ≤ 0 → false

s(x) ≤ s(y) → x ≤ y.

Prove that R1 ∪ R2 is terminating using the previous questions.

3. Prove that R1 ∪ R2 is confluent.

Answer:

1. see [RV80].

2. The termination of R1 can be proved using a recursive path ordering with the precedence m > a > s.
The termination of R2 can be proved using a recursive path ordering with the precedence ≤> true and
≤> false.

3. The only critical pair of R1 ∪ R2 comes from the first and fourth rules of R2 and is convergent.

16.3 Transition rules for completion

Following [BD87] the completion process is described by a set of transition rules.
A transition rule, in the completion framework, transforms pairs (P,R) where P is a set of equalities and

R a set of rewrite rules. This transition rule is usually followed by a condition that specifies in which case
the transition rule applies.

Thus a completion procedure is described by a set of transition rules that allow computing (Pi+1, Ri+1)
from (Pi, Ri) using a derivation relation 7→7→.

Let R∗ =
⋃
i≥0 Ri be the set of all generated rules and P∗ =

⋃
i≥0 Pi the set of all generated equalities.

January 28, 2006 rewriting solving proving

202 Completion of rewrite systems

Let R∞ and P∞ be respectively the set of persisting rules and pairs, i.e. the sets effectively generated by
completion starting from a set of axioms P0. Formally:

P∞ =
⋃
i≥0

⋂
j>i

Pj and R∞ =
⋃
i≥0

⋂
j>i

Rj .

Equalities are ordered according to a given reduction ordering, denoted >. Rewrite rules are compared
by the following ordering:

l→ r >> g → d iff

• either l A g (l is strictly greater than g in the encompassment ordering),

• or l and g are subsumption equivalent (l ≡ g) and r > d in the given reduction ordering.

The completion procedure is expressed by the set C of transition rules presented in Figure 16.1.

Orient P ∪ {p = q}, R 7→7→ P,R ∪ {p→ q}
if p > q

Deduce P,R 7→7→ P ∪ {p = q}, R
if (p, q) ∈ CP (R)

Simplify P ∪ {p = q}, R 7→7→ P ∪ {p′ = q}, R
if p→R p

′

Delete P ∪ {p = p}, R 7→7→ P,R
Compose P,R ∪ {l→ r} 7→7→ P,R ∪ {l→ r′}

if r →R r
′

Collapse P,R ∪ {l→ r} 7→7→ P ∪ {l′ = r}, R
if l→g→d

R l′ & l → r >> g → d

Figure 16.1: Standard completion rules

Orient turns an orientable equality into a rewrite rule l → r such that l > r. Deduce adds equational
consequences derived from overlaps between rules. Simplify uses rules to simplify both sides of equalities
and could be written more precisely as two transition rules Left-Simplify and Right-Simplify where
q →R q

′. Delete removes any trivial equality. Compose simplifies right-hand sides of rules with respect to
other rules. Collapse simplifies the left-hand side of a rule and turns the result into a new equality, but only
when the simplifying rule g → d is smaller than the disappearing rule l → r in the ordering >>. Note that
if any equality is simplified by existing rules before being oriented, the condition of the Collapse transition
rule is always satisfied.

These transition rules are sound in the following sense: they do not change the equational theory.

Lemma 16.2 If (P,R) 7→7→(P ′, R′) then
∗←→P∪R and

∗←→P ′∪R′ are the same.

Proof: Proving that these two congruences coincide amounts to prove that:

∀(p = q) ∈ (P ∪R)− (P ′ ∪R′), p ∗←→P ′∪R′ q

and
∀(p = q) ∈ (P ′ ∪R′)− (P ∪R), p

∗←→P∪R q.

Consider each transition rule.

1. Orient: P ∪R = P ′ ∪R′.
2. Deduce: P ′ − P = {p = q | (p, q) ∈ CP (R)}. By definition of a critical pair, there exists a peak

of R: p←R t→R q so p
∗←→R q.

3. Simplify: P − P ′ = {p = q}. Then p→R′ p′ ←→P ′ q.
P ′ − P = {p′ = q}. Then p′ ←R p←→P q.

4. Delete: the result is obvious.

5. Compose: R −R′ = {l→ r}. Then l →R′ r′ ←R′ r.
R′ −R = {l→ r′}. Then l →R r →R r

′.

January 28, 2006 rewriting solving proving

16.3 Transition rules for completion 203

6. Collapse: (P ∪R)− (P ′ ∪R′) = {l→ r}. Then l→R′ l′ ←→P ′ r.
(P ′ ∪R′)− (P ∪R) = {l′ = r}. Then l′ ←R l→R r.

2

A completion procedure is aimed at transforming an initial set of equalities P0 into a rewrite rule system
R∞ that is convergent and interreduced.

But the procedure can also be studied by looking at its effect on the set of proofs. Let us consider the
set of all provable equalities (t = t′). To each (Pi, Ri) is associated a proof of (t = t′) using rules in Ri and
equalities in Pi. Following [Bac87, Jou87], to each transition rule is associated a proof transformation rule
on some kind of proofs using rules in R∗ and equalities in P∗. Proving a completion procedure involves the
following steps:

• each sequence of proof transformation terminates and produces a minimal proof for some complexity
measure.

• every minimal proof is in the desired normal form, in this case a rewrite proof. For that, a completion
procedure must satisfy a fairness requirement, which states that all necessary proof transformations
are performed.

Let us now give the set of transformation rules on proofs. Two proof transformation rules reduce peaks
without overlap or with variable overlap: remind that, given a rewrite system R, the different kinds of peaks
t′ ←R t→R t

′′ that can occur are:
- either ←R and →R do not overlap and t′ →R t0 ←R t

′′,
- or ←R and →R overlap on variables and t′

∗−→R t0
∗←−R t′′,

- or ←R and →R overlap and critical pairs computation is needed. Lemma 16.1 allows reducing such
peaks with overlap by a proof transformation rule of the form

t′ ←R t→R t
′′ =⇒ t′′ ←→P t

′.

Other rules come from the transition rules for completion: remind that t, t′, t′′ denote any terms.

1. Orient: t
∗←→p=q

P t′ =⇒ t→p→q
R t′

2. Deduce: t′ ←l→r
R t→g→d

R t′′ =⇒ t′ ←→p=q
P t′′

3. Simplify: t←→p=q
P t′ =⇒ t→l→r

R t′′ ←→p′=q
P t′ if p→l→r

R p′.

4. Delete: t←→p=p
P t =⇒ Λ

5. Compose: t→l→r
R t′ =⇒ t→l→r′

R t′′ ←g→d
R t′ if r →g→d

R r′.

6. Collapse: t→l→r
R t′ =⇒ t→g→d

R t′′ ←→l′=r
P t′ if l→g→g

R l′.

7. Peak without overlap: t′ ←l→r
R t→g→d

R t′′ =⇒ t′ →g→d
R t1 ←l→r

R t′′

8. Peak with variable overlap: t′ ←l→r
R t→g→d

R t′′ =⇒ t′
∗−→R t1

∗←−R t′′

The next step is to prove that =⇒ is well-founded.

Lemma 16.3 [Bac87] The proof transformation relation =⇒ is well-founded.

Proof: Define the complexity measure of elementary proof steps by:

c(s←→p=q
P t) = ({s, t})

c(s←→l→r
R t) = ({s}, l→ r)

By convention, the complexity of the empty proof Λ is c(Λ) = (∅). Complexities of elementary proof
steps are compared using the lexicographic combination, denoted >ec of the multiset extension >mult

of the reduction ordering for the first component, and the ordering >> for the second component.
Since both > and >> are well-founded, so is >ec. The complexity of a non-elementary proof is the
multiset of the complexities of its elementary proof steps. Complexities of non-elementary proofs are
compared using the multiset extension >c of >ec, which is also well-founded.

Then the relation �c defined on proofs by P �c P ′ if c(P) >c c(P ′) is well-founded. Now =⇒ is
well-founded since =⇒⊆�c:

January 28, 2006 rewriting solving proving

204 Completion of rewrite systems

1. Orient: c(t←→p=q
P t′) = ({t, t′}) >c c(t→p→q

R t′) = ({t}, p→ q),
since {t, t′} >mult {t}.

2. Deduce:
c(t′ ←l→r

R t→g→d
R t′′) = {({t}, l→ r), ({t}, g → d)} >c c(t′ ←→p=q

P t′′) = ({t′, t′′})
just by comparing the first components: t > t′ and t > t′′.

3. Simplify: c(t←→p=q
P t′) = ({t, t′}) >c

c(t→l→r
R t′′ ←→p′=q

P t′) = {({t}, l→ r), ({t′′, t′})}
since {t, t′} >mult {t} and {t, t′} >mult {t′′, t′}.

4. Delete: c(t←→p=p
P t) = ({t, t}) >c c(Λ) = (∅)

since {t, t} >mult ∅.
5. Compose: c(t→l→r

R t′) = ({t}, l→ r) >c c(t→l→r′

R t′′ ←g→d
R t′) = {({t}, l→ r′), ({t′}, g → d)}

since (l→ r) >> (l → r′) and t > t′.

6. Collapse: c(t→l→r
R t′) = ({t}, l→ r) >c

c(t→g→d
R t′′ ←→l′=r

P t′) = {({t}, g → d), ({t′′, t′})}
since (l→ r) >> (g → d) and t > t′, t > t′′.

7. Peak without overlap: c(t′ ←l→r
R t→g→d

R t′′) = {({t}, l→ r), ({t}, g → d)} >c c(t′ →g→d
R t1 ←l→r

R

t′′) = {({t′}, l′ → r′), ({t}, g′ → d′)}
just by comparing the first components: t > t′ and t > t′′.

8. Peak with variable overlap: c(t′ ←l→r
R t→g→d

R t′′) >c c(t
′ ∗−→R t1

∗←−R t′′)
again just by comparing the first components of each elementary step appearing in these proofs.

2

The exact correspondence between the proof transformation =⇒ and the derivation 7→7→ is stated by the
following results.

These proof transformation rules must reflect the transition rules of C in the following sense: at each
transition step 7→7→, a given proof either does not change or is transformed into another one by =⇒.

Definition 16.3 [Bac87] =⇒ reflects 7→7→ if whenever (Pi, Ri) 7→7→(Pi+1, Ri+1) and P is a proof in (Pi ∪Ri),
then there is a proof P ′ in (Pi+1 ∪Ri+1) such that P ∗

=⇒ P ′.
Because the proof transformation rules have been built from the transition rules, it is easy to verify that

Proposition 16.1 =⇒ reflects 7→7→.

The fairness hypothesis states that any proof reducible by =⇒ will eventually be reduced. In other words,
no reducible proof is forgotten. Fairness specifies under which conditions a control strategy is correct.

Definition 16.4 A derivation (P0, R0) 7→7→(P1, R1) 7→7→ · · · is fair if whenever P is a proof in (Pi∪Ri) reducible

by =⇒, then there is a proof P ′ in (Pj ∪Rj) at some step j ≥ i such that P +
=⇒ P ′.

A sufficient condition to satisfy the fairness hypothesis can be given:

Proposition 16.2 A derivation (P0, R0) 7→7→(P1, R1) 7→7→ · · · is fair if CP (R∞) ⊆ P∗, R∞ is reduced and P∞
is empty.

Proof: We have to prove that if P is a proof in (Pi ∪Ri) reducible by =⇒, then there is P ′ in (Pj ∪Rj) at

some step j ≥ i such that P +
=⇒ P ′.

If one of the transformation rules Orient, Simplify, Delete, Compose, or Collapse applies to P , then
Pi ∪Ri 6= P∞ ∪R∞. So one of the transition rule of C will apply.

If the transformation rule Deduce applies with a non-persisting rule, then for some j ≥ i,
(Pi, Ri) 7→7→ · · · 7→7→(Pj , Rj) where Rj does not contain this rule any more. If the transformation rule
Deduce applies with persisting rules, then by hypothesis there exists k such that the computed critical
pair is in Pk. Since P∞ = ∅ by hypothesis, then for some j ≥ i, j > k, (Pi, Ri) 7→7→ · · · 7→7→(Pj , Rj) where
Pj does not contain the critical pair any more.

For all these cases, since =⇒ reflects 7→7→, P +
=⇒ P ′.

If one of the transformation rules Peak without overlap, or Peak with variable overlap applies, then
by Theorem 16.1, P contains the peak t′ ←Ri

t →Ri
t′′ that can be replaced by a rewrite proof

t′′
∗−→Ri

t
∗←−Ri

t′′. Then j = i and P +
=⇒ P ′. 2

January 28, 2006 rewriting solving proving

16.3 Transition rules for completion 205

Note that the critical pairs criteria (see Section 19.3) can be used to improve the above requirements for
fairness by considering less critical pairs.

When fairness is ensured, proofs have normal forms w.r.t. =⇒. The following proof normalization
theorem is the basis of the Church-Rosser property.

Theorem 16.2 If a derivation (P0, R0) 7→7→(P1, R1) 7→7→ · · · is fair, then any proof t
∗←→Pi∪Ri

t′ for i ≥ 0, has

a rewrite proof t
∗−→R∞ s

∗←−R∞ t′.

Proof: By induction on =⇒. Assume that t
∗←→Pi∪Ri

t′ is not a rewrite proof t
∗−→R∞ s

∗←−R∞ t′.
Then it must contain a peak or a non-persistent step, and thus is reducible by =⇒. By fairness,

t
∗←→Pi∪Ri

t′
+

=⇒ t
∗←→Pj∪Rj

t′ for some step j ≥ i. By induction hypothesis, there is a rewrite proof

t
∗−→R∞ s

∗←−R∞ t′. 2

Theorem 16.3 If the derivation (P0, R0) 7→7→(P1, R1) 7→7→ · · · satisfies CP (R∞) is a subset of P∗, R∞ is re-

duced and P∞ is empty, then R∞ is Church-Rosser and terminating. Moreover
∗←→P0∪R0 and

∗←→R∞

coincide on terms.

Proof: The termination property of R∞ is obvious since the test is incrementally processed for each rule
added in R∗, thus in R∞.

The Church-Rosser property results from the fact that any proof has a normal form for =⇒ which is
a rewrite proof.

The fact that
∗←→P0∪R0=

∗←→R∞ is a consequence of Lemma 16.2. 2

Exercice 55 — The following exercise is aimed at showing the usefulness of the condition in Collapse. It is
inspired from an example of [BD89b]. Indeed it is tempting to strenghten the Collapse rule, so that one can reduce
the left-hand side of a rule by another rule with the same left side. Let WCollapse be such a rule and W be the set
of transition rules presented in Figure 16.1 in which Collapse is replaced by WCollapse.

Consider the initial set of equalities:

c = a

g(x) = x

f(x, b) = x

f(x, g(y)) = f(g(x), y)

f(b, z) = c

1. Find a lexicographic path ordering that allows orienting these equalities from left to right.

2. Prove that with the set C, there exists a finite confluent and terminating system.

3. Justify with the set W the computation of the following rewrite rules:

c → b

f(g(b), z) → c

c → g(b)

f(g(g(b)), z) → c

Show that c → b is collapsed away in this deduction system. How is transformed the proof of the theorem
b = a?

Justify the computation of:

c → g(g(b))

f(g(g(g(b))), z) → c

Conclude that the process never reach a convergent system. How is transformed the proof of the theorem
b = a?

Answer: See [BD89b].

1. The precedence is f > c > g > b > a.

2. The system is

f(x, a) → x

f(a, z) → a

b → a

3. The proof of the theorem b = a grows indefinitely.

January 28, 2006 rewriting solving proving

206 Completion of rewrite systems

16.4 A completion procedure

A standard completion procedure is a program that takes a finite set of equalities P0 and a reduction ordering
>, and that generates from (P0, ∅) a derivation (P0, R0) 7→7→(P1, R1) 7→7→ · · ·, using the transition rules in C.

A fairness sufficient condition is ensured by marking a rule whenever its critical pairs with other rules
have been computed and added to P has in the completion procedure described in Figure 16.2.

PROCEDURE COMPLETION (P, R, >)

IF P is not empty

THEN choose a pair (p,q) in P; P := P - {(p,q)};

p’:= R-normal form(p); q’:= R-normal form(q);

CASE p’ = q’ THEN R := COMPLETION (P, R, >)

p’ > q’ THEN l:=p’; r:=q’;

(P,R) := SIMPLIFICATION (P, R, l -> r);

R := COMPLETION (P, R U {l -> r}, >)

q’ > p’ THEN l:=q’; r:=p’;

(P,R) := SIMPLIFICATION (P, R, l -> r);

R := COMPLETION (P, R U {l -> r}, >)

ELSE STOP with FAILURE

END CASE;

ELSE IF all rules in R are marked

THEN RETURN R; STOP with SUCCESS

ELSE Choose an unmarked rule l -> r fairly;

P := CRITICAL-PAIRS (l -> r, R);

Mark the rule l -> r in R;

R := COMPLETION (P, R, >)

END IF

END IF

END COMPLETION

Figure 16.2: A standard completion procedure

The SIMPLIFICATION procedure applies transition rules Compose and Collapse. Note that the con-
dition in the Collapse transition rule is useless in this procedure, due to the chosen strategy. The
CRITICAL-PAIRS procedure computes the critical pairs of the given rule l → r with other rules in R and add
them to P .

Example 16.2 Starting with P0 as

x+ e = x

(x+ y) + z = x+ (y + z)

the completion procedure yields the system

x+ e → x

(x+ y) + z → x+ (y + z)

x+ (e+ y) → x+ y.

Example 16.3 An additive group G is defined by the set of equalities

x+ e = x

x+ (y + z) = (x+ y) + z

x+ i(x) = e

The completion process produces

x+ e → x

e+ x → x

x+ (y + z) → (x+ y) + z

x+ i(x) → e

January 28, 2006 rewriting solving proving

16.4 A completion procedure 207

i(x) + x → e

i(e) → e

(y + i(x)) + x → y

(y + x) + i(x) → y

i(i(x)) → x

i(x+ y) → i(y) + i(x)

Example 16.4 Starting with P0 as

x ∗ 1 = x

1 ∗ x = x

i(x) ∗ (x ∗ y) = y

the completion procedure yields the system

x ∗ 1 → x

1 ∗ x → x

i(x) ∗ (x ∗ y) → y

i(x) ∗ x → 1

x ∗ i(x) → 1

i(1) → 1

i(i(x)) → x

x ∗ (i(x) ∗ y) → y.

Example 16.5 Starting with P0 as

1 ∗ x = x

x ∗ i(x) = 1

(x ∗ y) ∗ z = x ∗ (y ∗ z)

the completion procedure yields the system for the so-called L-R theory.

1 ∗ x → x

x ∗ i(x) → 1

(x ∗ y) ∗ z → x ∗ (y ∗ z)
i(1) → 1

i(x ∗ y) → i(y) ∗ i(x)
x ∗ (i(x) ∗ y) → y

i(x) ∗ (x ∗ y) → y

x ∗ 1 → i(i(x))

i(i(i(x))) → i(x)

i(i(x)) ∗ y → x ∗ y.

Starting with P0 as

x ∗ 1 = x

i(x) ∗ x = 1

(x ∗ y) ∗ z = x ∗ (y ∗ z)

the completion procedure yields the system for the so-called R-L theory.

x ∗ 1 → x

i(x) ∗ x → 1

(x ∗ y) ∗ z → x ∗ (y ∗ z)

January 28, 2006 rewriting solving proving

208 Completion of rewrite systems

i(1) → 1

i(x ∗ y) → i(y) ∗ i(x)
1 ∗ x → i(i(x))

x ∗ i(i(y)) → x ∗ y
i(i(i(x))) → i(x)

x ∗ (y ∗ i(y)) → x

x ∗ (i(i(y)) ∗ z) → x ∗ (y ∗ z)
x ∗ (y ∗ (i(y) ∗ z)) → x ∗ z

i(x) ∗ (x ∗ y) → i(i(y))

Comparing with group completion, it clearly follows that a group is an L-R algebra and also an R-L
algebra. Also there exists an L-R algebra that is not an R-L algebra: consider for instance the axiom
x ∗ 1 = x that is not derivable in L-R theory. In the same way, it can be proved that there exists an R-L
algebra that is not an L-R algebra

Further Readings: Many other examples of the complete set of rules conputation can be found in the literature.
Let us mention in particular [Hul80b, Hul80c].
Exercice 56 — Let F = {c, f} where c is a constant and f a unary operator. Complete the set of equalities

f(f(f(f(f(x))))) = x

f(f(f(x))) = x

and simultaneously transform the two following proofs

f(c)←→ f(f(f(f(f(f(c))))))←→ f(f(f(c)))←→ c
f(f(c))←→ f(f(f(f(f(c))))).

Finally, this section is concluded with a unicity result, stating that the result of the completion process
is unique, up to variable renamings.

Theorem 16.4 Let R1 and R2 be two interreduced convergent rewrite systems that generate the same equiv-
alence relation (

∗←→R1=
∗←→R2). If both are contained into the same reduction ordering, then they are

identical up to variable renaming.

Proof: See [Met83]. 2

16.5 Issues of completion

Three outcomes are possible for a completion procedure: success, failure or divergence.

Definition 16.5 A n-step derivation (P0, ∅) 7→7→(P1, R1) 7→7→ · · · (Pn, Rn), is said successful if it is fair, Pn is
empty, Rn is convergent and reduced.

The derivation fails if there is no fair derivation that begins with these n-steps.
A completion procedure is correct if it generates only fair successful derivations when it does not fail.

Note that a correct completion procedure may generate infinite fair derivations or finite failing derivations.
Cases of failure are due to non-orientable equalities, for instance permutative axioms, a simple example being
the commutativity axiom. In general there is no reduction ordering that can orient all critical pairs. However
when equalities are made of ground terms, a total simplification ordering can be used and then failure is
impossible and completion is guaranteed to terminate.

Theorem 16.5 [Lan75b] Given a total reduction ordering on ground terms, and a finite set E of equalities
made of ground terms, a fair completion derivation always generate a finite and convergent system R∞.

Proof: Since the ordering is total, any equality can be ordered. Because there is no variable, Deduce never
applies and new equalities are created only by Collapse. If a rule l → r is reduced by g → d, then
the new created rule is either l[d]→ r or r → l[d]. Since l > l[d] and l > r, the process of creating new
rules cannot go on indefinitely. So any fair derivation is finite. 2

January 28, 2006 rewriting solving proving

16.5 Issues of completion 209

The ground completion process can even be achieved in O(n log n) steps has shown by W. SnyderSny-
der [Sny89] improving on a polynomial bound given by [GNP+88].

Example 16.6 Let F = {c, f} where c is a constant and f a unary operator. For any total ground ordering,
the completion of the set of ground equalities

f(f(f(f(f(c))))) = c

f(f(f(c))))) = c

yields the convergent system

f(c) → c

Note that two successful derivations starting with the same P0 and the same reduction ordering > must
output the same convergent and reduced system, up to a renaming of variables. This is because there is only
one convergent and reduced system, up to a renaming of variables, that is contained in > [BL80, Met83].
Thus if there exists a convergent and reduced system R for P0 contained in >, then a correct procedure
starting with P0 and > cannot succed with any system but R. However it may fail without finding it.
Furthermore, if R is finite, an infinite fair completion derivation is impossible.

Success may depend on the choice of orientation, as shown in the next example.

Example 16.7 Consider P0 to be

(x ∗ y) ∗ z = x ∗ (y ∗ z)
f(x ∗ y) = f(x) ∗ f(y)

If these equalities are oriented from left to right, the completion procedure terminates with

(x ∗ y) ∗ z → x ∗ (y ∗ z)
f(x ∗ y) → f(x) ∗ f(y)

But if the second equality is oriented from right to left, and if we use a recursive path ordering with a
precedence such that ∗ >F f and a left-to-right status for ∗, the rules

(x ∗ y) ∗ z → x ∗ (y ∗ z)
f(x) ∗ f(y) → f(x ∗ y)

generate an infinite set of rules.

Example 16.8 The theory of idempotent semi-groups (sometimes called bands) is defined by a set E of
two axioms:

(x ∗ y) ∗ z = x ∗ (y ∗ z)
x ∗ x = x

From P0 = E the completion generates

(x ∗ y) ∗ z → x ∗ (y ∗ z)
x ∗ x → x

x ∗ (x ∗ z) → x ∗ z
x ∗ (y ∗ (x ∗ y)) → x ∗ y

x ∗ (y ∗ (x ∗ (y ∗ z))) → x ∗ (y ∗ z)
. . .

x ∗ (y ∗ (z ∗ (y ∗ (x ∗ (y ∗ (z ∗ x)))))) → x ∗ (y ∗ (z ∗ x))
. . .

If the completion does not terminate and generates an infinite set of rewrite rules, it can be used as a
semi-decision procedure for proving the validity of a theorem.

January 28, 2006 rewriting solving proving

210 Completion of rewrite systems

Theorem 16.6 [Hue81]: Let (P0, R0) 7→7→(P1, R1) 7→7→ · · · be a fair non-failing derivation. The theorem (t =
t′) is valid in (P0 ∪ R0) ((t = t′) ∈ T h(P0 ∪ R0)) iff there exists a step i and thus a set of rewrite rules Ri
such that t ↓Ri

= t′ ↓Ri
.

Of course, it is not possible to prove that a theorem is not valid using Theorem 16.6, because it is not
possible to prove that there is no step i satisfying the given condition. So Theorem 16.6 only provides a
semi-decision method.

Example 16.9 [Der89] In the theory of idempotent semi-groups defined in Example 16.8, in order to prove
the theorem

((x ∗ ((y ∗ z) ∗ x)) ∗ x) ∗ ((y ∗ z) ∗ x) = (x ∗ y) ∗ (y ∗ ((x ∗ y) ∗ (z ∗ x)))

it is enough to check that the partial system shown in Example 16.8 reduces both terms of the theorem to
x ∗ (y ∗ (z ∗ x)).

Exercice 57 — Complete the set of equalities {f(g(f(x))) = g(f(x))}.

Example 16.10 An homomorphism h on an additive group G is defined by the property that ∀x, y ∈
G, h(x+ y) = h(x) + h(y). From the set of equalities defining a group and an homomorphism h

x+ e = x

x+ (y + z) = (x+ y) + z

x+ i(x) = e

h(x+ y) = h(x) + h(y)

the completion process produces

x+ e → x

e+ x → x

x+ (y + z) → (x + y) + z

x+ i(x) → e

i(x) + x → e

i(e) → e

(y + i(x)) + x → y

(y + x) + i(x) → y

i(i(x)) → x

i(x+ y) → i(y) + i(x)

h(x+ y) → h(x) + h(y)

h(e) → e

h(i(x)) → i(h(x))

The kernel of an homomorphism h defined on a group G is the set

ker(h) = {u ∈ G|h(u) = e}

To prove that the kernel of h is a normal subgroup, two equalities have to be proved:

h(a+ i(b)) = e

h(i(x) + a+ x) = e

In order to perform these proofs by completion, two new identities are first added to the previous set of
rewrite rules, stating that a and b are two elements of the kernel:

h(a) = e

h(b) = e

January 28, 2006 rewriting solving proving

16.5 Issues of completion 211

The completion process turned them into rewrite rules:

h(a) → e

h(b) → e

During the completion, no other rule is generated and the process stops with a complete set R. Then

h(a+ i(b))
∗−→R e

h(i(x) + a+ x)
∗−→R e

which proves the theorems.

Example 16.11 An interesting application of rewriting and completion techniques is the study of several
calculi defined for handling explicit substitutions in λ-calculus. The λ-calculus was defined by Church in the
30’s in order to develop a general theory for computable functions. The λ-calculus contains one mere rule,
β called β-reduction, which consists in replacing some variable occurrences by a term. This substitution is
described in the meta-language of λ-calculus and introduces the need for cautious renaming operations to
take into account the binding rules environment. This was the motivation for the notation introduced by de
Bruijn in the 70’s for counting the binding depth of a variable. Another improvement has been introduced
in the 85’s to deal with substitutions: instead of defining them in the meta-language, a new operator is
introduced to explicitely denote the substitution to perform. So in addition to a rule (Beta) which starts
the substitution, other rules are added to propagate it down to variables. Based on this idea, several calculi,
regrouped under the name λσ-calculi, have been studied and progressively refined in order to obtain suitable
properties like termination and confluence.

Historicaly a first rewrite system called CCL (Categorical Combinatory Logic) was proposed to axiomatize
substitutions [Cur86] but it is not confluent. The confluence can be retrieved by using a system λσ with two
sorts, term and substitution, but only on ground terms and substitutions.

(Beta) (λa)b → a[b · id]
(V arId) 1[id] → 1

(V arCons) 1[a · s] → a
(App) (ab)[s] → (a[s])(b[s])
(Abs) (λa)[s] → λ(a[1 · (s◦ ↑)])
(Clos) (a[s])[t] → a[s ◦ t]
(IdL) id ◦ s → s
(ShiftId) ↑ ◦id → ↑
(ShiftCons) ↑ ◦(a · s) → s
(Map) (a · s) ◦ t → a[t] · (s ◦ t)
(Ass) (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

The study of critical pairs suggests to add four rules to get a system λσ′ with the local confluence property;
then confluence is destroyed in general, due to a non-linear rule, but is true for semi-ground terms that is
terms that may contain variables of sort term but no variable of sort substitution.

(Beta) (λa)b → a[b · id]
(Id) a[id] → a
(V arCons) 1[a · s] → a
(App) (ab)[s] → (a[s])(b[s])
(Abs) (λa)[s] → λ(a[1 · (s◦ ↑)])
(Clos) (a[s])[t] → a[s ◦ t]
(IdL) id ◦ s → s
(IdR) s ◦ id → s
(ShiftCons) ↑ ◦(a · s) → s
(Map) (a · s) ◦ t → a[t] · (s ◦ t)
(Ass) (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)
(ShiftId) 1· ↑ → id
(SCons) 1[s] · (↑ ◦s) → s

Eventually in 89, T. Hardin and J.-J. Lévy found a calculus totally confluent with the same good properties
as λσ. The set of rules λσ⇑ introduces an additional unary operator ⇑ to avoid the critical pair at the origin

January 28, 2006 rewriting solving proving

212 Completion of rewrite systems

of the problematic rule.

(Beta) (λa)b → a[b · id]
(App) (ab)[s] → (a[s])(b[s])
(Lambda) (λa)[s] → λ(a[⇑ (s)])
(Clos) (a[s])[t] → a[s ◦ t]
(V arshift1) n[↑] → n + 1

(V arshift2) n[↑ ◦s] → ttn+ 1[s]
(FV arCons) 1[a · s] → a
(FV arLift1) 1[⇑ (s)] → 1

(FV arLift2) 1[⇑ (s) ◦ t] → 1[t]
(RV arCons) n + 1[a · s] → n[s]
(RV arLift1) n + 1[⇑ (s)] → n[s◦ ↑]
(RV arLift2) n + 1[⇑ (s) ◦ t] → n[s ◦ (↑ ◦t)]
(AssEnv) (s ◦ t) ◦ u → s ◦ (t ◦ u)
(MapEnv) (a · s) ◦ t → a[t] · (s ◦ t)
(ShiftCons) ↑ ◦(a · s) → s
(ShiftLift1) ↑ ◦ ⇑ (s) → s◦ ↑
(ShiftLift2) ↑ ◦(⇑ (s) ◦ t) → s ◦ (↑ ◦t)
(Lift1) ⇑ (s)◦ ⇑ (t) → ⇑ (s ◦ t)
(Lift2) ⇑ (s) ◦ (⇑ (t) ◦ u) → ⇑ (s ◦ t) ◦ u
(LiftEnv) ⇑ (s) ◦ (a · t) → a · (s ◦ t)
(IdL) id ◦ s → s
(IdR) s ◦ id → s
(LiftId) ⇑ (id) → id
(Id) a[id] → a

16.6 Conclusion

More recent research on completion process focuses on the study of divergence. The practical interest of
completion processes is limited by the possibility of generating infinite sets of rewrite rules. Moreover the
uniqueness of the result of the completion procedure [Hue81, JK86c], given a fixed ordering for orienting
equalities, implies that it cannot be expected to find another completion strategy for which the completion
terminates. However, changing the ordering can have an influence on the behaviour of the Knuth-Bendix
procedure and, in some cases, it can even be possible to avoid its divergence, for example by means described
in [Her88, Les86].

The problem of the generation of an infinite set of rewrite rules has been attacked using two different
approaches. On one hand, sufficient conditions for predicting the divergence have been given in [Her89,
MP88]. They are based on the notion of forward or backward crossed rewrite systems. On the other hand,
the notion of schematization using meta-rules has been proposed in [Kir89b]. Given an infinite set of rules,
the problem is to find a finite set of schemas, called meta-rules, where some variables, called meta-variables,
may have infinite sets of possible values. A formal notion of schematization was proposed in [Kir89b], but
discovering the schemas was yet a matter of heuristics. These results are brought together in [KH90] to
deduce, from the syntactic conditions of divergence, the automatic generation of meta-rules. This provides,
in a reasonably large class of divergent systems, a way to avoid guessing the schemas.

Other schematizations are proposed in [CHK90] through the notion of hyperterms, in [Gra88] through
term schemes and in [Sal92] through recursive terms. All these works study the unification problem on these
new structures.

In [SK92], it is shown that, even in the restricted case of string rewriting systems, there exist convergent
systems generated by completion which are not recursively enumerable, although they may haave a decidable
word problem.

January 28, 2006 rewriting solving proving

Chapter 17

Ordered completion

17.1 Introduction

The problem considered in this chapter is again to prove an equational theorem in an equational theory
described by a set of universally quantified equalities.

The completion procedure transforms this given set of equalities into a set of rewrite rules that allows
deciding the validity of any equational theorem by normalisation. However, the completion procedure must
be supplied with a well-founded ordering used to determine in which direction an equality must be directed.
Even when such an ordering is provided, the procedure may fail to find a canonical set of rules though one
exists [DMT88]. The way out is to backtrack and try another completion strategy.

The first problem addressed here is the case of failure when a non-orientable critical pair is generated.
In this issue nothing can be said on the set of rewrite rules generated so far. Practical implementations of a
completion procedure often postpone the equality, with the hope that a further generated rule will simplify
it. An ordered (or unfailing) completion procedure pushes this solution even further, since it does not stop
with a non-orientable equality and may terminate with a non-empty set of equalities. This amounts to work
with the notion of ordered rewriting that does not require that an equality always be used from left to right,
but satisfies nevertheless a decreasing property with respect to a given ordering. For proving equalities,
the considered Church-Rosser property must take into account the ordered rewrite relation described by all
orientable instances of equalities. These notions are defined in Section 7.2 of Chapter 7.

An additional property of an ordered completion procedure is to obviate the need for backtracking, since
it is guaranteed to find a convergent system, provided it exists. The only assumption is that no persisting
equality can be simplified. This is the second point handled in this chapter.

If the completion does not terminate and generates an infinite set of rewrite rules, it can be used as a
semi-decision procedure for proving the validity of a theorem: the theorem (t = t′) is valid iff there exists
a step i and thus a set of rewrite rules Ri such that t ↓Ri

= t′ ↓Ri
. Ordered completion is based on the

same idea and provides also a semi-decision procedure for the word problem. The last point developed here
is the use of the ordered completion as a refutationally complete equational theorem prover. As such, it is
possible to prove existentially quantified theorems by negating them and deriving a contradiction by ordered
completion.

17.2 Ordered critical pairs

Remind that an ordered rewrite system (E,>) is a set of equalities E together with a reduction ordering >.
The ordered rewriting relation is just rewriting with ordered instances of equalities.

As in standard completion, peaks are eliminated thanks to a critical pairs lemma. However the notion
of critical pairs is extended to equalities.

Definition 17.1 Let (g = d) and (l = r) two equalities in E with disjoint sets of variables. If there exists a
position ω in g such that g|ω is not a variable, g|ω and l are unifiable with the most general unifier ψ, and if
in addition ψ(d) 6> ψ(g) and ψ(r) 6> ψ(l), then (ψ(g[ω ←↩ r]), ψ(d)) is an ordered critical pair of (l = r) into
(g = d).

More intuitively, ordered critical pairs are such that the steps ψ(d) ←→E ψ(g) ←→E ψ(g[ω ←↩ r]) can
form a peak, i.e. there exists a substitution µ such that µ(ψ(d))←E> µ(ψ(g))→E> µ(ψ(g[ω ←↩ r])).

January 28, 2006 rewriting solving proving

214 Ordered completion

Note that the conditions ψ(d) 6> ψ(g) and ψ(r) 6> ψ(l) in Definition 17.1 are less restrictive than requiring
ψ(g) > ψ(d) and ψ(l) > ψ(r), since ψ(g), ψ(d), ψ(l), ψ(r) may be non-ground terms.

Let OCP (E) denote the set of ordered critical pairs between two equalities of E. Note that when E is
actually a rewrite system R contained in >, then CP (R) = OCP (R).

The critical pair lemma can be adapted to ordered critical pairs.

Lemma 17.1 Let t, t′, t′′ be terms in T (F) such that

t′ ←ω,α,l=r
E> t→Λ,β,g=d

E> t′′

with ω ∈ G(g). Then, there exists an ordered critical pair

(p, q) = (ψ(g[ω ←↩ r]), ψ(d))

of the equality (l = r) on (g = d) at position ω such that ψ = mgu(l, g|ω) and βα �V ψ with V = V(g)∪V(l).
Therefore there exists a substitution τ such that t′ = τ(p) and t′′ = τ(q).

Proof: Since t = β(g) and t|ω = β(g)|ω = α(l), g|ω and l are unifiable by the unifier σ = βα. Let
ψ = mgu(l, g|ω) and τ such that τ(ψ(x)) = σ(x), ∀x ∈ V(g) ∪ V(l). By definition, there exists an
ordered critical pair (p, q) = (ψ(g[ω ←↩ r]), ψ(d)) and t′ = τ(p) and t′′ = τ(q). 2

Proposition 17.1 For any ground terms t, t′, t′′ ∈ T (F) such that t′ ←E> t →E> t′′, either there exists s

satisfying t′
∗−→E> s

∗←−E> t′′, or else t′ ←→OCP (E) t
′′.

Proof: The only difference with the proof of the similar result for standard rewriting is the case of variable
overlapping where the hypothesis of an ordering total on ground terms is crucial to ensure that the
diagram can be closed. Indeed in this case t′

∗−→E> σ(g), t′′
∗−→E> σ(d), and both instances need to

be comparable with the ordering, in order to close the diagram. 2

Of course, when an equality g = d is not oriented, superposition of other equalities must be performed
on both g and d. Moreover superposition at position Λ of the equality on itself must also be performed, as
shown in the next example.

Example 17.1 Let E be the following set of equalities:

x+ g(y) = x+ f(z)

Assume that the given ordering is the lexicographic path ordering defined by the precedence g > f > b > a.
Then there is a peak

a+ f(b)←E> a+ g(a)→E> a+ f(a)

and a+ f(b) > a+ f(a). However there is no equation allowing to rewrite a+ f(b)→E> a+ f(a).
But there is a critical pair of the equality on its variant

x′ + g(y′) = x′ + f(z′)

that gives
x+ f(z) = x+ f(z′).

Thus with this new equality a+ f(b)→ a+ f(a).
This example also makes clear that superposition at position Λ does not produce trivial consequences

when the set of variables of d is not included in the set of variables of g.

17.3 Transition rules for ordered completion

The ordered completion process has only two possible issues: either it generates a finite ordered rewrite
system or it loops forever. In the first case, it provides a decision procedure for validity of any equational
theorem t = t′ where t, t′ ∈ T (F). In the second case, it only provides a semi-decision procedure.

Let P be a set of equalities and > a reduction ordering. For intereduction of equalities an ordering on
equalities is needed. Let >> be defined by (p = q) >> (g = d) if p A g or p ≡ g and q > d in the given
reduction ordering.

The ordered completion procedure is expressed by the set U of transition rules given in Figure 17.1.
This transition rule system is evidently sound, since the class of provable theorems on ground terms is

unchanged by any of these transitions. More precisely

January 28, 2006 rewriting solving proving

17.3 Transition rules for ordered completion 215

Deduce P
7→7→
P ∪ {p = q}
if (p, q) ∈ OCP (P)

Delete P ∪ {p = p}
7→7→
P

Collapse P ∪ {p = q}
7→7→
P ∪ {p′ = q}
if (p→g=d

P> p′ & p = q >> g = d

Figure 17.1: Ordered completion rules

Lemma 17.2 If P 7→7→P ′, then
∗←→P and

∗←→P ′ coincide on T (F).

Proof: Consider each transition rule.

1. Deduce: P ′ − P = {p = q | (p, q) ∈ OCP (P)}. By definition of an ordered critical pair, there
exists a ground instantiation of (p = q) that corresponds to a peak of P>.

2. Delete: the result is obvious.

3. Collapse: P ′−P = {p′ = q | q ←→P p→P> p′}. Thus any ground instance σ satisfies σ(q)←→P

σ(p)←→P σ(p′).

P − P ′ = {p = q | q ←→P ′ p′ ←P ′> p}. Again any ground instance σ satisfies σ(q) ←→P ′

σ(p′)←→P ′ σ(p).

2

Considering now the proof transformation that reflects the transition rule system U , we get the following
transformation rules on proofs.

1. Deduce: t′ ←l=r
P> t→g=d

P> t′′ =⇒ t′ ←→p=q
P t′′

2. Delete: t←→p=p
P t =⇒ Λ

3. Collapse: t←→p=q
P t′ =⇒ t→l=r

P> t′′ ←→p′=q
P t′.

4. Peak without overlap: t′ ←l=r
P> t→g=d

P> t′′ =⇒ t′ →g=d
P> t1 ←l=r

P> t′′

5. Peak with variable overlap: t′ ←l=r
P> t→g=d

P> t′′ =⇒ t′
∗−→P> t1

∗←−P> t′′

The next step is to prove that =⇒ is well-founded.

Lemma 17.3 [Bac87] If > is a reduction ordering that can be extended into a ground-total reduction
ordering �, then the proof transformation relation =⇒ is well-founded.

Proof: Define the complexity measure of elementary proof steps by:

c(s←→g=d
P t) = ({s}, g, t) if s� t

c(s←→g=d
P t) = ({t}, d, s) if t� s

By convention, the complexity of the empty proof Λ is c(Λ) = (∅). Complexities of elementary proof
steps are compared using the lexicographic combination, denoted >ec of the multiset extension�mult of
the ground-total reduction ordering for the first component, the ordering A for the second component,
and the ground-total reduction ordering for the third component. Since both � and A are well-
founded, so is >ec. The complexity of a non-elementary proof is the multiset of the complexities of
its elementary proof steps. Complexities of non-elementary proofs are compared using the multiset
extension >c of >ec, which is also well-founded.

Then the relation �c defined on proofs by P �c P ′ iff c(P) >c c(P ′) is well-founded. Now =⇒ is
well-founded since =⇒⊆�c:

January 28, 2006 rewriting solving proving

216 Ordered completion

1. Deduce:
c(t′ ←l=r

P> t→g=d
P> t′′) = {({t}, l, t′), ({t}, g, t′′)} >c c(t′ ←→p=q

P t′′)
just by comparing the first components: t� t′ and t� t′′.

2. Delete: c(t←→p=p
P t) = ({t}, p, t) >c c(Λ) = (∅)

since {t} �mult ∅.
3. Collapse: If t � t′, c(t ←→p=q

P t′) = ({t}, p, t′) >c c(t →g=d
P> t′′ ←→p′=q

P t′). Indeed this last
complexity measure is
- either {({t}, g, t′′), ({t′′}, p′, t′)}, if t′′ � t′ and the result holds since in a first case, p A g and
t� t′′, and in a second case, p ≡ g and q > d implies t′ � t′′.
- or {({t}, g, t′′), ({t′}, q, t′′)}, if t′ � t′′ and the result holds since in a first case, p A g and t� t′′,
and in a second case, p ≡ g and q > d implies t′ � t′′.

If t′ � t, c(t ←→p=q
P t′) = ({t′}, q, t) >c c(t →l=r

P> t′′ ←→p′=q
P t′) = {({t}, l, t′′), ({t′}, q, t′′)}, since

t′ � t� t′′.

4. Peak without overlap: c(t′ ←l=r
P> t →g=d

P> t′′) = {({t}, l, t′), ({t}, g, t′′)} >c c(t′ →g=d
P> t1 ←l=r

P>

t′′) = {({t′}, g, t1), ({t′′}, l, t1)}
just by comparing the first components: t > t′ and t > t′′.

5. Peak with variable overlap: again just by comparing the first components of each step which comes

up in the proof t′
∗−→P> t1

∗←−P> t′′.

2

The connection between ordered completion and the proof transformation relation can be stated as
follows:

Proposition 17.2 =⇒ reflects 7→7→, i.e. whenever Pi 7→7→Pi+1 and P is a ground proof in Pi, then there is a

ground proof P ′ in Pi+1 such that P ∗
=⇒ P ′.

An ordered completion procedure that handles all the ordered critical pairs, produces an ordered rewrite
set which is ground Church-Rosser with respect to the given reduction ordering.

Theorem 17.1 [Bac87, BDP89] Let P0 = E be the set of equalities, and > be a reduction ordering that can
be extended to a ground-total reduction ordering �. If P0 7→7→P1 7→7→ . . . is a derivation such that OCP (P∞)
is a subset of P∗, then P∞ is Church-Rosser with respect to � on ground terms.

Proof: We prove by induction on =⇒ that, whenever there is a proof P of (t = t′) in Pi, for some i,
then there is a ground rewrite proof of (t = t′) in P∞. Lemma 17.2 then implies that P∞ is ground
Church-Rosser w.r.t. >.

The assertion holds trivially if P is a ground rewrite proof that uses only persisting equalities. Oth-
erwise, if non-persisting equalities are used, according to Proposition 17.2, there exists a proof P ′ in

some Pj , j ≥ i, such that P +
=⇒ P ′. Then the induction hypothesis applied to P ′ yields the result.

If P is a persisting proof that contains a peak, say t′ ←P>
i
t →P>

i
t′′, then Proposition 17.1 applies.

Either the peak can be replaced by a rewrite proof t′
∗−→P>

i
t
∗←−P>

i
t′′. Then j = i and P +

=⇒ P ′.
Or t′ ←→OCP (P∞) t

′′ with an ordered critical pair between persisting equalities. Since OCP (P∞) is a
subset of P∗, there exists j ≥ i such that t′ ←→Pj

t′′. Again there exists a proof P ′ in Pj such that

P +
=⇒ P ′. Then the induction hypothesis yields the result. 2

Ordered completion generalizes standard completion in that for each derivation in standard completion,
there is a corresponding derivation in ordered completion [Bac87].

17.4 An unfailing completion procedure

An unfailing completion procedure is a program that takes a finite set of equalities P0 and a reduction ordering
> that can be extended to a ground-total reduction ordering, and that generates from P0 a derivation
P0 7→7→P1 7→7→ . . ., using the transition rules in U . An unfailing completion procedure is given in Figure 17.2.

The SIMPLIFICATION procedure computes simplified forms of l and r, using orientable instances of
equalities in P , according to transition rule Collapse.

January 28, 2006 rewriting solving proving

17.4 An unfailing completion procedure 217

PROCEDURE UNFAIL-COMPLETION (P, >)

IF all equalities in P are marked

THEN RETURN P; STOP with SUCCESS

ELSE Choose an unmarked equality (l = r) fairly;

P := P-{(l=r)};

(l’= r’) := SIMPLIFICATION (l = r, P);

IF l’ = r’ THEN P := UNFAIL-COMPLETION (P, >)

ELSE P := P U {(l’= r’)} U ORDERED CRITICAL-PAIRS (l’= r’,P);

Mark the equality (l’= r’) in P;

P := UNFAIL-COMPLETION (P, >)

END IF

END IF

END UNFAIL-COMPLETION

Figure 17.2: An ordered completion procedure

The ORDERED CRITICAL-PAIRS procedure computes all ordered critical pairs between (l = r) and other
equalities in P . An equality is marked whenever its ordered critical pairs with other equalities have been
computed and added to P .

Chosing an unmarked equality fairly can be implemented by labelling equalities increasingly when they
are introduced. Chosing the equality with the smallest label is fair. If an equality persists, it has been
marked so its critical pairs have been computed.

Example 17.2 This example of the theory of entropic groupoids comes from [HR87, Rus87a]:

(x ∗ y) ∗ (z ∗ w) = (x ∗ z) ∗ (y ∗ w) (17.1)

(x ∗ y) ∗ x = x. (17.2)

By superposition of the second equality on the first one at position Λ, a critical pair

(((z ∗ w) ∗ z) ∗ (y ∗ w), z ∗ w)

is produced. This pair is then reduced by 17.2 into

z ∗ (y ∗w) = z ∗ w. (17.3)

Now 17.1 and 17.3 produce the critical pair

((y ∗w) ∗ x) ∗ w = y ∗ w. (17.4)

17.3 reduces 17.1 to a new equality

(x ∗ y) ∗ w = (x ∗ z) ∗ w. (17.5)

Assuming that 17.5 has instances orientable from left to right, it can be used to reduce 17.4 to

((y ∗ z) ∗ x) ∗ w = y ∗ w. (17.6)

The ordered completion then terminates with the set:

(x ∗ y) ∗ x = x

z ∗ (y ∗ w) = z ∗ w
((y ∗ z) ∗ x) ∗ w = y ∗ w

(x ∗ y) ∗ w = (x ∗ z) ∗ w.

Exercice 58 — Ternary Boolean algebras are defined by two rules and one equality:

f(y, x, x) → x

f(x, y, g(y)) → x

f(f(v, w, x), y, f(v, w, z)) = f(v, w, f(x, y, z)).

January 28, 2006 rewriting solving proving

218 Ordered completion

Show that ordered completion can derive the following rules and equality:

f(x, x, y) → x

f(g(x), x, y) → y

f(x, y, x) → x

g(g(x)) → x

f(x, y, z)) = f(z, y, x)).

Answer:

When the ordered completion terminates with such a finite ordered rewriting system, it can be used to
prove or disprove any equational theorem (t = t′) in this theory. Since the Church-Rosser property only
holds for ground terms, variables, in the theorem to be proved, must be considered as new constants in an
enriched signature. These constants must be linearily ordered and smaller than any other symbol for the
extended ordering. Then normal forms of both terms are computed and are equals iff the theorem holds.
Since the target theorem is only used in the reduction process but not in the deduction process, its variables
will never be instantiated and may be treated as constants. This justifies including them specifically in the
ordering.

Example 17.3 Coming back to the previous Example 17.2, assume that the theorem

∀x1, x2, x3, x1 ∗ (x1 ∗ x2) = ((x1 ∗ x1) ∗ x3) ∗ x2

is to be proved. Negating this theorem, we get

∃x1, x2, x3, x1 ∗ (x1 ∗ x2) 6= ((x1 ∗ x1) ∗ x3) ∗ x2

Considering x1 < x2 < x3 as three ordered constants less than ∗, this theorem is valid since both sides of
the equality reduce to a same term (x1 ∗ x2), using respectively the equalities

z ∗ (y ∗ w) = z ∗ w
((y ∗ z) ∗ x) ∗ w = y ∗ w.

Exercice 59 — Consider again the theory defined in Example 17.2. and prove the universally quantified equational
theorem:

(x1 ∗ (y1 ∗ u1)) ∗ v1 = (x1 ∗ x1) ∗ v1.
Answer: The ordering is extended to take into account the variables of the theorem. Consider the lexicographic
path ordering based on the following precedence: ∗ > x1 > y1 > u1 > v1.

Each side of the theorem matches with the left-hand side of the fourth rule. Replacing z in the right-hand side

of this rule by the smallest symbol v1, two ordered rewriting steps can be applied. The normal form of each side of

the theorem is: (x1 ∗ v1) ∗ v1.

Ordered completion can be used as a semi-decision procedure, as in the next example.

Example 17.4 Consider the following set of equalities E:

x+ y = x+ x

(x − y) + z = (x+ z)− y
(x+ y)− y = x.

Assume that we want to prove the universally quantified theorem ((x1 − y1) + z1 = x1).
Using a recursive path ordering such that + > −, the two first equalities give the critical pair ((x− y) +

(x− y) = (x+ z)− y), whose left-hand side is reduced by the second equality, giving a new equality

(e) : (x + (x− y))− y = (x+ z)− y.

Then the third equality, superposed on the right-hand side of (e), produces a critical pair

(e′) : (x+ (x− y))− y = x.

(e′) simplifies (e) into (x = (x+ z)− y).
At this point the theorem to be proved is reduced, using (x− y) + z = (x + z)− y to

(x1 + z1)− y1 = x1

which is in turn reduced, using (e′′) to a trivial equality x1 = x1.

January 28, 2006 rewriting solving proving

17.5 Construction of canonical systems 219

17.5 Construction of canonical systems

According to the previous results, an ordered completion procedure is aimed to build a ground Church-
Rosser term rewriting system. However if a convergent and interreduced system exists for the theory E, it
is possible to design an ordered completion procedure that will find it. The additional hypothesis is that the
set of persisting equalities is interreduced, as stated by the next definition.

Definition 17.2 A derivation P0 7→7→P1 7→7→ . . . is simplifying if

• OCP (P∞) is a subset of P∗,

• for any equality (s = t) ∈ P∞, s and t are irreducible.

An ordered completion procedure is simplifying if it generates only simplifying derivations.

Provided there exists a convergent and interreduced system R that presents E, a simplifying ordered
completion procedure produces a set of equalities that is the same as R, up to a renaming.

Theorem 17.2 Let R be an interreduced convergent system for E and > a reduction ordering containing R.
If > can be extended to a ground-total reduction ordering, then a simplifying ordered completion procedure
generates, from P0 = E and >, a derivation such that P∞ is the same as R up to a variable renaming.

Proof: see [Bac87, BDP89]. 2

This result requires that the given reduction ordering, containing R, extends to a ground-total reduction
ordering. However there exist some reduction orderings induced by reduced canonical rewrite systems that
cannot be extended to a ground-total reduction ordering, as proved by the following example.

Example 17.5 Consider the rewrite rules set R:

f(h(x)) → f(i(x))

g(i(x)) → g(h(x))

h(a) → c

i(a) → c.

A reduction ordering for R must contain h(a) > i(a) by considering the first rule. Then it must con-
tain g(h(a)) > g(i(a)). But considering now the second rule, it must contain g(i(a)) > g(h(a)), which is
incompatible with the previous requirement.

A possible implementation of a simplifying ordered completion procedure is obtained by splitting the set
P of equalities into a set R of oriented equalities (or rules) and a set P ′ of non orientable ones. Whenever
P ′∞ is empty and R∞ is interreduced, then R∞ is convergent.

Example 17.6 In [MN90], from the two laws

(x ∗ x) ∗ y = y

(x ∗ y) ∗ z = (y ∗ z) ∗ x

that axiomatize groups of exponent two, the ordered completion procedure produces the following set of
critical pairs

(x ∗ y) ∗ x → y

(x ∗ y) ∗ y → x

x ∗ x = y ∗ y
(x ∗ y) ∗ z → x ∗ (y ∗ z)

x ∗ y = y ∗ x
x ∗ (y ∗ z) = y ∗ (x ∗ z)

x ∗ x → 1

x ∗ (x ∗ y) → y

x ∗ 1 → x

1 ∗ x → x

January 28, 2006 rewriting solving proving

220 Ordered completion

After elimination of joinable critical pairs, the following ordered rewrite system E is obtained:

(x ∗ y) ∗ z → x ∗ (y ∗ z)
x ∗ y = y ∗ x

x ∗ (y ∗ z) = y ∗ (x ∗ z)
x ∗ x → 1

x ∗ (x ∗ y) → y

x ∗ 1 → x

1 ∗ x → x

Exercice 60 — Consider the initial set of equalities E0:

1 ∗ (−x + x) = 0

1 ∗ (x +−x) = x +−x

−x + x = y +−y

1. Show that a standard completion procedure fails for any reduction ordering given as input.

2. Prove that the following set of rules is a convergent rewrite system for the equational theory E0:

−x + x → 0

x +−x → 0

1 ∗ 0 → 0

3. Apply ordered completion to E0.

4. Unorientable equality as the last one in E0, can sometimes be dealt with by adding a new (minimal) constant
c and replacing −x + x = y + −y by two rewrite rules −x + x → c and y + −y → c. Prove that standard
completion starting from

1 ∗ (−x + x) = 0

1 ∗ (x +−x) = x +−x

−x + x → c

y +−y → c

then succeeds in constructing a convergent system in a conservative extension of E0.

Answer: See [BD89b].

1.

2.

3.

4. The convergent system is

−x + x → c

x +−x → c

1 ∗ c → c

0 → c

17.6 Proofs by refutation

Ordered completion can also be adapted to act as a refutational theorem prover.
Let E be a set of equalities and (t = t′) an equational theorem to be proved in the theory described by

E, with t, t′ ∈ T (F ,X). Assume that t0 and t′0 are the skolemized versions of respectively t and t′, that is
terms whose variables are now considered as a set H of new constants disjoint from F . Introduce also two
new constants T and F together with a new binary function symbol eq. The problem on T (F ,X) is now
translated into a problem on

TH = T (F ∪H,V) ∪ {T, F} ∪ {eq(t, t′) | t, t′ ∈ T (F ∪H,V)}.
Let also

E∗ = E ∪ {eq(x, x) = T, eq(t0, t
′
0) = F}.

Note that T and F can be any constants. This is why we do not write them true and false, which could
let think to boolean values.

The intended property is refutational completeness in the following sense.

January 28, 2006 rewriting solving proving

17.6 Proofs by refutation 221

Definition 17.3 The transition rule system U is refutationally complete if (t = t′) is valid in E implies
(T = F) can be derived from E∗ using U .

So a refutation will be found if the equality (T = F) is generated.

Definition 17.4 A refutation is any derivation P0 7→7→P1 7→7→ . . . for which P∗ contains the equality (T = F).
A fair refutation is any derivation P0 7→7→P1 7→7→ . . . for which P∗ contains the equality (T = F) and such

that OCP (P∞) is a subset of P∗.

An additional hypothesis on the reduction ordering is necessary for proofs by refutation.

Definition 17.5 A reduction ordering is called admissible if it can be extended to a ground-total reduction
ordering in which T and F are the two smallest elements.

The refutational completeness of ordered completion is expressed in the following result:

Theorem 17.3 [Rus87a, Bac87] Let E be a set of equalities and > be an admissible reduction ordering.

Then the equality (t = t′) is valid in E (i.e. (t
∗←→E t′)) iff the ordered completion procedure generates a

refutation from P0 = E∗ and >.

Proof: Let us first prove that (T
∗←→E F) iff the ordered completion procedure generates a fair refutation.

By soundness and correctness of ordered completion, (T
∗←→E F) iff there is a ground rewrite proof

with respect to > of (T = F) in Pi for some i. Since T and F are minimal for >, this rewrite proof
must be (T ←→Pi

F), which implies that (T = F) ∈ Pi.
Now because

∗←→Pi
⊆ ∗←→P0 , there also exists a proof of (T = F) in P0. Since E contains only

equalities between terms of T (F ,X), any shortest proof of (T = F) in P0 must be of the form

T ←→P0 eq(t′′, t′′)
∗←→E eq(t0, t

′
0) ←→P0 F . Moreover eq(t′′, t′′)

∗←→E eq(t0, t
′
0) iff t0

∗←→E t′0 iff

t
∗←→E t′. So t

∗←→E t′ iff the ordered completion procedure generates a refutation. 2

The next example illustrates this refutational method on a satisfiability proof.

Example 17.7 Consider the following set of equalities E [HR87, Rus87a]:

(x − y) + z = (x+ z)− y
(x+ y)− y = x.

In order to prove the existentially quantified theorem

∃x, y, z, (x− y) + z = x

in the theory E, the following equations are added to E:

eq(x, x) = T

eq((x− y) + z, x) = F.

The last equality is the negated theorem. Using a recursive path ordering such that + > −, the last equality
reduces, using (x− y) + z = (x+ z)− y, to

eq((x+ z)− y, x) = F.

Now (x+ y)− y = x can be superposed in the left-hand side of this last equality and gives the critical pair

eq(x, x) = false.

A last superposition with the equality (eq(x, x) = F) produces the critical pair (T = F).

Example 17.8 A ground complete ordered rewrite system for Boolean rings is given by a lexicographic
path ordering generated by a total ordering of the operators and constants, together with the following set
of equalities.

x+ 0 → x 0 + x → x
x+ x → 0 x+ (x+ y) → y
x ∗ 0 → 0 0 ∗ x → 0
x ∗ 1 → x 1 ∗ x → x
x ∗ x → x x ∗ (x ∗ y) → x ∗ y

(x+ y) + z → x+ (y + z) (x ∗ y) ∗ z → x ∗ (y ∗ z)
x ∗ (y + z) → (x ∗ y) + (x ∗ z) (y + z) ∗ x → (y ∗ x) + (z ∗ x)

x+ y = y + x x ∗ y = y ∗ x
y + (x+ z) = x+ (y + z) y ∗ (x ∗ z) = x ∗ (y ∗ z)

January 28, 2006 rewriting solving proving

222 Ordered completion

Ordered completion, starting with this system and a skolemized negation of a theorem in first-order predicate
calculus with equality, where + is the exclusive-or and ∗ is the conjunction, can be used as the basis of a
refutationally complete theorem prover [HD83].

17.7 Conclusion

The notion of proof by refutation comes from first-order logic with equality. In order to prove a formula, the
inconsistency of its negation is proved by deducing a contradiction.

In 1965, J.A.Robinson proposed an inference rule, called resolution, that allows deriving a contradiction
(the empty clause) from formulas that are inconsistent [Rob65].

In 1970, G.Robinson and Wos introduced the paramodulation, which was the first step to handle the
equality relation in a specific way [RW69]. If ordered completion is used with the “empty” ordering, it
degenerates to paramodulation (restricted of course to the purely equational case). The advantage of ordered
completion over paramodulation is its use of simplification that considerably reduces the search space and the
restriction of equational deduction to the computation of ordered critical pairs, which avoids superposition
on variables contrary to paramodulation.

The idea of extending completion by computing equational consequences of non-orientable equalities can
be traced back to the work of Brown (1975) [Bro75] and Lankford (1975) [Lan75b].

In 1983, Peterson proved the refutation completeness of an inference rule system composed of resolution,
paramodulation and simplification with respect to a class of orderings isomorphic to integers [Pet83]. He
already proved that it is not necessary to paramodulate on variables and introduced the simplification rule,
that allows keeping terms into reduced forms.

In 1987, Rusinowitch proposed a transition rule system that is refutationally complete for first-order
logic with equality [HR86, Rus87a]. Restricted to the equational case, this system behaves like an ordered
completion procedure [Rus88].

January 28, 2006 rewriting solving proving

Chapter 18

Completion modulo a set of equalities

18.1 Introduction

The Knuth-Bendix completion procedure is based on using equalities as rewrite rules and computing critical
pairs when left-hand sides of rules overlap. If a critical pair has distinct irreducible forms, a new rule
must be added and the procedure recursively applies until it maybe stops. This procedure requires the
termination property of the set of rules, which can be proved by various tools. However some equalities,
such as commutativity, cannot be oriented into rewrite rules without losing the termination property and
cause the failure of the completion procedure. To remedy this problem requires the concepts of class rewrite
systems and rewriting modulo a set of axioms presented in Section 7.3 of Chapter 7, where adequate notions
of confluence and coherence modulo a set of equalities are defined too.

The Knuth-Bendix completion method was extended to handle the case of class rewrite system. A
first approach by Lankford and Ballantyne [LB77c, LB77a, LB77b] handles the case of commutative, or
more generally permutative, axioms that generate finite congruence classes. The case of infinite congruence
classes is studied in [PS81, Hue80, Jou83]. Huet’s approach [Hue80] is restricted to sets R of left-linear rules,
while Peterson and Stickel’s one [PS81] is restricted to linear equalities A for which a finite and complete
unification algorithm is known. Both [LB77a] and [PS81] results yield an efficient associative-commutative
completion procedure, with a few more restrictions needed for applying the first approach. A complete
unification algorithm is required to compute complete sets of A-overlappings, providing complete sets of A-
critical pairs. These results are unified in [Kir85b, JK86c] and sources of inefficiency inherent to unification
and matching modulo a set of axioms are minimized. Finally all these completion techniques were put into
the uniform framework of transition rules and proof transformation by L.Bachmair [Bac87].

Examples handled by these methods can be found in [KK86, Hul80a]. Theories with associative-
commutative axioms are the most common.

18.2 Completion modulo A for left-linear rules

Huet’s method for left-linear rules is presented in this section. In this context RA is the standard rewriting
relation R and the Church-Rosser property that will be obtained is the following: Remind that the rewriting
relation R is Church-Rosser modulo A if

∗←→R∪A ⊆ ∗−→R ◦ ∗←→A ◦ ∗←−R .

The adequate notion of proofs in normal-form comes from this Church-Rosser property. The simplest
forms of proofs which are not in normal form come from the properties of local coherence modulo A of R
with R and with A.

Definition 18.1 A proof of (t = t′) is a rewrite proof modulo A for R iff ∃t1, t′1, t
∗−→R t1, t′

∗−→R

t′1 and t1
∗←→A t

′
1.

A peak is a proof t1 ←R t→R t2 and a cliff is a proof t1 ←R t←→A t2 or t1 ←→A t→R t2.

A left-linear rewrite system R is Church-Rosser modulo A iff any theorem (t = t′) has a rewrite proof
modulo A. A proof in A ∪ R is a rewrite proof modulo A iff it contains no peak and no cliff. This will be
achieved if R is locally coherent modulo A with both R and A.

By the critical pair lemma, every peak t1 ←R t →R t2 can be replaced by a rewrite proof unless it is a
proper overlap. The same result holds for cliffs, provided R is left-linear.

January 28, 2006 rewriting solving proving

224 Completion modulo a set of equalities

18.2.1 Critical pairs of rules and axioms

The notion of critical pair between rules extends to rules and axioms.

Definition 18.2 Given two rules or axioms g → d and l → r such that Var(g) ∩ Var(l) = ∅ and l and g
overlap at occurrence ω of Grd(g), then (p, q) defined by p = ψ(g[ω ←↩ r]), q = ψ(d) is called a critical pair
of l→ r on g → d at occurrence ω.

If ω is not an occurrence in g or if g|ω is a variable, then the rule l → r applies in the variable or
substitution part of g and (p, q) is then called a variable overlap.

Let ~A be the set of oriented axioms built from A:

~A =
⋃

(g=d)∈A

{(g → d), (d→ g)}.

The set of all critical pairs obtained by overlapping two rules or axioms in R∪ ~A but not both in ~A is denoted
by CP (R ∪A)− CP (A).

Lemma 18.1 Let t′ ←→A t→R t
′′ be a cliff such that t→ε,σ,g→d

R t′′ and t←→υ,σ,l→r
A t′ (or t←→ε,σ,g→d

A t′′

and t→υ,σ,l→r
R t′), with υ ∈ Grd(g).

Then there exist a critical pair (p, q) in the set of critical pairs CP (R ∪A) − CP (A) and a substitution
τ such that t′ = τ(p) and t” = τ(q). Therefore t′ ←→CP (R∪A)−CP (A) t

′′.

Proof: The proof is identical to the case of a true overlapping in the critical pair lemma for standard
rewriting. 2

Theorem 18.1 [Hue80] R is locally confluent and locally coherent modulo A iff every critical pair of
CP (R ∪A)− CP (A) is convergent.

Proof: Assume t′ ←→A t→R t
′′ be a cliff. Then

• either ←→A and →R do not overlap and t′ →R t0 ←→A t
′′ since the two relations commute.

• or ←→A and →R overlap on variables and t′
∗−→R t0

∗←→A t1
∗←−R t′′ assuming that R is

left-linear. This case has to be detailed:

– Assume that the rule l→ r applies in the subterm α(g) created by applying the axiom g → d

in ~A, and more precisely in a subterm α(x) with x being a variable of g. Let t0 be defined
as the term produced by rewriting α(x) using l → r. Let α′ defined by α′(x) = t0 and
α′(x) = α(y) for any y 6= x. Then the subterm α(d) in t′′ rewrites to α′(d), t′ rewrites to a
term containing α′(g) and the two results are A-equivalent.

– Assume that the axiom g → d applies in the subterm α(l) created by applying the rule l→ r,
and more precisely in a subterm α(x) with x being a variable of l. Let t0 be defined as the
term produced by rewriting α(x) using g → d. Let α′ defined by α′(x) = t0 and α′(x) = α(y)
for any y 6= x. Since l is linear, t′′ contains as subterm α′(l) that can be reduced to α′(r),
producing a term which is A-equivalent to t′.

• The last case of cliff is when there is a true overlap and critical pairs computation is needed.

2

Note that the left-linearity of rules is crucial in this proposition. For instance, for R = {x+ x→ x} and
A = {a = b}, the variable overlap a + b ←→A a + a →R a cannot be transformed in a rewrite proof
modulo A but only to the proof a+ b ←→A b+ b →R b←→A a.

18.2.2 Transition rules for completion modulo A with left-linearity

Let P be a set of equalities (quantified pairs of terms), R be the current rewrite system, and > an A-
compatible reduction ordering. Equalities are ordered according to >. Rewrite rules are compared by the
following ordering: l → r >> g → d iff either g @ l (l is strictly greater than t in the encompassment
ordering), or l and g are subsumption equivalent (l ≡ g) and r > d in the given reduction ordering.

The completion procedure modulo A for left-linear rules is expressed by the setMLC of transition rules
presented in Figure 18.1.

January 28, 2006 rewriting solving proving

18.2 Completion modulo A for left-linear rules 225

Orient P ∪ {p = q}, R 7→7→ P,R ∪ {p→ q}
if p > q

Deduce P,R 7→7→ P ∪ {p = q}, R
if (p, q) ∈ CP (R ∪A)− CP (A)

Simplify P ∪ {p = q}, R 7→7→ P ∪ {p′ = q}, R
if p→R p

′

Delete P ∪ {p = q}, R 7→7→ P,R

if p
∗←→A q

Compose P,R ∪ {l→ r} 7→7→ P,R ∪ {l→ r′}
if r →R r

′

Collapse P,R ∪ {l→ r} 7→7→ P ∪ {l′ = r}, R
if l →g→d

R l′ & l→ r >> g → d

Figure 18.1: Completion modulo A for left-linear rules

Compared to the transition rules for standard completion, the differences only appear in the computation
of critical pairs in which axioms have to be taken into account, and in the Delete rule where syntactic equality
is replaced by equality modulo A.

This transition system is evidently sound, since the class of provable theorems is unchanged by any of
these transitions.

Lemma 18.2 If (P,R) 7→7→(P ′, R′) then
∗←→P∪R∪A and

∗←→P ′∪R′∪A are the same.

Moreover only rules contained in > are added. So the system R∞/A is terminating for any derivation
for which the intial set of rules R0 is contained in the A-compatible reduction ordering >.

Theorem 18.2 Let R0 = ∅, P0 be a set of equalities, and > be an A-compatible reduction ordering. If
(P0, R0) 7→7→(P1, R1) 7→7→ is a derivation such that

• R∞ is left-linear,

• P∞ = ∅,

• CP (R∞ ∪A)− CP (A) is a subset of P∗

then R∞ is Church-Rosser modulo A and R∞/A is terminating.

Proof: see [Bac87] 2

18.2.3 Completion procedure for left-linear rules

A completion procedure modulo A for left-linear rules is now presented. It is a recursive form of the procedure
informally described by Huet in [Hue80].

The SIMPLIFICATION procedure is just applying the transition rules Simplify, Compose and Collapse
with the rule l → r. The test in the rule Collapse is actually useless here because equalities are always fully
simplified by rules before orientation.

The CRITICAL-PAIRS procedure computes all critical pairs between l→ r and other rules in R and with
axioms in ~A. A rule is marked whenever its critical pairs with other rules and axioms have been added
computed and added to P .

Choosing an unmarked rule fairly can be implemented by labelling rules increasingly when they are
introduced. Chosing the rule with the least label is fair.

If a rule persists, it has been marked so its critical pairs have been computed. P∞ is empty because
∀i, ∃j > i such that Pj = ∅. So ∀i,⋂

j>i
Pj = ∅. R∞ is left-linear, because this condition is checked before

the introduction if any rule in P∗. Actually the procedure described above could be improved in relaxing the
condition of checking left-linearity of each rewrite rule. Only left-linearity of R∞ is required by Theorem 18.2
and non-left-linear rules could be introduced at some step j in Rj and later simplified into a linear equality
giving rise to a left-linear rule.

January 28, 2006 rewriting solving proving

226 Completion modulo a set of equalities

PROCEDURE COMPLETION-MOD-LIN (P, R, >)

IF P is not empty

THEN choose a pair (p,q) in P ; p’:=R-normal form(p);

q’:=R-normal form(q);

CASE p’ <-*->A q’ THEN R := COMPLETION-MOD-LIN(P-{(p,q)},R,>)

p’ > q’ AND p’ linear

THEN l:=p’; r:=q’;

(P,R) := SIMPLIFICATION(P-{(p,q)},R,l -> r);

R := COMPLETION-MOD-LIN(P,R U {l -> r},>)

q’ > p’ AND q’ linear

THEN l:=q’; r:=p’;

(P,R) := SIMPLIFICATION(P-{(p,q)},R,l -> r);

R := COMPLETION-MOD-LIN(P,R U {l -> r},>)

ELSE STOP with FAILURE

END CASE;

ELSE IF all rules in R are marked

THEN RETURN R; STOP with SUCCESS

ELSE Choose an unmarked rule l -> r fairly;

P := CRITICAL-PAIRS (l -> r,R);

Mark the rule l -> r in R;

R := COMPLETION-MOD-LIN(P,R,>)

END IF

END IF

END COMPLETION-MOD-LIN

Figure 18.2: A completion procedure modulo A for left-linear rules

Example 18.1 This example comes from [Hue80]:

E(x+ y) → E(x).E(y)

E(0) → 1

x+ 0 → x

0 + x → x

x.1 → x

1.x → x

x+ y = y + x

(x+ y) + z = x+ (y + z)

x.y = y.x

(x.y).z = x.(y.z)

Example 18.2 In [ML92], an axiomatization of the category of monoids is proposed. A monoid is a set
equipped with a binary associative operator ∗ and a unique unit element e. A monoid in a category which
posseses binary product and a terminal object 1, is an objectK equipped with an associative multiplicationm
and an identity a. In the category of monoids, whose objects are monoids and whose morphims are monoids
homomorphisms, there is a terminal object 1, the trivial monoid, and there exists a monoid homomorphism
a : 1 7→M . A monoid in this category is thus a monoid M equipped with morphisms m : M ×M 7→M and
a : 1 7→M . This is axiomatized with the following set of equalities.

x ∗ e = x

e ∗ x = x

(x ∗ y) ∗ z = x ∗ (y ∗ z)
m(x, a) = x

m(a, x) = x

m(m(x, y), z) = m(x,m(y, z))

m(x ∗ x1, y ∗ y1) = m(x, y) ∗m(x1, y1)

January 28, 2006 rewriting solving proving

18.3 Completion modulo A with extensions 227

A standard completion process stops with a non-orientable equality

m(x2,m(x4, x1)) = m(x2,m(x1, x4))

and a set of rewrite rules

a → e

x ∗ y → m(x, y)

m(x, e) → x

m(e, x) → x

m(m(x, y), z) → m(x,m(y, z))

If the following instance of the non-orientable equality

m(e,m(x4, x1)) = m(e,m(x1, x4))

is added to the system, it is simplified and the commutativity of m is deduced:

m(x, y) = m(y, x)

With m declared as associative and commutative,

m(m(x, y), z) = m(x,m(y, z))

m(x, y) = m(y, x)

the complete system is

a → e

x ∗ y → m(x, y)

m(x, e) → x

The main limitation of this method is that it guarantees only the Church-Rosser property of systems
with left-linear rules. This is due to the problem of elimination of variable overlap. However such problems
disappear if a more powerful reduction relation modulo the A-equivalence is adopted. This idea and the
corresponding completion method, are due to Peterson and Stickel [PS81] and developed in the next section.

18.3 Completion modulo A with extensions

Another rewriting relation on terms has been introduced by Peterson and Stickel [PS81] and uses matching
modulo A.

Remind that a term t (R,A)-rewrites to t′, denoted t→R,A t
′, if there exist a rule l → r ∈ R, a position

ω in t and a substitution σ such that t|ω
∗←→A σ(l) and t′ = t[ω ←↩ σ(r)].

Note that →R ⊆ →R,A ⊆ →R/A.

Consider again R = {x+ x→ x} and A = {a = b}. the term a+ b obtained by the variable overlapping
a+ b ←→A a+ a →R a is now R,A-reducible, since a+ b ←→A b+ b = σ(x + x) and reduces to b.

The rewriting relation R,A is Church-Rosser modulo A if

∗←→R∪A ⊆ ∗−→R,A ◦ ∗←→A ◦ ∗←−R,A .

The adequate notion of proofs in normal-form comes from this Church-Rosser property. The simplest
forms of proofs which are not in normal form come from the properties of local coherence modulo A of R
with R,A and with A.

Definition 18.3 A proof of (t = t′) is a rewrite proof modulo A for R iff ∃t1, t′1, t
∗−→R,A t1, t

′ ∗−→R,A

t′1 and t1
∗←→A t

′
1.

A peak is a proof t1 ←R,A t→R t2 and a cliff is a proof t1 ←R,A t←→A t2 or t1 ←→A t→R,A t2.

January 28, 2006 rewriting solving proving

228 Completion modulo a set of equalities

18.3.1 A-Critical pairs of rules

Elimination of peaks now needs another notion of critical pairs.

Definition 18.4 A non-variable term t′ and a term t A- overlap at position ω in Grd(t) with a complete
set Ψ of A-overlappings iff Ψ is a CSU(t|ω, t

′, A).
Given two rules g → d and l → r such that Var(g) ∩ Var(l) = ∅ and l and g A-overlap at position ω of

Grd(g) with the complete set of A-overlappings Ψ, then the set {(p, q)|p = ψ(g[ω ←↩ r]), q = ψ(d), ∀ψ ∈ Ψ}
is called a set of A-critical pairs of the rule l→ r on the rule g → d at position ω. The set of A-critical pairs
of R is denoted CPA(R).

Note that l → r and g → d do not play symmetric roles in this definition.

Example 18.3 Let (x + y) + z → x + (y + z) and (e + x′) → x′ be rules and (y′ + e) = y′ be an axiom.
Then:

(p, q) = (y + z, e+ (y + z)) is a critical pair of the second rule on the first at position 1, associated with
the overlapped term (e+ y) + z. Note that q →R p.

(p, q) = (z, e+ (e+ z)) is an A-critical pair of the second rule on the first at position ε, associated with

the A-overlapped term (e+ e) + z
∗←→A e+ z. Note that q

∗−→R p.

Contrary to the case where A is the empty theory, superposition of a rule on itself at position ε is needed.
Otherwise the completion process could be incomplete as shown by the following example:

Example 18.4 Let (x + y = y + x) be the commutativity axiom for + and consider a rewrite rule that
redefines + with ∗: (x + y → x ∗ y). Obviously, the commutativity of ∗ is an equational consequence of
the theory, but can only be generated by superposing the rule on itself, modulo the commutativity of +, at
position ε.

Let t′ ←R t→R,A t
′′ be a peak.

• Either →R,A and →R do not overlap and t′ →R,A t0 ←R t
′′

• or →R,A and →R overlap on variables and t′
∗−→R,A t0

∗←−R,A t′′

• or there is a true A-overlap and computation of A-critical pairs is necessary.

Lemma 18.3 Let t′ ←R t→R,A t′′ be a peak such that t →ε,σ,g→d
R t′ and t→υ,σ,l→r

R,A t′′, υ ∈ Grd(g). Then
there exists a critical pair (p, q) = (ψ(g[υ ←↩ r]), ψ(d)) in a set of A-critical pairs of the rule l → r on the rule

g → d at position υ and a substitution τ such that ψ ∈ CSU(g|υ, l, A) and ∀x ∈ Var(g)∪Var(l), σ(x)
∗←→A

τ(ψ(x)), therefore t′
∗←→A τ(q) and t′′

∗←→A τ(q).

Proof: see [Jou83]. 2

Note that we use the same substitution σ for both redexes t and t|υ. This is legal, since we can always
assume that Var(l) ∩ Var(g) = ∅ without loss of generality: just rename the variables when needed.

The case where →R applies at a position υ and →R,A at the outermost position ε does not need to be
considered. Lemma 18.3 would be false for such cases!

Definition 18.5 Assume that the rule l → r overlaps the axiom g → d in ~A at position ω in Grd(g), and
Var(g) ∩ Var(l) = ∅. Then the extension or extended rule of l → r with respect to g → d is the rule
(g[ω ←↩ l]→ g[ω ←↩ r]).

In general extensions of extended rules have also to be recursively computed. All these extended rules are
gathered in a set denoted EXTA(l → r). Let EXTA(R) be the set of all extensions (recursively computed)
of rules in R with respect to A; Rext denotes R ∪ EXTA(R), i.e. the saturation of R under adjunction of
extended rules.

Note that to compute an extension only needs to know the position ω for which l and g|ω are A-unifiable,
but does not need to compute A-unifiers. Moreover such an extension, also denoted by g[l]→ g[r] for short,
satisfies g[l] > g[r] and its adjunction does not violate the termination property.

Example 18.5 Assume that A contains the associativity axiom of +, x + (y + z) = (x + y) + z. A rule
l → r will have an extension with respect to associativity if and only if its top symbol is +. The extensions
are x+ l→ x+ r and l + x→ r + x.

January 28, 2006 rewriting solving proving

18.3 Completion modulo A with extensions 229

18.3.2 Transition rules for completion modulo A with extensions

The simplification process on rules must be re-examined when extended rules are introduced. Actually an
extended rule g[l]→ g[r] is by construction reducible by l → r. So unlimited simplification would collapse any
extended rule to a trivial equality g[r] = g[r]. To prevent this phenomenon, extensions are protected. This
means that an extension will never be simplified and can only disappear if the initial rule itself disappears.
In practice, a new set of protected rules EX is introduced. Every extension will be added to EX .

Whenever a new rule is introduced its extensions with axioms in A are computed. Recursively extensions
of extensions are also computed and all these extended rules are gathered in a set denoted EXTA(l → r).

Let P be a set of equalities (quantified pairs of terms), N be the current rewrite system, EX the set of
protected rules and > an A-compatible reduction ordering. R will denote N ∪ EX .

Rewrite rules are again compared by the following ordering: l→ r >> g → d iff either g @ l (l is strictly
greater than t in the encompassment ordering), or l and g are subsumption equivalent (l ≡ g) and r > d in
the given reduction ordering.

The completion procedure modulo A with extended rules is expressed by the the set MEC of transition
rules presented in Figure 18.3.

Orient P ∪ {p = q}, N,EX
7→7→ P,N ∪ {p→ q}, EX if p > q

Deduce P,N,EX
7→7→ P ∪ {p = q}, N,EX if (p, q) ∈ CPA(R)

Extend P,N,EX
7→7→ P,N,EX ∪ {l→ r} if (l → r) ∈ EXTA(R)

Simplify P ∪ {p = q}, N,EX
7→7→ P ∪ {p′ = q}, N,EX if p→R,A p

′

Delete P ∪ {p = q}, N,EX
7→7→ P,N,EX if p

∗←→A q
Compose P,N ∪ {l→ r}, EX ∪ EXTA(l → r)

7→7→ P,N ∪ {l→ r′}, EX ∪ EXTA(l → r′) if r →R,A r
′

Collapse P,N ∪ {l→ r}, EX ∪ EXTA(l → r)

7→7→ P ∪ {l′ = r}, N,EX if l→g→d
R,A l′ & l → r >> g → d

Figure 18.3: Completion modulo A with extensions

Let N∗, P∗, N∞, P∞ be defined as previously and let EX∗ be the set of all generated protected rules,
EX∞ be the set of persisting protected rules:

EX∞ =
⋃

i

⋂

j>i

EXj .

Let also R∞ = N∞ ∪ EX∞.
This transition system is evidently sound, since the class of provable theorems is unchanged by any of

these transitions.
Moreover only rules contained in > are added. So the system R∞/A is terminating for any derivation

for which the initial set of rules N0 is contained in the A-compatible reduction ordering >.

Theorem 18.3 Let A be a set of axioms with a finite complete unification algorithm. Let N0 =
∅, EX0 = ∅, P0 be a set of equalities, and > be a reduction ordering compatible with A. If
(P0, N0, EX0) 7→7→(P1, N1, EX1) 7→7→ is a derivation such that

• CPA(R∞) is a subset of P∗,

• EXTA(R∞) is a subset of EX∗,

• P∞ is empty,

then (R∞, A) is Church-Rosser modulo A and R∞/A is terminating.

Proof: see [Bac87] 2

January 28, 2006 rewriting solving proving

230 Completion modulo a set of equalities

18.3.3 Completion procedure with extensions

A completion procedure modulo A with systematic adjunction of extensions is presented in Figure 18.4. It
is a recursive form of the procedure described by Peterson and Stickel in [PS81].

PROCEDURE COMPLETION-MOD-EXT (P,R,EX,>)

IF P is not empty

THEN choose a pair (p,q) in P ; p’:= R,A-normal form(p);

q’:= R,A-normal form(q);

CASE p’ <-*->A q’ THEN R := COMPLETION-MOD-EXT(P-{(p,q)},R,EX,>)

p’ > q’ THEN l:=p’; r:=q’;

(P,R) := SIMPLIFICATION(P-{(p,q)},R,EX,l -> r);

R := COMPLETION-MOD-EXT(P,R U {l -> r},

EX U EXT(l -> r),>)

q’ > p’ THEN l:=q’; r:=p’;

(P,R) := SIMPLIFICATION(P-{(p,q)},R,EX,l -> r);

R := COMPLETION-MOD-EXT(P,R U {l -> r},

EX U EXT(l -> r),>)

ELSE STOP with FAILURE

END CASE;

ELSE IF all rules in R are marked

THEN RETURN R; STOP with SUCCESS

ELSE Choose an unmarked rule l -> r fairly;

P := A-CRITICAL-PAIRS (l -> r, R U EX);

Mark the rule l -> r in R;

R := COMPLETION-MOD-EXT(P,R,EX,>)

END IF

END IF

END COMPLETION-MOD-EXT

Figure 18.4: Completion modulo A with extensions

The SIMPLIFICATION procedure applies the transition rules Simplify, Compose and Collapse with
the rule l → r. The A-CRITICAL-PAIRS procedure computes all A-critical pairs between l → r and other
rules in R ∪ EX . A rule is marked whenever its critical pairs with other rules have been computed and
added to P . The EXT procedure recursively computes, for a given rule, its extensions with axioms in A and
extensions of extensions.

If a rule persists, it has been marked so its critical pairs have been computed. So CPA(N∞ ∪EX∞) is a
subset of P∗. EXTA(R∞) is a subset of EX∗, because extensions of a given rule and extensions of extensions
are introduced simultaneously with the rule itself and only deleted if the rule does not persist. P∞ is empty
because ∀i, ∃j > i such that Pj = ∅. So ∀i,⋂

j>i
Pj = ∅.

The condition that all the recursively computed extensions of persisting rules are added may require an
infinite set of extended rules. However this condition can be weakened for special theories A and especially
for associativity and commutativity (AC for short).

Definition 18.6 Let R be a rewrite system and A be the axioms of commutativity and associativity of the
symbol f . Let Rext be R plus all extensions f(l, x) → f(r, x) of rules l → r ∈ R for which there exist no

rule l′ → r′ in R and no substitution σ, such that f(l, x)
∗←→AC σ(l′) and f(r, x)

∗−→AC∪R/AC σ(r′).

Example 18.6 Assume that R is

x+ 0 → x

x+ (−x) → 0

Then Rext consists in R plus only one extended rule (x+ (−x)) + y → y.
The extended rule (x+ 0) + y → x+ y is not included in Rext because it is equivalent modulo AC to an

instance (x + y) + 0→ (x+ y) of the first rule.

Actually every extension of an extended rule is equivalent modulo AC to an instance of the original rule.

January 28, 2006 rewriting solving proving

18.4 An alternative to extensions 231

Lemma 18.4 Let A be the axioms of commutativity and associativity of a symbol f . For any rewrite
system R, (Rext)ext = Rext.

Proof: Let l → r ∈ Rext. We prove that there exist u → v ∈ Rext and a substitution σ such that
f(l, x)

∗←→AC σ(u) and f(r, x)
∗−→AC∪(R/AC) σ(v).

• If l → r ∈ R, then f(l, x)→ f(r, x) ∈ Rext.
• Else l = f(s, y) → r = f(t, y) is an extension of the rule s → t in R. Let σ defined by σ(y) =

f(y, x) and σ(z) = z, ∀z 6= x. Then f(l, x) = f(f(s, y), x)
∗←→AC f(s, f(y, x)) = σ(l) and

f(r, x) = f(f(t, y), x)
∗←→AC f(t, f(y, x)) = σ(r).

2

Another improvement specific to AC-completion is that AC-critical pairs obtained by overlapping a rule
l′ → r′ on a proper subterm of an extended rule f(l, x) → f(r, x) are superfluous. This is due to the fact
that such overlaps are already obtained by overlapping the same rule l′ → r′ on the original rule l → r.

A last specificity of AC-completion is that the proper encompassment ordering modulo AC, denoted
@AC and defined by g @AC l iff ∃σ, σ(g)

∗←→AC l|ω with ω 6= ε, or σ(g) = l and σ is not a renaming, can
be used instead of the proper encompassment ordering in the definition of >> on rewrite rules for allowing
more simplifications of left-hand sides of rules. For more detailled proofs, see [Bac87].

Example 18.7 This Church-Rosser axiomatization of free distributive lattices is borrowed from [PS81]:

x ∪ (x ∩ y) → x

x ∩ (y ∪ z) → (x ∩ y) ∪ (x ∩ z)
x ∩ x → x

x ∪ x → x

x ∪ y = y ∪ x
(x ∪ y) ∪ z = x ∪ (y ∪ z)

x ∩ y = y ∩ x
(x ∩ y) ∩ z = x ∩ (y ∩ z)

Rext, AC is Church-Rosser modulo AC and R/AC is terminating.

Example 18.8 Considering now the larger class of lattices, a different situation occurs. Lattices have the
following equational axiomatization:

x ∪ (y ∪ z) = (x ∪ y) ∪ z x ∩ (y ∩ z) = (x ∩ y) ∩ z (associative)
x ∪ y = y ∪ x x ∩ y = y ∩ x (commutative)

x = x ∪ x x = x ∩ x (idempotent)
x = x ∪ (y ∩ x) x = x ∩ (y ∪ x) (absorptive)

Although each term in the free lattice has a canonical form unique up to AC [Whi41, Whi42], there is no
finite convergent class rewrite system modulo AC for the equational theory of lattices [FJN93].

Exercice 61 — Find sufficient conditions on axioms in A to ensure that the recursive process of computing

extensions can be limited to a finite number of iterations.

Answer:

18.4 An alternative to extensions

The disadvantage of systematically adding extensions, in the case of a general theory A, is that it can lead
to an infinite set of rules. At least, it must be proved that recursively adding extensions of extensions is
unnecessary for a given set of axioms A. An alternative is to come back to the notion of critical pairs to
eliminate cliffs.

January 28, 2006 rewriting solving proving

232 Completion modulo a set of equalities

18.4.1 A-critical pairs of rules on axioms

Definition 18.7 Given an axiom g → d and a rule l → r such that Var(g) ∩ Var(l) = ∅ and l and g
A-overlap at position ω of Grd(g) with the complete set of A-overlappings Ψ, then the set

{(p, q) | p = ψ(g[ω ←↩ r]), q = ψ(d), ∀ψ ∈ Ψ}

is called a set of A-critical pairs of the rule l → r on the axiom g → d at position ω. The set of A-critical
pairs of R on A is denoted CPA(R,A).

Let t′ ←→A t→R,A t
′′ be a cliff.

• Either →R,A and ←→A do not overlap and t′ → R,At0 ←→A t
′′

• or ←→A occurs below → R,A and t′′ → R,At
′

• or →R,A and ←→A overlap on variables and t′
∗−→R,A t0

∗←→A t1
∗←−R,A t′′

• or →R,A and ←→A overlap and critical pairs computation is needed.

Lemma 18.5 Let t′ ←→A t →R,A t′′ be a cliff such that t ←→[ε,σ,g→d]
A t′ and t →[υ,σ,l→r]

R,A t′′, with υ ∈
Grd(g). Then there exists a critical pair (p, q) = (ψ(g[υ ←↩ r]), ψ(d)) in a set of A-critical pairs of the
rule l → r on the axiom g → d at position υ and a substitution τ such that ψ ∈ CSU(l, g|υ, A) and

∀x ∈ Var(g) ∪ Var(l), σ(x)
∗←→A τ(ψ(x)), therefore t′

∗←→A τ(q) and t′′
∗←→A τ(q).

Proof: see [Jou83]. 2

Note that extended rules reduce at the outermost position all right members of A-critical pairs since q is an
instance of g[ω ←↩ l] modulo A: q = ψ(d)

∗←→A ψ(g) = ψ(g[ω ←↩ g|ω]) = ψ(g)[ω ←↩ ψ(g|ω)]
∗←→A ψ(g)[ω ←↩

ψ(l)] = ψ(g[ω ←↩ l]) using the homomorphic properties of substitutions. Extended rules thus appear just as
a special way to enforce convergence of A-critical pairs of R on A.

The previous lemma would suggest to reduce cliffs with true overlap by adding a proof transformation
rule of the form t′′ ←→A t →R,A t′ =⇒ t′′

∗←→A t1 ←→P t2
∗←→A t′. However introducing such a

reduction would make the proof reduction relation =⇒ non-terminating. So another weaker rule is used:
t′′ ←→A t →R,A t′ =⇒ t′′

∗←→A t1 →R t2
∗←→A t′, provided that if the equality step t′′ ←→A t occurs at

some position ω in t′′, then t′′ →R,A t2 at some position below ω, with A-equality steps strictly below ω. A
careful examination of Lemma 18.5, where t′′ = σ(d), shows that A-equality steps actually take place in the
substitution part of t′′ and not at a non-variable position of d. Whenever A contains no axiom t = x, these
A-equality steps never occur at the outermost position ε in t′′.

18.4.2 Transition rules for completion without extensions

Completion modulo A without adjunction of extensions is formulated by splitting the transition rule for
adjunction of a critical pair into two parts. The completion procedure modulo A without extended rules is
expressed by the setMWEC of transition rules presented in Figure 18.5.

Here the ordering l→ r >>A g → d is defined thanks to the proper encompassment ordering modulo A,
defined by g vA l iff ∃σ, σ(g)

∗←→A l|ω with ω 6= ε, or σ(g) = l and σ is not a renaming.
The termination proof of the proof transformation relation =⇒ is then conditionned by the termination

of the proper subterm ordering modulo A denoted �sub
A and defined by t�sub

A t′ iff t
∗←→A t0 �sub t′0

∗←→A t
′

where t0 �sub t′0 means that t0 is a proper subterm of t′0.

Lemma 18.6 [Bac87] The proper encompassment ordering modulo A is well-founded iff the proper subterm
ordering modulo A is well-founded.

If the proper subterm ordering modulo A is well-founded, the proof transformation relation =⇒ is well-
founded.

Theorem 18.4 Let A be a set of axioms with a finite complete unification algorithm, such that the proper
subterm ordering modulo A is well-founded. Let R0 = ∅, P0 be a set of equalities and > be an A-compatible
reduction ordering. If (P0, R0) 7→7→(P1, R1) 7→7→ is a derivation such that

• CPA(R∞) is a subset of P∗,

• CPA(R∞, A) is a subset of R∗,

January 28, 2006 rewriting solving proving

18.4 An alternative to extensions 233

Orient P ∪ {p = q}, R 7→7→ P,R ∪ {p→ q}
if p > q

Deduce P,R 7→7→ P ∪ {p = q}, R
if (p, q) ∈ CPA(R)

Extend P,R 7→7→ P,R ∪ {l→ r}
if (l, r) ∈ CPA(R,A)

Simplify P ∪ {p = q}, R 7→7→ P ∪ {p′ = q}, R
if p→R,A p

′

Delete P ∪ {p = q}, R 7→7→ P,R

if p
∗←→A q

Compose P,R ∪ {l→ r} 7→7→ P,R ∪ {l→ r′}
if r →R,A r

′

Collapse P,R ∪ {l→ r} 7→7→ P ∪ {l′ = r}, R
if l→g→d

R,A l′ & l → r >>A g → d

Figure 18.5: Completion modulo A without extensions

• P∞ is empty,

then (R∞, A) is Church-Rosser modulo A and R∞/A is terminating.

Proof: see [Bac87] 2

18.4.3 Completion modulo A without extensions

A completion procedure modulo A with computation of A-critical pairs of rules on axioms is presented below
in Figure 18.6.

PROCEDURE COMPLETION-MOD-CP (P,R,>)

IF P is not empty

THEN choose a pair (p,q) in P ; p’:= R,A-normal form(p);

q’:= R,A-normal form(q);

CASE p’ <-*->A q’ THEN R := COMPLETION-MOD-CP(P-{(p,q)},R,>)

p’ > q’ THEN l:=p’; r:=q’;

(P,R) := SIMPLIFICATION(P-{(p,q)},R,l -> r);

R := COMPLETION-MOD-CP(P,R U {l -> r},>)

q’ > p’ THEN l:=q’; r:=p’;

(P,R) := SIMPLIFICATION(P-{(p,q)},R,l -> r);

R := COMPLETION-MOD-CP(P,R U {l -> r},>)

ELSE STOP with FAILURE

END CASE;

ELSE IF all rules in R are marked

THEN RETURN R; STOP with SUCCESS

ELSE Choose an unmarked rule l -> r fairly;

(P,R) := A-CRITICAL-PAIRS (l -> r, R, A);

Mark the rule l -> r in R;

R := COMPLETION-MOD-CP(P,R,>)

END IF

END IF

END COMPLETION-MOD-CP

Figure 18.6: Completion modulo A without extensions

The procedure A-CRITICAL-PAIRS compute the A-critical pairs of the given rule l → r with other rules
in R and add them to P . It also computes the A-critical pairs of the rule l → r with axioms in A and add
them to R. It thus modifies both P and R.

Note that A-critical pairs of rules into axioms are never reduced before orientation. This may result in less
simplifications, because the transition rules on simplification of rules are more restrictive than the transition

January 28, 2006 rewriting solving proving

234 Completion modulo a set of equalities

rules on simplification of pairs. An alternative proposed in [JK86c] allows reduction of such A-critical pairs,
but may need additional protections: more precisely, if (p, q) comes from an A-overlapping of a rule l → r
on an axiom g → d and if the right-hand side of a critical pair (p, q) is R,A-reducible to q′ at the outermost
position (and not only R-reducible) using a rule l′ → r′, then the rule l′ → r′ must be protected for coherence
of l → r. This is a generalization of the notion of extension. Then the pair (p, q′) is added to the set of pairs
P .

18.5 General completion modulo A

Rewriting and completion modulo A based on equational matching and unification are very often very
expensive. The idea is to use axioms in A as less as possible and to take advantage of linearity of rules.
Another advantage of this idea is to build a more general method for rewriting and completion and to
get both Huet’s method and Peterson and Stickel’s method as instances of this general method proposed
in [JK86c].

Definition 18.8 Let R = L∪N with L a set of left-linear rules. A term t rewrites modulo A to t′ with the
relation RA = L ∪N,A, denoted t→RA

t′, iff there exist

• either t →N,A t′, i.e. there exist a rule l → r ∈ N , a position ω in t and a substitution σ such that

t|ω
∗←→A σ(l) and t′ = t[ω ←↩ σ(r)],

• or t→L t
′, i.e. there exist a rule l → r ∈ L, a position ω in t and a substitution σ such that t|ω = σ(l)

and t′ = t[ω ←↩ σ(r)]

Note that →R ⊆ →RA
⊆ →R/A.

Definition 18.9 A proof of (t = t′) is a rewrite proof modulo A for RA iff ∃t1, t′1, t
∗−→RA

t1, t
′ ∗−→RA

t′1 and t1
∗←→A t

′
1.

A peak is a proof t1 ←L t →R t2 or t1 ←N,A t →R t2 or the inverse of such proof. A cliff is a proof
t1 ←L t←→A t2 or t1 ←N,A t←→A t2 or the inverse of such proof.

Elimination of peaks and cliffs draw on the techniques already outlined. In essence, it requires compu-
tation of critical pairs of rules in L on rules in R and axioms in ~A and of axioms in ~A on rules in L. It also
requires computation of A-critical pairs of N on R and either extensions of rules in N or computation of
A-critical pairs of N on ~A.

18.5.1 Transition rules for completion modulo A

In formulating transition rules for a general equational completion, the set L of rewrite rules used for
standard rewriting must be distinguished from the set N of other rules used for rewriting modulo A. Also
since extensions as well as A-critical pairs computation are allowed, a set of protected rules EX is necessary.
For short, R will denoted L ∪N ∪EX and →RA

will denote →L ∪ →(N∪EX),A.
Several sets of critical pairs have to be distinguished:
CP (A,L), the set of critical pairs of A on L,
CP (L,A), the set of critical pairs of L on A,
CP (L,R), the set of critical pairs of L on L ∪N ∪ EX ,
CPA(N,R), the set of A-critical pairs of N on L ∪N ∪ EX ,
CPA(N,A), the set of A-critical pairs of N on A.
The A-completion procedure is expressed by the set of transition rulesMODC given in Figure 18.7.

Theorem 18.5 [JK86c] Let A be a set of axioms with a finite complete unification algorithm, such that
the proper subterm ordering modulo A is well-founded. Let L0, N0, EX0 be empty sets and P0 be a set of
equalities. If a derivation (P0, L0, N0, EX0) 7→7→(P1, L1, N1, EX1) 7→7→ ... satisfies

• CP (L∞, A) ∪CP (A,L∞) are subsets of R∗

• CP (L∞, R∞) ∪ CPA(N∞, R∞) are subsets of P∗

• For each rule l→ r in N∞ and each equality g → d in ~A such that l A-overlaps g at some position ω,
either the extended rule g[l] → g[r] is in EX∗, or all A-critical pairs of l → r with g → d at position
ω are in R∗.

January 28, 2006 rewriting solving proving

18.5 General completion modulo A 235

• P∞ = ∅

then →L∞∪(N∞∪EX∞),A is Church-Rosser modulo A and →R∞/A is terminating.

18.5.2 General completion procedure modulo A

A completion procedure modulo A with distinction between left-linear and non-left-linear rules and with a
minimal computation of A-critical pairs of rules on axioms is presented in Figure 18.8.

The procedure A-CRITICAL-PAIRS, applied to the rule l → r, computes

• if l is linear, the critical pairs of the rule l → r on axioms and on axioms on l → r, added to R, and
critical pairs of l→ r on all other rules in (L ∪N ∪ EX) added to P .

• if l is not linear, the A-critical pairs of the rule l → r on any other rule in (L∪N ∪EX), added to P .
Extended rules are added for l → r, when the rule is added to R.

This procedure thus may modify both P and R. An alternative could be to compute the A-critical pairs of
the rule with axioms in A and add them to R.

Example 18.9 In Example 7.9, the theory of boolean rings, where the conjunction ⊗ and the exclusive-or
⊕ are associative and commutative, is given by the following sets of rewrite rules and equalities, denoted
BR/AC:

x⊕ 0 → x

x⊕ x → 0

x⊗ 0 → 0

x⊗ 1 → x

x⊗ x → x

−x → x

x⊗ (y ⊕ z) → (x⊗ y)⊕ (x ⊗ z)

x⊗ y = y ⊗ x
(x⊗ y)⊗ z = x⊗ (y ⊗ z)

x⊕ y = y ⊕ x
(x⊕ y)⊕ z = x⊕ (y ⊕ z)

This class rewrite system is generated by a completion algorithm modulo associativity and commutativity
from the initial set of axioms:

x⊕ 0 = x

x⊕ (−x) = 0

x⊗ 1 = x

x⊗ x = x

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)
x⊕ x = 0

x⊗ y = y ⊗ x
(x⊗ y)⊗ z = x⊗ (y ⊗ z)

x⊕ y = y ⊕ x
(x⊕ y)⊕ z = x⊕ (y ⊕ z)

January 28, 2006 rewriting solving proving

236 Completion modulo a set of equalities

18.5.3 Reduced systems

Contrary to the standard completion procedure in which inter-reduction of rules is a conserved property,
some interreduction are dropped during a general completion procedure modulo A. However a reduced
complete system may be obtained a posteriori.

Definition 18.10 A set of rules R is reduced if for any rule l → r in R, the term l is not RA-reducible by
any other rule and r is not RA-reducible.

The following theorem is given for simplicity for the case where RA is R,A.

Theorem 18.6 [JK86c] Let R be a finite set of rewrite rules and A be a set of axioms, such that the
proper subterm ordering modulo A is well-founded. Assume that RA is Church-Rosser modulo A and R/A
is terminating. Let R′ be the set of rules obtained from R by deleting any rule l → r such that there exists
another rule l′ → r′ such that l

∗←→A σ(l′) for some substitution σ. Then R′A is Church-Rosser modulo A
and R′/A is terminating modulo A.

18.6 Comparison between different completion methods

Faced to these different methods, the question arises to determine which is the good one to chose. Even
when two methods are available, one of them can be preferred for efficiency or termination reasons.

Example 18.10 For the classical example of abelian groups, distinguishing between left-linear and non-
left-linear rules is much more efficient than computing all AC-critical pairs. Starting from

x+ y = y + x

(x+ y) + z = x+ (y + z)

x+ 0 → x

x+ (−x) → 0

the following set of left-linear rewrite rules is generated

x+ 0 → x

0 + x → x

−− x → x

−0 → 0

−(x+ y) → (−x) + (−y)

and the set on non-left linear rules is

x+ (−x) → 0

x+ ((−x) + y) → y.

Example 18.11 Starting from

0 + x = x

a+ b = 0

(x+ a) + b = x

with + being associative and commutative, completion using extensions and rewriting modulo AC gives the
following set of rewrite rules:

0 + x → x

z + (0 + x) → z + x

a+ b → 0

z + (a+ b) → z + 0

(x+ a) + b → x

z + ((x + a) + b) → z + x

January 28, 2006 rewriting solving proving

18.7 Ground associative commutative theories 237

However using Huet’s method, the completion procedure with left-linear rules diverges and R∞ contains the
following left-linear rules:

0 + x → x

x+ 0 → x

a+ b → 0

b+ a → 0

(x+ a) + b → x

a+ (b+ z) → z

b+ (a+ z) → z

(x+ b) + a → x

b+ (x+ a) → x

(a+ x) + b → x

(b + z) + a → z

a+ (y + b) → y

(x+ a) + (b+ z) → x+ z

((x + (z + a)) + b) → x+ z

z + ((x+ a) + b) → z + x

...

It is clear that in that case, the first completion method should be preferred.

Some other comparisons may be found in [KK86].
As a conclusion, let us summarize which simple criteria may be used in order to choose the completion

method:

• For efficiency it is important to get a minimal amount of computation of A-critical pairs: this leads to
separate left-linear rules and to systematically add extensions.

• For theories with infinite sets of A-unifiers, and where it can be proved that extensions can be finitely
computed, adjunction of extensions is preferrable.

• If a maximal interreduction of rules is favored, computation of A-critical pairs with possibly setting
protections must be chosen.

• Theories with axioms g = x prohibit the method of computing A-critical pairs of rules on axioms.

• Last but not least, remind that A-completion methods need the termination of R/A.

18.7 Ground associative commutative theories

The problem considered now is the decision of the word problem in the ground term algebra built on symbols
F where some function symbols are associative and commutative.

The first result needed to handle this specific case is the existence of a total AC-simplification ordering.
The case of only one AC-symbol was known from a long time (Malcev 1958), but the general case has been
solved only in [NR91a].

In [BL81], Lankford and Ballantyne designed a completion algorithm for finitely presented commutative
semi-groups, thus handling the case of one binary AC-function and a finite number of constants. The general
case of ground AC-completion is handled in [Mar91, NR91a]. From their results follows the fact that any
ground AC-theory has a finite canonical system.

In addition, provided a fair strategy ensuring that all possible simplifications are done before deductions,
the AC-completion procedure presented in [Mar91] always terminate. We do not develop this procedure here
but rather prefer to give an example of application. This example also illustrates a technique useful in AC
theories which consists of flattening terms, i.e. replacing a term by f(f(x, y), z) by f(x, y, z). Then rewriting
on flattened terms using R and its extensions simulates class rewriting with the original R. Completion
modulo AC can be done on flattened terms, as in the example below.

January 28, 2006 rewriting solving proving

238 Completion modulo a set of equalities

Example 18.12 1. The chameleons problem can be stated as follows:
When a red chameleon meets a green one, both become blue.
When a red chameleon meets a blue one, both become green.
When a green chameleon meets a blue one, both become red.
These statements are translated into the set R of three rewrite rules:

r + g → b + b
r + b → g + g
g + b → r + r

where r, g, b are constants and the + operator is AC.
Given 42 chameleons, 15 red, 14 green and 13 blue, can chameleons become all of the same colour at

some time?

Solving this problem amounts to prove that the initial state i = 15r + 14g + 13b cannot be rewritten to
either 42r, 42g or 42b. The problem here is that R does not terminates, as shown by the looping rewriting
sequence:

r + g + g → b+ b+ g → b+ r + r → g + g + r

In order to prove that i
∗−→R 42x is false, the method consists in using ground completion to build from R

another set R′ satisfying:

i =R 42x iff i
∗−→R′ v

∗←−R′ 42x

We need a reduction ordering > on the term algebra built on the vocabulary {+, r, g, b} which is total
(∀s, t, s ≥ t or t ≥ s), AC-compatible and satisfies s =AC t iff s ≥ t and t ≥ s.

We can choose a recursive path ordering on flattened terms where + has multiset status, and is minimal
in the precedence, for example r > g > b > +. Critical pairs are defined directly on flattened terms. For
example:

g + g + g ←r+b→g+g b+ r + g ←r+g→b+b b+ b+ b

Ground completion modulo AC works as follows:

(1) r + g → b+ b
(2) r + b→ g + g
(3) r + r → b+ g

Deduce(1,2) (4) g + g + g → b+ b+ b
Deduce(1,3) (5) r + b+ b→ g + b+ g

Simplify(5,2) (5) deleted
Deduce(2,3) (6) r + g + g → b+ b+ g

Simplify(6,1) (6) deleted
Deduce(1,4) (7) r + b+ b+ b→ g + g + b+ b

Simplify(7,2) (7) deleted

We eventually obtain the system R′:

r + g → b+ b
r + b → g + g
r + r → b+ g

g + g + g → b+ b+ b

Using R′, normal forms can be computed for the following terms:

• 15r + 14g + 13b
∗−→R′ g + 41b

• 42r
∗−→R′ 42b

• 42g
∗−→R′ 42b

• 42b
∗−→R′ 42b

This proves that chameleons can never be all of the same colour.

1This example was presented by C. Marché at the RTA Conference in 1991, to illustrate his result [Mar91]

January 28, 2006 rewriting solving proving

18.8 Conclusion 239

18.8 Conclusion

Even with very small sets of equalities, it is quickly irrealistic to attempt to do a completion modulo “by
hand”. This is really a place where the computer must help. The difficulty is often due to the computation
of complete sets of unifiers, but also to the indispensable use of extensions to achieve completeness.

The main problems encountered in implementing and using completion modulo A come from several dif-
ficulties: the orientation and termination proof requires the ordering to be compatible with the equivalence
classes and Section 7.3 of Chapter 7 provides few results on the automation of this point. A complete unifi-
cation procedure must be available for the theory A of axioms. The most successful example of application
is associative-commutative theories. But even in this case there may be a huge amount of critical pairs for
one superposition. Criteria for eliminating useless ones become then crucial and researches in this area is
described in Section 19.3 of Chapter 19. All these difficulties give rise to yet active research.

The notion of rewriting modulo an equational theory has been generalized in [Mar93], to handle a larger
class of axioms including identity, idempotency, Abelian group theory and commutative ring theory. In this
approach the theory A must be given as a convergent set (possibly modulo AC) of rewrite rules S and a
S-normalized rewrite relation is defined, in which any term is first S-normalized before being rewritten. An
adadpted completion procedure is defined which generalizes the algorithms for computing standard bases of
polynomial ideals of [Win89].

January 28, 2006 rewriting solving proving

240 Completion modulo a set of equalities

Orient1 P ∪ {p = q}, L,N,EX
7→7→
P,L ∪ {p→ q}, N,EX
if p > q &p linear

Orient2 P ∪ {p = q}, L,N,EX
7→7→
P,L,N ∪ {p→ q}, EX
if p > q &p non− linear

Deduce R P,L,N,EX
7→7→
P ∪ {p = q}, L,N,EX
if (p, q) ∈ CPA(N,R) ∪CP (L,R)

Deduce1 R-A P,L,N,EX
7→7→
P,L ∪ {l→ r}, N,EX
if (l, r) ∈ CPA(N,A) ∪CP (A,L) ∪ CP (L,A) &l linear

Deduce2 R-A P,L,N,EX
7→7→
P,L,N ∪ {l→ r}, EX
if (l, r) ∈ CPA(N,A) ∪CP (A,L) ∪ CP (L,A) &l non− linear

Extend P,L,N,EX
7→7→
P,L,N,EX ∪ {l→ r}
if (l→ r) ∈ EXTA(N ∪ EX)

Simplify P ∪ {p = q}, L,N,EX
7→7→
P ∪ {p′ = q}, L,N,EX
if p→RA

p′

Delete P ∪ {p = q}, L,N,EX
7→7→
P,L,N,EX

if p
∗←→A q

Compose1 P,L ∪ {l→ r}, N,EX
7→7→
P,L ∪ {l→ r′}, N,EX
if r→RA

r′

Compose2 P,L,N ∪ {l→ r}, EX
7→7→
P,L,N ∪ {l→ r′}, EX
if r→RA

r′

Compose3 P,L,N,EX ∪ {l→ r}
7→7→
P,L,N,EX ∪ {l→ r′}
if r→RA

r′

Collapse1 P,L ∪ {l→ r}, N,EX
7→7→
P ∪ {l′ = r}, L,N,EX
if l→g→d

RA
l′ & l vA g

Collapse2 P,L,N ∪ {l→ r}, EX
7→7→
P ∪ {l′ = r}, L,N,EX
if l→g→d

RA
l′ & l vA g

Figure 18.7: Completion modulo A

January 28, 2006 rewriting solving proving

18.8 Conclusion 241

PROCEDURE COMPLETION-MOD-A (P,L,N,EX,>)

IF P is not empty

THEN choose a pair (p,q) in P ; p’:= R_A-normal form(p);

q’:= R_A-normal form(q);

CASE p’ <-*->A q’ THEN R := COMPLETION-MOD-A(P-{(p,q)},L,N,EX,>)

p’ > q’ THEN l:=p’; r:=q’;

(P,R) := SIMPLIFICATION(P-{(p,q)},L,N,EX,l -> r);

IF l is linear THEN

R := COMPLETION-MOD-A(P,L U {l -> r},N,EX,>)

ELSE

R := COMPLETION-MOD-A(P,L,N U {l -> r},

EX U EXT(l -> r),>)

END IF

q’ > p’ THEN l:=q’; r:=p’;

(P,R) := SIMPLIFICATION(P-{(p,q)},L,N,EX,l -> r);

IF l is linear THEN

R := COMPLETION-MOD-A(P,L U {l -> r},N,EX,>)

ELSE

R := COMPLETION-MOD-A(P,L,N U {l -> r},

EX U EXT(l -> r),>)

END IF

ELSE STOP with FAILURE

END CASE;

ELSE IF all rules in R are marked

THEN RETURN R; STOP with SUCCESS

ELSE Choose an unmarked rule l -> r fairly;

(P,R) := A-CRITICAL-PAIRS (l -> r, L, N, A);

Mark the rule l -> r in R;

R := COMPLETION-MOD-A(P,L,N,EX,>)

END IF

END IF

END COMPLETION-MOD-CP

Figure 18.8: General completion modulo A

January 28, 2006 rewriting solving proving

242 Completion modulo a set of equalities

January 28, 2006 rewriting solving proving

Chapter 19

Ordered completion modulo a set of
equalities

19.1 Introduction

For proving difficult mathematical theorems automatically in first-order logic with equality, associative-
commutative theories are really necessary. But this is the kind of theories for which ordered completion
often fails to terminates. This was the motivation for building these axioms in the deduction process. By
combining techniques from ordered completion and completion in equivalence classes, a powerful completion
process is obtained which allows building convergent class rewrite systems in some cases and always provides
a refutationally complete theorem prover.

The most impressive results in automated deduction based on rewrite methods have been obtained with
ordered completion modulo A and this will be illustrated in this chapter. But theorem provers such as SbReve
and RRL also use powerful simplification mechanisms especially cancellation laws that considerably prune
the search space of the theorem prover. In addition, in order to avoid useless computations, critical pair
criteria are applied. All these refinements do contribute to the efficiency and realistic use of an equational
prover.

19.2 Ordered completion modulo A

The ordered completion often fails to terminate in presence of associativity and commutativity equalities.
So a natural idea is to combine ordered rewriting with class rewriting and to define an ordered completion
procedure modulo a set of axioms A.

In the whole chapter, it is assumed that A is any set of axioms with decidable unification, matching and
word problems and

∗←→A is the generated congruence relation on T (Σ,X). Also > is a reduction ordering

A-compatible (
∗←→A ◦ > ◦ ∗←→A ⊆ >), which is moreover (or can be extended into) a well-founded and

total ordering on A-equivalence classes of ground terms (i.e. for all ground terms s and t, either s
∗←→A t, or

s > t or t > s). Such orderings have been described for associative-commutative axioms by [NR91b, RN93].

19.2.1 Ordered critical pairs modulo A

Assume given an ordered class rewrite system (E/A,>), defined by a set of axioms A, a set of equalities E
and an A-compatible reduction ordering >. Remind that a term t (E,A,>)-rewrites to a term t′, which is
denoted by t→E,A,> t′ if there exist an equality (l = r) of E, a position ω in t, a substitution σ, satisfying

t|ω
∗←→A σ(l) and σ(l) > σ(r), such that t′ = t[ω ←↩ σ(r)].

The relation →E,A,> is ground Church-Rosser modulo A with respect to > if on ground terms,
∗←→E∪A⊆ ∗−→E,A,>

∗←→A
∗←−E,A,>.

As for class rewriting, the ground Church-Rosser property modulo A expresses the existence of rewrite
proof modulo A on ground terms.

In order to check local coherence and confluence properties of the relation (E,A,>) on the sets E and
A, or in a dual view, to obtain rewrite proofs by transforming peaks and cliffs, the usual notion of critical
pairs extends to take into account A-unification and the reduction ordering.

January 28, 2006 rewriting solving proving

244 Ordered completion modulo a set of equalities

Definition 19.1 Let (g = d) and (l = r) be two equalities in E with disjoint sets of variables. If there
exists a position ω in g such that g|ω is not a variable, g|ω and l are A-unifiable with an A-unifier ψ in a
complete set of A-unifiers, and if in addition ψ(d) 6> ψ(g) and ψ(r) 6> ψ(l), then (ψ(g[r]ω) = ψ(d)) is an
ordered critical pair modulo A of (l = r) into (g = d).

Notation: The set of ordered A-critical pairs of E is denoted OCPA(E).
The extension of an equality is defined in a way similar to rewrite rules: Beyong critical pairs between

equalities in E, for ensuring coherence, extended equalities are needed.

Definition 19.2 Let (g = d) be an axiom in A and (l = r) an equality in E with disjoint sets of variables.
If there exists a position ω in g such that g|ω is not a variable, g|ω and l are A-unifiable with an A-unifier ψ
in a complete set of A-unifiers, such that ψ(r) 6> ψ(l), then (g[l]ω = g[r]ω) is the extended equality of (l = r)
with respect to (g = d).

In general extensions of extended equalities have also to be recursively computed. All these extended
equalities are gathered in a set denoted EXTA(l = r). For a set E of equalities, EXTA(E) denotes the set of
all extensions (recursively computed) of equalities in E with respect to A and Eext denotes E ∪EXTA(E),
i.e. the saturation of E under adjunction of extended equalities.

In general these extended equalities have to be recursively extended. However in the special case of A
being only associativity and commutativity (AC) axioms, only a first level of extended equalities is needed.

19.2.2 Transition rules for ordered completion modulo A

As in completion modulo A, extensions are protected, that is an extension is never simplified and can only
disappear if the initial rule itself disappears. In practice, a new set of protected equalities EX is introduced
that contains extensions. Let P be a set of equalities and > an A-compatible reduction ordering. The
ordered completion procedure nodulo A is expressed by the set of transition rules set MU in Figure 19.1.
For intereduction of equalities an ordering on equalities is needed. Let >> be defined by (p = q) >> (g = d)
if p A g or p ≡ g and q > d in the given A-compatible reduction ordering.

Deduce P,EX
7→7→
P ∪ {p = q}, EX
if (p, q) ∈ OCPA(P)

Extend P,EX
7→7→
P,EX ∪ {p = q}
if (p, q) ∈ EXTA(P)

Delete P ∪ {p = q}, EX ∪ EXTA(p = q)
7→7→
P,EX

if p
∗←→A q

Collapse P ∪ {p = q}, EX ∪ EXTA(p = q)
7→7→
P ∪ {p′ = q}, EX ∪ EXTA(p′ = q)

if (p→g=d
P,A,> p′ & p = q >> g = d

Figure 19.1: Ordered completion modulo A

Let P∗, P∞ be defined as previously and let EX∗ be the set of all generated protected equalities, EX∞
be the set of persisting protected equalities:

EX∞ =
⋃

i

⋂

j>i

EXj .

This transition system is evidently sound, since the class of provable theorems is unchanged by any of
these transitions.

January 28, 2006 rewriting solving proving

19.2 Ordered completion modulo A 245

Deduce-Eq-Eq E ∪ {g = d, l = r}
7→7→
E ∪ {g = d, l = r, ψ(g[r]ω) = ψ(d)}
if ψ(g|ω)

∗←→AC ψ(l), ψ(d) 6> ψ(g), ψ(r) 6> ψ(l)
Deduce-Ext-Eq E ∪ {g = d, l = r}

7→7→
E ∪ {g = d, l = r, ψ(g[f(r, z)]ω) = ψ(d)}
if ψ(g|ω)

∗←→AC ψ(f(l, z)), ψ(d) 6> ψ(g), ψ(r) 6> ψ(l)
Deduce-Ext-Ext E ∪ {g = d, l = r}

7→7→
E ∪ {g = d, l = r, ψ(f(d, z)) = ψ(f(r, z′))}
if ψ(f(g, z))

∗←→AC ψ(f(l, z′)), ψ(d) 6> ψ(g), ψ(r) 6> ψ(l)
Delete E ∪ {p = q}

7→7→
E

if p
∗←→AC q

Simplify E ∪ {p = q}
7→7→
E ∪ {p′ = q}
if p→(g=d),σ

E,AC,> p
′ and p > σ(g) or q > σ(d)

Figure 19.2: OCM: Ordered Completion Modulo AC

Theorem 19.1 Let A be a set of axioms with a finite complete unification algorithm. Let EX0 = ∅, P0 be
a set of equalities, and > be a reduction ordering compatible with A that can be extended to a ground-total
reduction ordering �. If (P0, EX0) 7→7→(P1, EX1) 7→7→ is a derivation such that

• OCPA(P∞) is a subset of P∗,

• EXTA(P∞) is a subset of EX∗,

then (P∞ ∪ EX∞, A,>) is Church-Rosser modulo A w.r.t. � on ground terms.

Proof: The proof is a generalization of the proofs of ordered completion and completion modulo A with
extensions. 2

19.2.3 The special case of associativity and commutativity

Let us focus on the special case where A is composed of associativity and commutativity axioms only. Then
extensions can be systematically built: for each (l = r) ∈ E, such that the top symbol f in l is associative and
commutative, the extended equality is (f(l, z) = f(r, z)) where z is a new variable (distinct from variables in
l and r). From now on, an equality (f(l, z) = f(r, z)) implicitly denotes an extended equality of (l = r) where
the top symbol of l is an AC-operator f . For such l, it is sufficient to compute critical pairs at positions ω
that are not imediately below another f . The rest of this section restricts to the case where A = AC and
describes a completion process for these specific axioms, in which the computation of extended equalities is
incorporated in the rules.

Given the set OCM of rules for Ordered Completion Modulo given in Figure 19.2, a derivation is fair if
any equality obtained from E∞ by applying any rule Deduce-Eq-Eq, Deduce-Ext-Eq, Deduce-Ext-Ext,
is included in

⋃
i≥0Ei.

Theorem 19.2 Let E0 be a set of equalities, and > be a well-founded reduction ordering total on AC-
equivalence classes of ground terms. If E0 7→7→E1 7→7→ is a fair derivation, then (Eext∞ , AC,>) is Church-
Rosser modulo AC on ground terms.

19.2.4 Refutational proofs

Ordered completion modulo A can also be adapted to act as a refutational theorem prover.

January 28, 2006 rewriting solving proving

246 Ordered completion modulo a set of equalities

Let E be a set of equalities and (t = t′) an equational theorem to be proved in the theory described
by E, with t, t′ ∈ T (F ,X). Assume that t0 and t′0 are the skolemized versions of respectively t and t′,
that is terms whose variables are now considered as a set H of new constants disjoint from F . Instead of
introducing new operators T , F and eq, we rather introduce here disequalities and more specifically the
disequality (t0 6= t′0). We then extend the notion of ordered critical pairs between two equalities to the
notion of ordered superposition of an equality into a disequality, producing then a new disequality.

Definition 19.3 Let (g 6= d) a disequality in D and (l = r) an equality in E with disjoint sets of variables.
If there exists a position ω in g such that g|ω is not a variable, g|ω and l are A-unifiable with an A-unifier ψ
in a complete set of A-unifiers, and if in addition ψ(d) 6> ψ(g) and ψ(r) 6> ψ(l), then (ψ(g[ω ←↩ r]) 6= ψ(d))
is an ordered critical disequality modulo A of (l = r) into (g 6= d).

The previous set OCM is modified by adding a set of disequalities D which is not modified by the
previous rules but is transformed by additional rules given in Figure 19.3.

Deduce-Eq-Eq E ∪ {g = d, l = r}, D
7→7→
E ∪ {g = d, l = r, ψ(g[r]ω) = ψ(d)}, D
if ψ(g|ω)

∗←→AC ψ(l), ψ(d) 6> ψ(g), ψ(r) 6> ψ(l)
Deduce-Ext-Eq E ∪ {g = d, l = r}, D

7→7→
E ∪ {g = d, l = r, ψ(g[f(r, z)]ω) = ψ(d)}, D
if ψ(g|ω)

∗←→AC ψ(f(l, z)), ψ(d) 6> ψ(g), ψ(r) 6> ψ(l)
Deduce-Ext-Ext E ∪ {g = d, l = r}, D

7→7→
E ∪ {g = d, l = r, ψ(f(d, z)) = ψ(f(r, z′))}, D
if ψ(f(g, z))

∗←→AC ψ(f(l, z′)), ψ(d) 6> ψ(g), ψ(r) 6> ψ(l)
Deduce-Eq-DEq (E ∪ {l = r}, D ∪ {g 6= d})

7→7→
(E ∪ {l = r}, D ∪ {g 6= d, ψ(g[r]ω) 6= ψ(d)})
if ψ(g|ω)

∗←→AC ψ(l), ψ(d) 6> ψ(g), ψ(r) 6> ψ(l)
Deduce-Ext-DEq (E ∪ {l = r}, D ∪ {g 6= d})

7→7→
(E ∪ {l = r}, D ∪ {g 6= d, ψ(g[f(r, z)]ω) 6= ψ(d)})
if ψ(g|ω)

∗←→AC ψ(f(l, z)), ψ(d) 6> ψ(g), ψ(r) 6> ψ(l)
Delete E ∪ {p = q}, D

7→7→
E,D

if p
∗←→AC q

Simplify E ∪ {p = q}, D
7→7→
E ∪ {p′ = q}, D
if p→(g=d),σ

E,AC,> p
′ and p > σ(g) or q > σ(d)

Figure 19.3: Refutational Ordered Completion Modulo AC

Let ROCM denote the whole set of rules. A derivation (E0, D0) 7→7→(E1, D1) 7→7→ . . . with ROCM , is fair
if any equality and disequality obtained from persisting equalities and disequalities (E∞, D∞) by applying
any rule Deduce-Eq-Eq, Deduce-Ext-Eq, Deduce-Ext-Ext, Deduce-Eq-DEq, Deduce-Ext-DEq, is
included in

⋃
i(Ei ∪Di).

Definition 19.4 A refutation is a fair derivation (E0, D0) 7→7→(E1, D1) 7→7→ . . . for which
⋃
iDi contains a

disequality (u 6= v) with u
∗←→AC v.

Refutational completeness of ROCM is expressed by the next result, which is a consequence of Theorem 1
in [BG93].

January 28, 2006 rewriting solving proving

19.2 Ordered completion modulo A 247

Theorem 19.3 Let E be a set of equalities, and > be a reduction ordering compatible with AC total on
AC-equivalence classes of ground terms. Then the equality (t = t′) is valid in E ∪ AC (i.e. t

∗←→E∪AC t′)
iff ROCM generates a refutation from E0 = E ∪ {t0 6= t′0}, where (t0 6= t′0) is the skolemized negation of
(t = t′).

In computational experiments as those described in the next section, the efficiency of the completion
process can be greatly improved by using cancellation laws for some function symbols. A simple use of these
laws is the application of right regularity of a constructor symbol c to deduce from c(t1, t) = c(t2, t) the
equality t1 = t2.

Definition 19.5 A function f is right-cancellable if it satisfies the right-cancellation law:
∀x, y, z, f(x, y) = f(z, y)⇒ x = z.
A function f is left-cancellable if it satisfies the left-cancellation law:
∀x, y, z, f(x, y) = f(x, z)⇒ y = z.

The right-cancellation laws can be implemented as transition rules [HRS87], as described in Figure 19.4.

Cancellation1
P ∪ {f(s1, s2) = f(t1, t2)}
7→7→
P ∪ {f(s1, s2) = f(t1, t2), σ(s1) = σ(t1)}
if σ(s2) = σ(t2)
Cancellation2
P ∪ {f(s1, s2) = y}
7→7→
P ∪ {f(s1, s2) = y, σ(s1) = x}
if σ(y) = f(x, s2) & y ∈ V (s1)− V (s2)
Cancellation3
P ∪ {f(s1, s2) = s, f(t1, t2) = t}
7→7→
P ∪ {f(s1, s2) = s, f(t1, t2) = t, σ(s1) = σ(t1)}
if σ(s2) = σ(t2) & σ(s) = σ(t)
Cancellation4
P ∪ {f(u, s) = f(u, t)}
7→7→
P ∪ {s = t}

Figure 19.4: Cancellation Laws

19.2.5 Experiments

To illustrate the ordered completion modulo A technique, we present two significant examples.

Example 19.1 Moufang’s Identities in Alternative Rings:
Alternative rings are non-associative rings that satisfy the following set of axioms.

0 + x = x (19.1)

0 ∗ x = 0 (19.2)

x ∗ 0 = 0 (19.3)

i(x) + x = 0 (19.4)

i(x+ y) = i(x) + i(y) (19.5)

i(i(x)) = x (19.6)

x ∗ (y + z) = (x ∗ y) + (x ∗ z) (19.7)

(x+ y) ∗ z = (x ∗ z) + (y ∗ z) (19.8)

(x ∗ y) ∗ y = x ∗ (y ∗ y) (19.9)

January 28, 2006 rewriting solving proving

248 Ordered completion modulo a set of equalities

(x ∗ x) ∗ y = x ∗ (x ∗ y) (19.10)

i(x) ∗ y = i(x ∗ y) (19.11)

x ∗ i(y) = i(x ∗ y) (19.12)

i(0) = 0 (19.13)

(x+ y) + z = x+ (y + z) (19.14)

x+ y = y + x (19.15)

The identities below have been proved by R. Moufang, in 1933.

(x ∗ y) ∗ x = x ∗ (y ∗ x)
x ∗ ((y ∗ z) ∗ x) = (x ∗ (y ∗ z)) ∗ x
x ∗ (y ∗ (x ∗ z)) = ((x ∗ y) ∗ x) ∗ z
((z ∗ x) ∗ y) ∗ x = z ∗ (x ∗ (y ∗ x))
(x ∗ y) ∗ (z ∗ x) = (x ∗ (y ∗ z)) ∗ x

A first computer proof has been reported in 1990 by S.Anantharaman and J.Hsiang in [AH90] using the
system SBREVE. Let us briefly look at the proof of the first identity ∀x, y, z, (y ∗ x) ∗ y = y ∗ (x ∗ y).

It is first negated then skolemized, so the following equality is added to the set of equalities defining
alternative rings: ((cy ∗ cx) ∗ cy) 6= (cy ∗ (cx ∗ cy)).

Among others a critical pair between 7 and 9 is computed:
x ∗ ((y + z) ∗ (y + z)) = ((x ∗ (y + z)) ∗ y) + ((x ∗ (y + z)) ∗ z)
It is simplified by 7,8,9 to produce:
x ∗ (y ∗ y) + x ∗ (z ∗ z) + x ∗ (y ∗ z) + x ∗ (z ∗ y) = x ∗ (y ∗ y) + x ∗ (z ∗ z) + (x ∗ y) ∗ z + (x ∗ z) ∗ y
Regularity of + is used thanks to the application of a cancellation transition rule built-in in the system.

This produces an ordered equality
((x ∗ y) ∗ z) + ((x ∗ z) ∗ y)→ (x ∗ (y ∗ z)) + (x ∗ (z ∗ y))
Then a new critical pair is computed between this last rule and the extended rule i(x) + x+ u→ u:
(x ∗ (y ∗ z)) + (x ∗ (z ∗ y)) + i((x ∗ z) ∗ y) = (x ∗ y) ∗ z
The goal equality ((cy ∗ cx) ∗ cy) 6= (cy ∗ (cx ∗ cy)) can now be simplified into:
cy ∗ (cx ∗ cy) 6= cy ∗ (cx ∗ cy)
using the orientable instance
(cy ∗ cx) ∗ cy → (cy ∗ (cx ∗ cy)) + (cy ∗ (cy ∗ cx)) + i((cy ∗ cy) ∗ cx).
To perform this proof, the system has computed 67 critical pairs and 15 ordered equalities.

Example 19.2 Ring Commutativity Problems
An associative ring is defined by the following set of axioms RING:

x+ y = y + x

(x+ y) + z = x+ (y + z)

x+ 0 = x

x+ i(x) = 0

i(x+ y) = i(x) + i(y)

i(0) = 0

i(i(x)) = x

(x ∗ y) ∗ y = x ∗ (y ∗ y)
x ∗ (y + z) = (x ∗ y) + (x ∗ z)
(x+ y) ∗ z = (x ∗ z) + (y ∗ z)

0 ∗ x = 0

x ∗ 0 = 0

i(x) ∗ y = i(x ∗ y)
x ∗ i(y) = i(x ∗ y)

In 1945 the mathematician Jacobson proved that the next theorem holds in associative rings:

(∀x, ∃n > 1, xn = x)⇒ ∀x, y, (x ∗ y = y ∗ x)

January 28, 2006 rewriting solving proving

19.3 Critical pairs criteria 249

As such this theorem has not been proved automatically up to now, not even checked, but weaker versions
have been proved using rewrite techniques. These are instances for specific n of the next theorem:

(∀x, xn = x)⇒ ∀x, y, (x ∗ y = y ∗ x)

The case n = 2 is rather easy: Adding to the set of axioms RING the equality x ∗ x = x and running
completion modulo associativity and commutativity results in a rewrite system for boolean rings and produces
the equality x ∗ y = y ∗ x.

The case n = 3 was given as a challenge problem in his book [Wos88]. The first mechanical proof was
done in 1981 by Veroff [Ver81] using the Argonne National Laboratory theorem prover based on resolution
and paramodulation. In 1984, Stickel produced a proof using exclusively rewrite techniques [Sti84]. Adding
to the set of axioms RING the equality x ∗ x ∗ x = x and running completion modulo associativity and
commutativity produced the equality x ∗ y = y ∗ x as well as a complete set of rewrite rules. The proof
was reproduced and optimized in RRL using a careful selection of critical pairs [KZ91]. RRL proceeeds by
refutation, that is in addition to the RING equalities and to the hypothesis x ∗ x ∗ x = x, the skolemized
negation of the is added: a ∗ b 6= b ∗ a.

In addition RRL has been able to prove the commutativity of associative rings in which every element
satisfies xn = n for a large class of even numbers n < 250000. For instance for n = 6, the system first
generates the equality x ∗ x = x and thus reduces the problem to the previous case n = 2.

19.3 Critical pairs criteria

The efficiency of completion depends primarily on the number of critical pairs generated. The problem is
even more crucial with completion of class rewrite systems. Very often critical pairs may be many and
several attempts have been made to avoid unnecessary computations. This is the motivation of critical pairs
criteria.

A very general definition of redundancy is that an equality e is redundant if there exist equalities e1, . . . , en
such that {e1, . . . , en} |= e and e � e1, . . . , en for some adapted well-founded ordering �.

Redundancy of a critical pair can often be checked by considering the structure of the associated peak.
Assume given a reduction ordering > and a set of rewrite rules R contained in >.

Definition 19.6 A critical pair criterion CPC is a mapping from pairs (P,R) to subsets of critical pairs
CP (R), that is CPC(P,R) ⊆ CP (R) and CPC(P,R) are redundant critical pairs.

A critical pair criterion is sound if the check of convergence can be restricted to critical pairs in CP (R)−
CPC(P,R). In other words, a sound criterion provides a characterization of the Church-Rosser property.

Definition 19.7 A critical pair criteria CPC is sound w.r.t. a reduction ordering > if whenever R is
included into > and is convergent for CP (R)− CPC(R), R is Church-Rosser.

A lot of critical pair criteria have been proposed in the literature [BD86b, Küc85, Win83, KMN85, ZK89]
following pioneer work of Buchberger [Buc79]. For instance, the connectedness criterion given in [Win83]
allows ignoring any critical pair (p, q) derived from an overlap t′ ←R t→R t

′′ such that there exists a proof

t′
∗←→R t

′′, each term of which is derivable from t using
+−→R.

The main problem in designing a critical pair criterion is that it has to be compatible with the simplifi-
cation mechanism employed by completion. The notion of fairness must be modified accordingly:

Definition 19.8 A derivation (P0, R0) 7→7→(P1, R1) 7→7→ . . . is fair with respect to a critical pair criterion CPC
if whenever P is a critical overlap associated with a critical pair (p, q) in CP (R∞) −⋃

iCPC(Pi, Ri), then

there is a proof P ′ of (p = q) in
⋃
i(Pi ∪Ri) such that P +

=⇒ P ′.

Definition 19.9 A critical pair criteria CPC is correct if every non-failing derivation that is fair with respect
to CPC is also a fair derivation.

Every correct criterion is sound [BD88] but the converse does not hold.

Example 19.3 [BD89b] In [ZK89], the following criterion is proposed. CPC(R) consists of all critical pairs
of a rule l → r on a rule g → d at position ωυ such that ω, υ 6= Λ and the overlapped term σ(g) is reducible

January 28, 2006 rewriting solving proving

250 Ordered completion modulo a set of equalities

at position ω. This criterion can be proved sound but is not correct. For instance the derivation

(P0, R0) = (∅, {−0→ 0, sq(−x+ x)→ 0,−0 + 0→ 0})
7→7→

(P1, R1) = ({0 + 0 = 0}, {−0→ 0, sq(−x+ x)→ 0})
7→7→

(P2, R2) (∅, {−0→ 0, sq(−x+ x)→ 0, 0 + 0→ 0})

is fair w.r.t. this criterion, but the final rewrite system is not Church-Rosser, since the term sq(−0 + 0) has
two distinct normal forms 0 and sq(0). The reason is that some critical pair, for instance 0 = sq(0 + 0)
obtained by overlapping −0→ 0 at position 1 in sq(−x+ x) → 0 is redundant w.r.t. the given criterion in
(P0, R0) but not in (P1, R1) nor (P2, R2).

In [BD89b], a criterion is given, that subsumes all correct criteria. It is an abstract criterion that directly
relies on the well-founded ordering on proofs, denoted by �c, associated to a complexity measure c.

Definition 19.10 A peak (t′ ←R t→R t
′′) is composite in P and R if there are proofs P1, . . . ,Pn in P ∪R

where Pi is a proof of (ui−1 = ui), such that t′ = u0, t
′′ = un+1, t > ui and (t′ ←R t →R t′′) �c Pi for all

i = 1, . . . , n.
A critical pair (p, q) is composite if its corresponding critical overlap is. CCP (P,R) is the set of all

composite critical pairs of R.

Proposition 19.1 [BD89b] The composite criterion is correct.

The compositeness criterion can be used to prove another result very useful to eliminate unnecessary
critical pairs.

Definition 19.11 A critical pair (ψ(g[ω ←↩ r]), ψ(d)) of a rule l → r on g → d at position ω is subsumed
by another critical pair (ψ′(g[ω′ ←↩ r′]), ψ′(d)) of a rule l′ → r′ on g → d at position ω′ if ω′ 6= ε and there
exists a substitution τ such that ψ(x) = τ(ψ′(x)) for x ∈ Var(g).

A set S of critical pairs is complete if each critical pair in CP (R) is subsumed by a critical pair in S.

Proposition 19.2 [BD89b] Let R be a terminating rewrite system and S a complete subset of CP (R). If
all critical pairs in S are convergent, then R is Church-Rosser.

This result is especially interesting for rewrite rules that have multiple occurrence of a same subterm in
the left-hand side. For instance if R contains a rule of the form f(t, t)→ s, for each critical pair obtained by
superposing on one occurrence of t, there is a critical pair obtained by superposing on the other occurrence.
As all these critical pairs subsume each other, it is sufficient to compute only one of them.

In the context of ring commutativity problems, effective criteria have been proposed [KZ91]. Let us
consider two of them: restriction to prime (and blocked) superpositions and to general and symmetric
superpositions.

• In the restriction to prime (and blocked) superpositions:
the idea of these checks is to avoid the joinability test for critical pairs which are reducible.

Consider for instance the two following rules

x+ x+ x+ x+ x+ x → 0

(x′ + y′) ∗ z′ → (x′ ∗ y′) + (x′ ∗ z′)

where x+ x+ x+ x+ x+ x and x′ + y′ unify modulo AC with a complete set of unifiers composed of
125 unifiers. Among them, the unifer

x′ = u+ v + v + v + v + v + v

y′ = u+ u+ u+ u+ u

x = u+ v

is reducible by the first rule. It is useless to consider the critical pair corresponding to it. For this
example, 94 out of 125 unifiers are eliminated with this criterion.

However, all the unifiers have to be computed before checking their reducibility. It is of prime interest
to be able to detect useless superpositions before the computation of unifiers.

January 28, 2006 rewriting solving proving

19.4 Conclusion 251

• The second criterion corresponding to this last requirement takes advantage of symmetries in rules and
subterms. For instance, consider the rule

(x ∗ y ∗ z) + (x ∗ z ∗ y) + (y ∗ x ∗ z) + (y ∗ z ∗ x) + (z ∗ x ∗ y) + (z ∗ y ∗ x)→ 0

that superposes with the rule x ∗ x ∗ x→ x. There is a superposition corresponding to each of the six
product subterms of the first rule. It can easily be seen that variables x, y, z are symmetric in this rule,
because of the associativity and commutativity of +. So it is enough to consider the superpositions
due to unifying only one of the product terms with the left-hand side x ∗ x ∗ x of the second rule.

In order to justify these examples and to give more precise results, some formalization is needed. A
superposition in characterized by a 4-tuple 〈ψ, g → d, ω, l → r〉, where ψ is a unifier (the most general one
or a more general one) of the left-hand side of l → r with the non-variable subterm g|ω of g → d. This
superposition is said joinable (for short) if the corresponding critical pair is joinable.

Definition 19.12 A superposition 〈ψ, g → d, ω, l → r〉 of a rewrite system R is composite if there exists
υ 6= Λ such that ψ(g)|υ is R-reducible. A superposition is prime if it is not composite.

Example 19.4 Assume that R contains rewrite rules

i(i(x) ∗ y) → i(y) ∗ i(i(x))
x ∗ i(x) → e

i(i(x)) → x

The critical overlap between the first two rules

i(i(i(x))) ∗ i(i(x))←R i(i(x) ∗ i(i(x)))→R i(e)

is composite because the strict subterm i(i(x)) of i(i(x) ∗ i(i(x))) is R-reducible.

A special case of composite substitutions are blocked ones, first studied by [LB77a].

Definition 19.13 A superposition 〈ψ, g → d, ω, l → r〉 of a rewrite system R is blocked if ψ is R-irreducible.
A superposition is unblocked if it is not blocked.

Any composite superposition can be factored into two prime superpositions and only these ones are
needed for establishing the Church-Rosser property of a terminating rewrite system:

Theorem 19.4 [KMN88] A terminating rewrite system R is Church-Rosser iff every prime superposition
of R is joinable.

Definition 19.14 A superposition 〈α, g → d, ω2, l2 → r2〉, is more general than a superposition 〈ψ, g →
d, ω1, l1 → r1〉, using the same first rule, if α is more general than ψ (i.e. ψ = ρα).

Theorem 19.5 A terminating rewrite system R is Church-Rosser iff for any superposition of R 〈ψ, g →
d, ω1, l1 → r1〉, either it is joinable, or there exists a more general superposition 〈α, g → d, ω2, l2 → r2〉, with
ω1 and ω2 being disjoint positions in g.

A symmetric renaming θ of an equality e is a permutation of variables in e such that θ(e)
∗←→AC e. Two

subterms of e are symmetric if there exists a symmetric renaming θ of e such that θ(t1)
∗←→AC t2.

As a corollary of this theorem, if a left-hand side of a rule has identical of symmetric subterms at disjoint
positions, it is sufficient to superpose other rules at one of these subterm positions.

These criteria are correct with respect to completion, which means that if a superposition has been
identified as unnecessary at some step of a completion process, it will remain so in further steps. Moreover
they can be combined inside a same completion procedure.

Further hints for efficient implementations can be found in [KZ91].

19.4 Conclusion

We got at this point a very sophisticated notion of rewriting, using built-in A-equalities and a reduction
ordering. We are able to combine rewrite rules (modulo A) with ordered equality, provided an adequate
notion of ordering. Completion for this kind of rewrite relation uses a combination of previously introduced
concepts. However in practical implementations, this expressive power is balanced by crucial problems
of efficiency. Faced to this question, current research is oriented now towards the concept of rewriting and
completion with constraints. This formalism is powerful enough to take into account orderings and equations
modulo A and to provide a solution to efficiency improvement as argued in Chapter 21.

January 28, 2006 rewriting solving proving

252 Ordered completion modulo a set of equalities

January 28, 2006 rewriting solving proving

Chapter 20

Conditional completion

20.1 Introduction

In Section 7.5 of Chapter 7, different notions for conditional rewriting have been studied, and the notion
of reductive conditional rewrite systems was proposed, where conditions are smaller than left-hand sides,
so that recursively evaluating conditions always terminate. The rewrite relation for reductive systems is
terminating and decidable, when there are only a finite number of rules.

Once termination is obtained, the problem of confluence arises, as well as how to test it using an ade-
quate notion of critical pairs. Here again the situation sensibly differs from the unconditional case, because
local confluence is not in general implied by the joinability of critical pairs. Several works attacked this
problem [Kap84, DOS87, Kap87, JW86, DP88, DO90].

As in the equational case, the Church-Rosser property is equivalent to confluence of the recursive con-
ditional rewriting relation, and confluence is equivalent to local confluence. This last property is in turn
equivalent to convergence of conditional critical pairs, provided syntactic restrictions of decreasingness. In
[Kap87], the critical pairs lemma is proved for simplifying systems: a simplifying system is locally confluent
iff there is a rewrite proof for each instance σ of a conditional critical pair s = t if Γ such that σ(Γ) holds.
Other systems for which the critical pairs lemma holds are considered in [DO90]. Nevertheless confluence
is only semi-decidable, on account of the semi-decidability of the satisfiability of conditions. Moreover, the
problem of determining whether critical pairs always converge still remains.

Another problem is the design of a completion procedure for conditional rewrite systems.
In [Kap87], a process based on computation of conditional critical pairs, conditional simplification, nar-

rowing for checking the satisfiability of conditions, is proposed but its implementation appeared as highly
inefficient.

An approach based on contextual rewriting is implemented in Reveur-4 [BR87], a version of Reve for
conditional rewriting. The idea is to use case splitting on the condition in order to partition the set of critical
pairs into different subsets. It is then checked whether the contexts are unsatisfiable, or whether the terms
are convergent without additional hypotheses [KR89b]. In this approach, the class of models is limited to
the subclass of algebras where case reasoning is valid. In these models, the Boolean part is isomorphic to
the classical two-element Boolean algebra [Bou90c, NO87]. However, contextual rewriting considers only
restrictive conditional rules: the conditions need to be Boolean equations whose right-hand sides belong
to the set {true, false}. Moreover, several additional hypotheses are required to force the models to be
consistent extensions of the two-element Boolean algebra. Techniques for checking ground confluence by
using case analysis are developed in [Bou90c].

In the case of recursive rewriting, the main problem is the treatment of non-reductive equalities in which
the condition is more complex than the conclusion. An interesting approach to overcome this problem is
to superpose rules on the condition in order to enumerate its solutions [KR87]. This process translates the
non-reductive equality into a set of reductive rules. Unfortunately this set is infinite in general and additional
techniques must be used to ensure termination of completion. In the system CEC, a procedure based on
these ideas is implemented and described in [Gan91].

A quite different approach of the problem arises from the community of resolution theorem provers. A
conditional equality or rewrite rule may be understood as an equational Horn clause built with the only
equality predicate. Starting from a set of equational Horn clauses, the completion process is understood as
a saturation process on these formulas, using a refutationally complete set of transition rules for first-order
logic with equality. When it stops, the resulting set of formulas can be used to solve the word problem in
the Horn theory, that is to decide whether t = t′ holds in the equality Herbrand models of the given set of

January 28, 2006 rewriting solving proving

254 Conditional completion

equational Horn clauses. A conditional equality is used as a conditional rewrite rule when it is orientable and
its conditions are smaller than the equality for some well-founded ordering, which ensures that conditions
can be recursively checked. This approach generalizes ordered completion. Among several propositions built
from this point of view, let us cite [Der90, KR87, BG91b]. This seems to be, at the time being, the most
advance technique for completion of conditional rewrite systems.

20.2 Conditional critical pairs and local confluence

For terminating unconditional rewrite systems, the critical pairs lemma provides a test for confluence. For
such systems with a finite number of rules, the joinability relation (p ↓ q) is decidable. With conditional
rewrite systems, the critical pair test does not guarantee confluence for terminating join systems.

Definition 20.1 Let g → d if ∆ and l → r if Γ be two conditional rewrite rules with disjoint sets of variables,
such that l and g overlap at position ω of Grd(g) with the most general unifier ψ. The overlapped term ψ(g)
produces the conditional critical pair ψ(g[ω ←↩ r]) = ψ(d) if ψ(∆ ∧ Γ).

This conditional critical pair is feasible if ψ(∆ ∧ Γ) is R-unifiable.

A conditional critical pair s = t if Γ is trivial if s and t are the same term.

A conditional critical pair s = t if Γ is joinable if for any substitution σ such that σ(si) ↓ σ(ti) for any
(si = ti) ∈ Γ, σ(s) ↓ σ(t).

Notation: Let CCP (R) be the set of conditional critical pairs obtained from any two rules in R.

Example 20.1 [BK86] Consider the join conditional rewriting relation generated by the conditional rewrite
system:

f(a) → a
x = f(x) if f(x) → c

This system has no critical pair, but is not locally confluent: Since a ↓ f(a), f(a)→ c and f(f(a))→ f(c).
Also f(f(a))→ c. But c and f(c) are irreducible.

Of course the difficulty relies of checking joinability since this property requires finding all substitutions
that are solutions of the condition. Indeed trivial critical pairs are (trivially) joinable. If the condition can
be proved unsatisfiable, the critical pair is also trivially joinable.

Example 20.2 [Kap87] Consider the finite conditional rewrite system R

(k(x) = c) if f(x) → g(x)
(k(x) = c) if f(x) → h(x)

k(a) → c
k(b) → c
g(a) → d
g(b) → e
h(a) → d
h(b) → e

The system has a feasible conditional critical pair g(x) = h(x) if (k(x) = c), since (x 7→ a) and (x 7→ b) are
two R-unifiers of k(x) and c. This critical pair is joinable.

Coming back to the terminology of Section 7.5 of Chapter 7, let us review different critical pairs lemma
that can be proved.

For the most general notion of natural conditional rewriting, the result was proved by Dershowitz and
Plaisted:

Theorem 20.1 [DP88] A terminating natural conditional rewriting relation is confluent iff every critical
pair is joinable.

This is ensured for instance if all conditional critical pairs are nonfeasible or trivial, as in the following
example:

January 28, 2006 rewriting solving proving

20.2 Conditional critical pairs and local confluence 255

Example 20.3 [Kap87] This example is a specification of natural numbers with the “less-than” predicate
≤, of lists with constructors nil (the empty list) and cons, and of the membership predicate ∈ for lists and
the function ins that inserts an element e in a list l before the first element in l that is greater than e.

0 ≤ 0 → true
s(x) ≤ 0 → false
s(x) ≤ s(y) → x ≤ y
x ≤ x → true
x ∈ nil → false
x ∈ cons(x, s) → true

(x ≤ y) = false if x ∈ cons(y, s) → x ∈ s
(y ≤ x) = false if x ∈ cons(y, s) → x ∈ s

ins(x, nil) → cons(x, nil)
(x ≤ y) = true if ins(x, cons(y, l) → cons(x, cons(y, l))

(x ≤ y) = false if ins(x, cons(y, l) → cons(y, cons(x, l))

But join conditional rewriting requires an additional hypothesis.

Example 20.4 [DOS87] There exists a noetherian, non-locally confluent join conditional rewriting relation
associated to a system all of whose critical pairs are joinable:

c → k(f(a))
c → k(g(b))
a → b
h(x) → k(x)
h(f(a)) → c

h(f(x)) = k(g(b)) if f(x) → g(x)

Though all four critical pairs are joinable, the term f(a) has two normal forms f(b) and g(b).

Exercice 62 — Consider the system:

x = f(x) if f(x) → a
f(b) → b

Prove that the join rewrite relation associated to this system is not locally confluent although it has no critical pair.
Answer: Its join rewriting relation is not locally confluent since

f(a)← f(f(b))→ a

but f(a) ↓ a does not hold, because this would require f(a) → a and thus f(a) ↓ a. However, the system has no

critical pair. [Klo90b]

In [Kap87] first, the critical pair lemma was extended to simplifying conditional rewrite systems. With
a similar proof, the result holds for decreasing rewriting.

Theorem 20.2 [DO90] Let R be a conditional rewrite system such that Rjoin is decreasing. Then Rjoin is
confluent if every critical pair of R is joinable.

This result may be extended to decreasing join rewriting relations with built-in predicates (see [DO90]).
If we do not want to prove decreasingness, an alternative is possible.

Definition 20.2 An overlay conditional rewrite system is such that no left-hand side unifies with a non-
variable subterm of any other left-hand side.

Here is an example of an overlay system.

Example 20.5 Consider the conditional rewrite system defining the “less-than” predicate on natural num-
bers:

0 ≤ 0 → true
s(x) ≤ 0 → false
s(x) ≤ s(y) → x ≤ y

(x ≤ y) = true if x ≤ s(y) → true

The only conditional critical pair is between the two last rules and both left-hand sides unify on top. The
conditional critical pair is:

x ≤ y = true if s(x) ≤ y ↓ true.

January 28, 2006 rewriting solving proving

256 Conditional completion

Theorem 20.3 [DOS87] Let R be an overlay conditional rewrite system such that Rjoin is terminating.
Then Rjoin is confluent if every critical pair is joinable.

It is important to note that interpreting Horn clauses as conditional rewrite rules with right-hand side
true, leads to an overlay system since predicate symbols are never nested in the head of a clause. Furthermore
all critical pairs are joinable since all right-hand sides are the same. This theorem also applies to pattern-
directed functional languages in which defined functions may not be nested on left-hand sides.

The remaining difficulty is then to prove that the rewriting relation terminates. Adding a left-linearity
hypothesis allows dropping the termination requirement. This result generalizes the confluence property of
orthogonal rewrite systems.

Theorem 20.4 [BK86] For any left-linear conditional rewrite system R without critical pairs, Rnorm is
confluent.

As a conclusion of this section, let us consider an interesting application of conditional rewrite systems
to combinatory logic.

Example 20.6 Combinatory logic can be enriched by adding new constants D and E as well as a new rule
that can be seen as a test for syntactic identity. We get the following set of rules CL− e:

Sxyz → xz(yz)

Kxy → x

Ix → x

Dxx → E.

This system has been proved non-confluent in [Klo80]. However it has the unique normal form property, as
proved in [KdV90], using the linearized system CL− e∗:

Sxyz → xz(yz)
Kxy → x
Ix → x

x = y if Dxy → E

The result stated in the previous example for CL− e and its linearization CL− e∗ can be generalised:

Proposition 20.1 [KdV90] Let R a rewrite system and RL its linearization. Assume that RL is confluent.
Then R has unique normal forms.

Another interesting property that can be deduced from these results is the next one:
Let us call a rewrite system R strongly non-ambiguous if after replacing each non-left-linear rewrite rule

by its linearization, the resulting system has no critical pair.

Theorem 20.5 [KdV90] Any strongly non-ambiguous rewrite system has unique normal forms.

This property that may seem surprising comes from the fact that when R has no critical pair, then RL

is orthogonal and orthogonal conditional rewrite systems are confluent as stated in Theorem 20.4 [BK86].

20.3 Saturated sets of conditional equalities

We adopt in this section another point of view, by considering now conditional equalities as equational
Horn clauses. So it is assumed that “=” is the only predicate which occurs within the encountered clauses.
However the techniques developed in this section can be applied to general first-order clauses (see [BG91b].

In a theorem prover for equational logic, such as ordered completion, the expansion rule is the superpo-
sition of ordered equalities. In equational Horn clause logic, more expansion rules have to be considered:
superposition, narrowing and reflection. Similar to the critical pairs lemma for ordered completion, lifting
lemmas have to be stated for each of these expansion rules.

20.3.1 Superposition, narrowing and reflection

We describe in this section how to produce new conditional equalities by three inference rules called super-
position, narrowing and reflection.

Let us consider the inference rules presented in Figure 20.1.
In order to limit the set of useful inferences, some ordering restrictions are imposed in the conditions of

these rules. They are expressed thanks to an ordering on conditional equalities.

January 28, 2006 rewriting solving proving

20.3 Saturated sets of conditional equalities 257

Superposition g = d if ∆, l = r if Γ
7→7→
ψ(g[ω ←↩ r]) = ψ(d) if ψ(Γ ∧∆)
if ψ mgu(g|ω, l)

Narrowing g = d if (∆ ∧ s = t), l = r if Γ
7→7→
ψ(g) = ψ(d) if ψ(Γ ∧∆ ∧ s[r]ω = t)
if ψ mgu(s|ω, l)

Reflection g = d if (∆ ∧ s = t)
7→7→
ψ(g) = ψ(d) if ψ(∆)
if ψ mgu(s, t)

Figure 20.1: Inference rules for equational Horn logic

20.3.2 Ordering on conditional equalities

Let us recall the ordering introduced to define ordered instance of conditional equalities in Section 7.5 of
Chapter 7.

Let > be a reduction ordering on terms contained in some ordering total on ground terms, and ≥ be
defined by s ≥ t if s > t or s = t. The multiset extension >mult is an ordering on equalities denoted by >E .

This ordering extends to conditional equalities considered as multisets of equalities as follows: First add
⊥ as a new symbol that satisfies for every term t, t > ⊥. Then associate to each occurrence of the equality
s = t, its complexity c(s = t) which is

- the multiset {{s}, {t}} if s = t is the conclusion of C,
- the multiset {{s,⊥}, {t,⊥}} if s = t occurs in the condition of C, These complexities are multisets of

multisets of terms that may be compared using (>mult)mult.
The complexity of a conditional equality C, denoted by c(C) is the multiset of complexities c(s = t) for

any s = t ∈ C. In other words, each conditional equality

C = (l = r if
∧

i=1,...,n

si = ti)

has the complexity
c(C) = {{{s1,⊥}, {t1,⊥}}, ..., {{sn,⊥}, {tn,⊥}}, {{l}, {r}}}.

Conditional equalities are now compared with the ordering >C , defined by

C >C C
′ if c(C)((>mult)mult)multc(C′).

≥C is defined by C ≥C C′ if C >C C
′ or C = C′.

Example 20.7 Let s > t > u. Then (s = t) >E (s = u), and (s = u ⇒ a = b) >C (⇒ s = t), since {s,⊥}
is greater w.r.t. >mult than both {s} and {t}.

20.3.3 Critical pairs, narrowing and resolvent

Each of the previous inference rule can be applied on a set of conditional equalities with variables and schema-
tizes application of inference rules on ground instances of these conditional equalities. This is expressed in
lifting lemmas, similar to the critical pairs lemma.

Definition 20.3 Let g = d if ∆ and l = r if Γ be two conditional equalities with disjoint sets of variables,
such that l and g overlap at position ω of Grd(g) with the most general unifier ψ, ψ(d) 6≥ ψ(g), ψ(r) 6≥ ψ(l),
∀(ui = vi) ∈ ∆, ψ(ui = vi) 6≥ ψ(g = d), ∀(si = ti) ∈ Γ, ψ(si = ti) 6≥ ψ(l = r). The overlapped term ψ(g)
produces the conditional ordered critical pair

ψ(g[ω ←↩ r]) = ψ(d) if ψ(∆ ∧ Γ).

Let SUP (P) be the set of conditional ordered critical pairs obtained from any two equalities in P .

January 28, 2006 rewriting solving proving

258 Conditional completion

Lemma 20.1 [BG91b] Let D = (g = d if ∆) and C = (l = r if Γ) be two conditional equalities with
disjoint sets of variables, and let σ(D) = (σ(g) = σ(d) if σ(∆)) and σ(C) = (σ(l) = σ(r) if σ(Γ)) be ground
instances such that σ(D) >C σ(C), σ(C) ordered and ∀x ∈ Var(D), σ(x) is irreducible by l = r. Then
any superposition inference from σ(C) on σ(D) produces a new formula which is a ground instance of a
conditional ordered critical pair in SUP (P).

Proof: The formula produced by the superposition inference rule from σ(C) and σ(D) is

ψ(σ(g)[ω ←↩ σ(r)]) = ψ(σ(d)) if ψ(σ(∆) ∧ σ(Γ))

where ψ is the most general unifier of the two terms σ(g)|ω and σ(l). Since these terms are ground,
ψ is the identity and σ(g)|ω = σ(l). Moreover, since ∀x ∈ Var(D), σ(x) is irreducible by l = r, ω is a
position in Grd(g) and σ(g|ω) = σ(l). This means that σ is a unifier of g|ω and l, greater than their most
general unifier, say α. The conditions α(d) 6≥ α(g), α(r) 6≥ α(l), ∀(ui = vi) ∈ ∆, α(ui = vi) 6≥ α(g = d),
∀(si = ti) ∈ Γ, α(si = ti) 6≥ α(l = r) all hold otherwise this would contradict one of the facts that
σ(C) = βα(C) or σ(D) = βα(D) is ordered. So there exists a conditional ordered critical pair

α(g[ω ←↩ r]) = α(d) if α(∆ ∧ Γ)

which has as ground instance by β the initial formula. 2

In addition to compute ordered conditional critical pairs, we also need to partially solve conditions of
equalities when they are more complex than the conclusion. This motivates the introduction of the set of
conditional narrowings computed from P , in which the left-hand side l of a conditional equality is unified
with a non-variable subterm u occurring in the condition of another one.

Definition 20.4 Let g = d if (∆ ∧ s = t) and l = r if Γ be two conditional equalities with disjoint sets
of variables, such that l and s unify at position ω of Grd(s) with the most general unifier ψ, ψ(t) 6≥ ψ(s),
ψ(r) 6≥ ψ(l), ∀(ui = vi) ∈ ∆ ∪ {g = d}, ψ(ui = vi) 6≥ ψ(s = t), ∀(si = ti) ∈ Γ, ψ(si = ti) 6≥ ψ(l = r). Then
the conditional ordered narrowing obtained from these two equalities is the conditional equality

ψ(g) = ψ(d) if ψ(Γ ∧∆ ∧ s[r]ω = t).

Let NAR(P) be the set of conditional ordered narrowings obtained from any two equalities in P .

Lemma 20.2 [BG91b] Let D = (g = d if (∆ ∧ s = t)) and C = (l = r if Γ) be two conditional equalities
with disjoint sets of variables, and let σ(D) = (σ(g) = σ(d) if σ(∆ ∧ s = t)) and σ(C) = (σ(l) = σ(r) if σ(Γ))
be ground instances such that σ(D) >C σ(C), σ(C) ordered and ∀x ∈ Var(D), σ(x) is irreducible by l = r.
Then any narrowing inference from σ(C) on σ(D) produces a new formula which is a ground instance of a
conditional ordered narrowing in NAR(P).

Proof: The formula produced by the narrowing inference rule from σ(C) and σ(D) is

ψ(σ(g)) = ψ(σ(d)) if ψ(σ(Γ) ∧ σ(∆) ∧ σ(s)[σ(r)]ω = σ(t))

where ψ is the most general unifier of the two terms σ(s)|ω and σ(l). Since these terms are ground,
ψ is the identity and σ(g)|ω = σ(l). Moreover, since ∀x ∈ Var(D), σ(x) is irreducible by l = r, ω is a
position in Grd(g) and σ(s|ω) = σ(l). This means that σ is a unifier of s|ω and l, greater than their
most general unifier, say α. The conditions α(t) 6≥ α(s), α(r) 6≥ α(l), ∀(ui = vi) ∈ ∆∪{g = d}, α(ui =
vi) 6≥ α(s = t), ∀(si = ti) ∈ Γ, α(si = ti) 6≥ α(l = r) all hold otherwise this would contradict one
of the facts that σ(C) = βα(C) is ordered or σ(D) = βα(D) is greater than σ(C). So there exists a
conditional ordered narrowing

α(g) = α(d) if α(Γ ∧∆ ∧ s[r]ω = t)

which has as ground instance by β the initial formula. 2

In addition to conditional critical pairs and conditional narrowings, the notion of resolvent is also needed.
When one of the conditions of a rule can be immediately solved by syntactic unification, then we can build
a reflexive resolvent.

Definition 20.5 Let g = d if (∆ ∧ s = t) be a conditional equality, such that s and t unify with the most
general unifier ψ, ψ(∆) 6>C ψ(s = t), ψ(g = d) 6>C ψ(s = t). Then the reflexive resolvent obtained from this
equality is the conditional equality

ψ(g) = ψ(d) if ψ(∆).

January 28, 2006 rewriting solving proving

20.3 Saturated sets of conditional equalities 259

Let REF (P) be the set of reflexive resolvent obtained from all equalities in P .

Lemma 20.3 [BG91b] Let D = (g = d if ∆ ∧ s = t) be a conditional equality and let σ(D) = (σ(g) =
σ(d) if σ(∆) ∧ σ(s) = σ(t)) a ground instance such that σ(s) = σ(t) is maximal in σ(D). Then a reflection
inference applied on the litteral σ(s) = σ(t) of σ(D) produces a new formula which is a ground instance of
a reflexive resolvent of P .

Proof: The formula produced by the reflection inference rule from σ(D) = σ(g) =
σ(d) if (σ(∆) ∧ σ(s) = σ(t)) is

ψ(σ(g)) = ψ(σ(d)) if ψ(σ(∆))

where ψ is the most general unifier of the two terms σ(s) and σ(t). Since these terms are ground, ψ is
the identity and σ(s) = σ(t). This means that σ is a unifier of s and t, greater than their most general
unifier, say α. The conditions α(∆) 6>C α(s = t), α(g = d) 6>C α(s = t) all hold otherwise this would
contradict the fact that σ(s) = σ(t) is maximal in σ(D). So there exists a reflexive resolvent

α(g) = α(d) if α(∆)

which has as ground instance by β the initial formula. 2

An essential property of the above newly generated formulas is that they are smaller for the ordering >C
than one of the initial formulas.

20.3.4 Saturated sets

In the pure equational case, given a set of axioms E, a confluent rewrite system R provides a congruence
equivalent to =E , the smallest congruence that contains the set of equalities E. In a similar way, we now
build, from a set of conditional equalities P , a congruence on ground terms, and prove that the quotient
set is a model of P , provided P is saturated under application of inference rules for equational Horn logic
described in Figure 20.1.

Using induction on the ordering >C, we define for any ground instance C of a conditional equality in P ,
the sets of equalities EC , RC and IC as follows:

RC =
⋃

C>CC′

EC′ and IC = =RC

Then
EC = {s = t}

if C = (s = t if Γ) such that
(i) C is ordered,
(ii) s is irreducible by RC ,
(iii) Γ ⊆ IC .
Otherwise EC = ∅
Then define I to be the quotient set of ground terms by =R where R =

⋃
C EC is the set of all equalities

produced by ground instances of conditional equalities in P . Note that by construction, RC and R are
left-reduced rewrite system. Thus they are convergent and equality in I may be decided using R: s = t is
true in I iff s ↓R= t ↓R.

The importance of this construction relies on the fact that I is a model of P , provided P is saturated.
The notion of saturation itself relies on the concept of redundancy.

Intuitively a conditional equality is redundant if it does not contribute to the construction of I or in
other words, does not modify the congruence relation on ground terms.

Definition 20.6 A ground instance C of a conditional equality in P is redundant if it is true in IC . A
conditional equality in P is redundant if all its ground instances are redundant.

A saturated set is a set to which no non-redundant consequence can be added.

Definition 20.7 A set of conditional equalities P is saturated if all ground instances of inferences from P
are redundant.

With these definitions, we can state the result:

January 28, 2006 rewriting solving proving

260 Conditional completion

Theorem 20.6 A saturated set of conditional equalities P has a model if and only if it does not contain the
empty conditional equality if.

Proof: The proof is an instance of the proof of the similar theorem stated in [BG91b] for first-order logic.
We just sketch the proof below: if P contains the empty conditional equality if, then it has no model.
On the other hand, if P is saturated and does not contain the empty conditional equality if, every
ground instance C of P is true in the quotient of ground terms by =RC∪EC

and hence true in I. So I
is a model of P . 2

Example 20.8 Given constants 0 and true, function symbols s and P , the following set of conditional
equalities is saturated:

P (0) = true
P (x) = true if P (s(x)) = true

Note that there is no superposition between the two conditional equalities and no narrowing because P (x) <
P (s(x)) in any simplification ordering. Applying deduction rules without ordering restriction would lead to
the generation of an infinite set of conditional equalities of the form

P (sk(0)) = true, for k = 1, 2, . . .

When P is not saturated, a completion process has to be applied to saturate it.

20.4 Completion

The transition rules for completion of conditional equalities are deduced from the approach followed in the
previous section. Here again a rewrite rule where the condition Γ is a conjunction of positive literals is
viewed as an equational Horn clause. This approach of completion based on a set of transition rules which
is refutationally complete for Horn clause logic with equality has been proposed by [KR87]. These rules
are direct extensions of unfailing completion. There the idea was always to apply term replacement only
within the larger member of an equality and never replace a term by a larger one. Similarly for equational
Horn conditional equalities, any term replacement is performed only into the largest literals in a conditional
equality using the largest equality literal of a conditional equality.

According to the previous section, the notion of completion is extended to a notion of saturation of a set
of formulas (equalities or conditional equalities): all non-redundant inferences are computed. From inference
rules given in Figure 20.1, three expansion rules of the completion process, namely Superpose, Narrow and
Reflect, can be deduced immediately. Applying them until saturation is refutationally complete but highly
inefficient. Then the key notion of redundancy allows dealing with simplification techniques, such as deletion
of tautologies or subsumption. Redundancy has already been abstractly defined and these simplification
techniques provide more effective criteria to eliminate redundancies.

20.4.1 Transition rules

Let P be a set of Horn conditional equalities. By C[t] we mean that the term t occurs as a subterm in the
conditional equality C. A conditional equality is viewed as a set of literals, and the set-containment relation
on conditional equalities is denoted by ⊆.

The transition rules of the unfailing completion procedure can be extended to deal with conditional
equalities. The three first rules Superpose, Narrow and Reflect are expansion rules, while the four last
ones are contraction rules.

Let UCOND be the set of transition rules for unfailing conditional completion given in Figure 20.2.
Superpose adds in P the set of conditional ordered critical pairs obtained by superposition of conditional

equalities in P and Narrow adds in P the conditional ordered narrowings between two elements. Reflect
removes a maximal premise of a conditional rule if it is solved. Delete and Trivial are rules for getting
rid of tautologies. Subsume allows elimination of redundancies; a rule less general than another one is
non-essential and can be deleted. Simplify reduces conjectures using conditional rules whose conditions
are valid in the underlying theory. This rule is deliberately given in a very general format. Remind that
P ∪ {C[σ(t)]} |= σ(s = t) means that P ∪ {C[σ(t)]} implies σ(s = t), that is every model of P ∪ {C[σ(t)]}
satisfies σ(s = t). For implementation, the search of a proof of the conditions must be bounded in some way.

The transition rules are iterated on the initial set of conditional equalities. When this process stops, the
resulting set of conditional ordered equalities is warranted to have the Church-Rosser property on ground
terms.

January 28, 2006 rewriting solving proving

20.4 Completion 261

Superpose P 7→7→ P ∪ {(p = q if Γ)}
if (p = q if Γ) ∈ SUP (P)

Narrow P 7→7→ P ∪ {(p = q if Γ)}
if (p = q if Γ) ∈ NAR(P)

Reflect P 7→7→ P ∪ {(p = q if Γ)}
if (p = q if Γ) ∈ REF (P)

Delete P ∪ {(p = p if Γ)} 7→7→ P
Trivial P ∪ {(s = t if Γ ∧ s = t)} 7→7→ P
Subsume P ∪ {C,D} 7→7→ P ∪ {C}

if σ(C) ⊆ D
Simplify P ∪ {C[σ(s)]} 7→7→ P ∪ {C[σ(t)]}

if C[σ(s)] >C C[σ(t)] and
C[σ(s)] >C σ(s = t) and
P ∪ {C[σ(t)]} |= σ(s = t)

Figure 20.2: The set UCOND for unfailing conditional completion

For a practical application of simplification, a conditional equality can be used to rewrite a term only if
it is reductive. Otherwise, it is only considered for completion to generate new consequences but it can be
deleted once completion is achieved, since it will never be applied for normalizing terms. The next examples
illustrates these notions and the completion process.

Example 20.9 The following set of conditional equalities in which ≤ defines the predicate less or equal on
integers has the Church-Rosser property on ground terms:

succ(pred(x)) → x
pred(succ(x)) → x
(0 ≤ 0) → true
(0 ≤ pred(0)) → false
(succ(x) ≤ y) → (x ≤ pred(y))
(pred(x) ≤ y) → (x ≤ succ(y))

(0 ≤ x) = true if (0 ≤ succ(x)) → true
(0 ≤ x) = false if (0 ≤ pred(x)) → false

(0 ≤ pred(x)) = true if (0 ≤ x) = true
(0 ≤ succ(x)) = false if (0 ≤ x) = false.

The last two conditional equalities have been generated during the completion of the other ones. Note
that none of their instances are reductive; when they are discarded, the remaining system still has the
Church-Rosser property.

Example 20.10 This example is a completion performed by the system CEC and reported in [Gan91].
Consider the example of natural numbers with ≤. Transitivity and totality axioms are added to the definition
of ≤. These axioms are non-reductive conditional equalities.

0 ≤ x = true
succ(x) ≤ 0 = false
succ(x) ≤ succ(y) = x ≤ y
x ≤ x = true
x ≤ succ(x) = true

(x ≤ y) = true if x ≤ succ(y) = true
(x ≤ y) = false if y ≤ x = true

(x ≤ y = true ∧ y ≤ z = true) if x ≤ z = true

Starting with this specification, CEC terminates with the following set of rewrite rules:

0 ≤ x → true
succ(x) ≤ 0 → false
succ(x) ≤ succ(y) → x ≤ y
x ≤ x → true

(x ≤ y) = true if x ≤ succ(y) → true

January 28, 2006 rewriting solving proving

262 Conditional completion

and the following set of conditional equalities:

(x ≤ y) = false if y ≤ x = true
(x ≤ y = true ∧ y ≤ z = true) if x ≤ z = true

s(x) ≤ y = true if x ≤ y = true
(succ(y) ≤ z = true ∧ x ≤ y = true) if x ≤ z = true
(succ(y) ≤ z = true ∧ x ≤ y = true) if succ(x) ≤ z = true

For a precise description of the computations performed by CEC and their justifications, see [Gan91].

20.4.2 Refutational completeness proof

Let us consider P0 = P and apply the transition rules in UCOND to it. We get a derivation
P0 7→7→UCOND P1 7→7→UCOND P2... and call its limit P∞. Let also P∗ =

⋃
i Pi denote the union of generated sets

of conditional equalities. According to the previous theorem 20.6, if P∞ is saturated and does not contain
the empty conditional equality, P∞ is consistent since we know how to build a model. We introduce a
notion of fairness of the derivation that ensures both that P∞ is saturated and that the model built for it
is also a model for P0. We thus prove that the set of transition rules UCOND is refutationally complete:
a contradiction (the empty conditional equality) can be derived from any inconsistent set of conditional
equalities.

The fairness assumption ensures that no crucial transition rule will be postponed forever. Intuitively, a
derivation is fair if all conditional equalities which can be generated from persisting conditional equalities
are either generated or made redundant by the generation of other conditional equalities.

But the definition of redundancy previously given is too general and we now need sufficient conditions
for redundancy that also cover simplification and deletion techniques. The concept of composite conditional
equality is introduced for this purpose. Intuitively, every composite ground instance of some conditional
equality in a saturated set is redundant. This notion of compositeness must be related to the definition of
composite critical pairs given in Section 19.3 of Chapter 19.

Definition 20.8 A ground conditional equality C is composite w.r.t. P if there exist ground instances
C1, ..., Ck of conditional equalities in P such that C1, ..., Ck |= C and C >C Cj for all 1 ≤ j ≤ k. A
non-ground conditional equality C is composite w.r.t. P if all its ground instances are composite.

The next lemma shows that compositeness w.r.t. a set P is preserved if conditional equalities are added
or if composite conditional equalities are deleted. In the completion process, a conditional equality that is
composite w.r.t. Pi at some step will remain composite w.r.t. Pj , j > i, since any expansion rule adds new
conditional equalities and any contraction rule only deletes composite conditional equalities.

Lemma 20.4 [BG91b] If P ⊆ P ′, then any conditional equality composite w.r.t. P is also composite w.r.t.
P ′.

If P ⊆ P ′ and all conditional equalities in P ′ − P are composite w.r.t. P , then any conditional equality
composite w.r.t. P ′ is also composite w.r.t. P .

This lemma is applied to P∞ ⊆ P∗, to prove that if every formula deduced from P∞ is composite w.r.t.
P∗, then the model I associated to P∞ is also a model for P∗.

We now consider contraction rules and prove their correctness by showing that they eliminate redundant
formulas. Delete, Trivial, Subsume and Simplify.

Lemma 20.5 If C subsumes D (i.e. D = σ(C) for some substitution σ), then D is composite w.r.t. C.

Proof: σ(C) |= D and D >C C. 2

Lemma 20.6 A conditional equality (p = p if Γ) or (s = t if Γ ∧ s = t) is composite.

Proof: Since |= D, one can choose an empty set of ground instances C1, . . . , Ck in Definition 20.8. 2

Lemma 20.7 In the Simplify rule, C[σ(s)] is composite w.r.t. P ∪ {C[σ(t)]}.

Proof: First C[σ(s)] is composite w.r.t. P ∪ {C[σ(t)], σ(s = t)} since C[σ(s)] >C C[σ(t)], C[σ(s)] >C
σ(s = t), and P ∪ {C[σ(t)], σ(s = t)} |= C[σ(s)]. Then it is also composite w.r.t. P ∪ {C[σ(t)]} since
P ∪ {C[σ(t)]} |= σ(s = t). 2

January 28, 2006 rewriting solving proving

20.5 Conclusion 263

Let us also say some words about the frequently used technique of case analysis. The first step in a case
analysis consists of splitting a conditional equality C = Γ⇒ l = r of the set of conditional equalities P into
n conditional equalities Ci = Ai ∧ Γ ⇒ l = r where all Ai are consequences of the set of ground instances
C′ of C such that C >C C

′. Suppose in addition that Ci is simplified into Di. Then C becomes composite
in P ∪ {D1, . . . , Dn}. So case analysis can be justified with the same technique. More details are given
in [BG91b].

With this notion of composite formula, the property of fairness can be formulated:

Definition 20.9 A derivation P0 7→7→UCOND P1 7→7→UCOND P2 . . . is called fair if every inference from P∞ is
composite w.r.t. P∗.

Definition 20.10 A set of conditional equalities P is complete if all inferences from P are composite w.r.t.
P .

Fairness, completeness and saturation are related in the following way:

Lemma 20.8 If a derivation P0 7→7→UCOND P1 7→7→UCOND P2... is fair then P∞ is complete and every condi-
tional equality in P∗ − P∞ is composite w.r.t. P∞.

Lemma 20.9 Any complete set of conditional equalities that does not contain the empty conditional equality
is saturated.

Using these two lemmas, we get:

Theorem 20.7 Let P0 7→7→UCOND P1 7→7→UCOND P2... be a fair derivation. If P∗ does not contain the empty
conditional equality, then P∞ is saturated and P0 is consistent.

Proof: By fairness, P∞ is complete. Using Lemma 20.9, it is saturated. Indeed, if P∗ does not contain the
empty conditional equality, nor does P∞. Using Lemma 20.8, the interpretation I constructed from
P∞ is a model of P∗. 2

20.5 Conclusion

The saturation process presented in this chapter is more flexible than previous conditional completion pro-
cedures proposed for instance by [JW86, KR89b] since it does not fail in the presence of non-reductive rules
or non-orientable equalities. Moreover, this technique also applies to conditional equalities with disequa-
tions in their conditions and the method can be used to refute goals in the logic programming sense. The
correspondance with logic programs with negation is explained in [BG91a].

The results described here are proved using induction methods based on powerful orderings but no more
on a proof reduction process. Actually attemps have been made both by Bachmair in [Bac91] and by
Dershowitz in [Der90] to apply the proof ordering technique to Horn clauses. They both proved that a
unit strategy with simplification is complete for reducing any proof of an equality theorem to some normal
form. But the unit strategy limits the application of superposition to (non-conditional) equalities and allows
narrowing in the conditions only using (non-conditional) equalities.

January 28, 2006 rewriting solving proving

264 Conditional completion

January 28, 2006 rewriting solving proving

Chapter 21

Completion with constraints

21.1 Introduction

A first motivation for introducing constraints in completion processes arises when considering the problem
of completion modulo a set of axioms A [BD89a, JK86c]. A main drawback of this class of completion
procedures is an inherent inefficiency, due to the computation of matches and unifiers modulo A. For
instance, let us consider the two rewrite rules

x ∗ x ∗ x ∗ x→ x
u ∗ v ∗ w ∗ a→ a.

where ∗ is supposed to be associative and commutative (AC for short). Note that a complete set of AC-
solutions for the equation x∗x∗x∗x =?

AC u∗v∗w∗a where x, u, v, w are variables and a a constant, contains
several millions of substitutions [Dom92]. The idea is here to use constraints to record unification problems
in the theory AC and to avoid solving them immediately. By constrained superposition at top occurrence,
the constrained critical pair

(x = a ‖ (x ∗ x ∗ x ∗ x =?
AC u ∗ v ∗ w ∗ a))

is computed. It schematizes for instance the trivial critical pair (a = a) obtained with the solution {(x 7→
a)(u 7→ a)(v 7→ a)(w 7→ a)}; it also schematizes the critical pair (a ∗ x′ = a), by considering the solution
{(x 7→ a ∗ x′)(u 7→ a ∗ x′ ∗ x′)(v 7→ a ∗ x′)(w 7→ a ∗ x′)}.

Another example is the Ring Commutativity Problems in Example 19.2 of Chapter 19. In this example
for the case n, the equation wn = w is added to the set RING of equations. The first interesting critical
pair is between the extended equality of distibutivity and the equation wn = w. Following [Dom92], it can
be computed that an equation of the form v ∗ wn =?

AC u ∗ x ∗ (y + z) has a set of minimal AC-solutions
whose cardinal is (6n + 8)2n − 12. Instead of computing this huge set of corresponding critical pairs, the
following constrained critical pair [u ∗ ((x ∗ y) + (x ∗ z)) = v ∗ w ‖ v ∗ wn =?

AC u ∗ x ∗ (y + z)] is built and
the deduction process goes on and adds other constraints which further narrow the set of solutions.

A third example of the use of constraints in completion processes is provided by theories involving
commutativity, associativity and identity axioms (ACIdentity for short). The idea to extend the technique
of ordered completion modulo A to this kind of theories emerges from the remark that it is in general easier
to solve equations modulo ACIdentity than modulo AC, in the sense that complete sets of unifiers have less
elements. So for theories like commutative group, commutative ring with unit, Boolean algebra, group or
ring homomorphism, distributive lattice, it is interesting to deal with the commutativity, associativity and
identity axioms through the matching and unification processes. Unfortunately a termination problem arises
since the rule −(x + y) → (−x) + (−y) leads to an infinite derivation for any term t: (−t) ∗←→ACIdentity

−(t+0)→ (−t)+(−0)→ The idea is then to prevent this infinite chain by imposing the constraint that
both x and y must be non-equivalent to 0 modulo ACIdentity to apply the rule −(x + y)→ (−x) + (−y).
So when generated, the equality (−(x+ y) = (−x) + (−y)) is split into:

a rewrite rule −(x+ y)→ (−x) + (−y) ‖ (x 6=?
ACIdentity 0 ∧ y 6=?

ACIdentity 0),

and an equality −(x+ y) = (−x) + (−y) ‖ (x =?
ACIdentity 0 ∨ y =?

ACIdentity 0),
itself equivalent to two equalities
−(x+ y) = (−x) + (−y) ‖ (x =?

ACIdentity 0) and −(x+ y) = (−x) + (−y) ‖ (y =?
ACIdentity 0),

further reduced to −(y) = (−0) + (−y) and −(x) = (−x) + (−0), then to trivial equalities. Further
developments may be found in [BPW89, JM90] and other examples of theories are handled in [BPW89]:
commutative ring with unit, Boolean algebra, group or ring homomorphism, distributive lattice.

January 28, 2006 rewriting solving proving

266 Completion with constraints

So the notions of rewriting and completion with constraints take their interest from the fact that checking
satisfiability of a constraint is in general much simpler than finding a complete set of solutions or a solved form,
especially in equational theories. For instance, a criterion to check the satisfiability of a system of equations
modulo associativity-commutativity is given in [Dom91a]. Finding complete sets of AC-solutions of equation
systems is much more difficult and less efficient. Originally a completion procedure with AC-constraints has
been proposed in [KK89] and a general framework for deduction with constraints developped in [KKR90].
Ordering and equality constraints were proposed for several deduction processes in first-order logic with
equality. Then the same idea was used in implementations of ordered completion described in [MN90,
Pet90]. and completion modulo associativity, commutativity and identity [BPW89, JM90]. Completion
with membership constraints is studied in [Com91a, Com92]. Later on, the relation between constrained
superposition and basic superposition has been enlighted in [BGLS92, NR92a, NR92b]. Completeness results
for deduction systems based on constrained superposition were obtained.

21.2 Constrained rewriting

A very general and powerful notion of rewriting with constraints was introduced in Section 7.6 of Chapter 7.
The definition is slightly restricted here to cases that are useful in the context of a theorem proving process.
Since we are mainly interested in deduction processes like completion which involves both ordering conditions
and equational problems, we assume from now on, that the constraint language LK[Σ,X] is specialized to

conjunctions of equations and inequations. The interpretation K is chosen as T (Σ,X)/
∗←→A and we do not

introduce new function symbols in the signature to build our constraint formulas. The equality predicate is
interpreted in K by equality modulo A and the ordering predicate by an A-compatible reduction ordering.
Let L> denote this instance of LK.

A variant of Definition 7.36 is necessary:

Definition 21.1 Let CE be a set of constrained equalities and > an A-compatible reduction ordering on
T (Σ,X). The relation (CE,A,L>) is defined on T (Σ,X) by : t →CE,A,> t′ if ∃(l = r ‖ c) ∈ CE, ∃σ s.t.

t|ω
∗←→A σ(l), σ ∈ SSK(c ∧ (l >?

A r)), t
′ = t[σ(r)]ω .

When there is a common orientation for the equality instances, we get the notio of constrained rewrite
rules.

Definition 21.2 Let CR be a set of constrained rewrite rules. The relation (CR,A,L>) is defined on

T (Σ,X) by : t→CR,A,L>
t′ if ∃(l → r ‖ c) ∈ CR, ∃σ s.t. t|ω

∗←→A σ(l), σ ∈ SSK(c), t′ = t[σ(r)]ω .

Note that the matching problem is solved in the constraint language L>. Assuming that there is a
unification procedure in L> to solve equational constraints is enough. Then the substitution σ is a solution
modulo A of a restricted unification problem.

21.3 Constrained superposition

Let us first concentrate on the case where A is an empty set of axioms.

Definition 21.3 A constrained critical pair of (g = d ‖ c′) and (l = r ‖ c) is the constrained equality
(g[r]ω = d ‖ c ∧ c′ ∧ (g|ω =?

∅ l) ∧ (g >?
∅ d) ∧ (l >?

∅ r)) if c ∧ c′ ∧ (g|ω =?
∅ l) ∧ (g >?

∅ d) ∧ (l >?
∅ r) is satisfiable.

A constrained critical pair of the form

(g[ω ←↩ r] = d ‖ (c ∧ c′ ∧ (g|ω =?
∅ l) ∧ (g >?

∅ d) ∧ (l >?
∅ r)))

schematizes the following set of formulas:

CP = {σ(g[ω ←↩ r]) = σ(d)|σ ∈ SS∅(c ∧ c′ ∧ (g|ω =?
∅ l) ∧ (g >?

∅ d) ∧ (l >?
∅ r))}.

The superposition rule for constrained equalities with equality and inequality constraints is formalized
as follows:

January 28, 2006 rewriting solving proving

21.3 Constrained superposition 267

Basic-Superpose (l = r ‖ c), (g = d ‖ c′)
7→7→
(g[ω ←↩ r] = d ‖ c ∧ c′ ∧ (g|ω =?

∅ l) ∧ (l >?
∅ r) ∧ (g >?

∅ d))
if c ∧ c′ ∧ (g|ω =?

∅ l) ∧ (l >?
∅ r) ∧ (g >?

∅ d) is satisfiable

Figure 21.1: Basic Superposition Rule with equality and inequality constraints

Example 21.1 Given F = {+, 0} and the precedence 0 ≺ +, let us consider the following equalities:

x+ 0 = 0 + x

(x+ y) + z = x+ (y + z)

that can be converted into constrained rules:

(x+ 0→ 0 + x ‖ x >?
∅ 0)

((x+ y) + z → x+ (y + z) ‖ T)

There are two constrained superpositions:

((0 + x) + z = x+ (0 + z) ‖ x >?
∅ 0)

(0 + (x+ y) = x+ (y + 0) ‖ (x+ y) >?
∅ 0)

Note that the constraint of the second rule is always satified so may be simplified to T:

(0 + (x + z) = x+ (0 + z) ‖ x >?
∅ 0)

(0 + (x+ y) = x+ (y + 0) ‖ T)

The difficulty that arises in trying to prove confluence is that the critical pairs lemma does not hold
anymore in the context of constrained rewrite rules.

Example 21.2 Let us consider A = ∅, F = {a, b, f, g} and a simplification ordering > induced by the
precedence f, g > a > b [DJ90a]. Let CE be the set of two constrained equalities: (g(a) = b ‖ T) and
(f(x) = a ‖ x =?

∅ g(y)). There is no constrained critical pair, nevertheless there exists a peak a ←CE,∅,L>

f(g(a))→CE,∅,L>
f(b) which is not convergent since neither a nor f(b) is reducible.

Example 21.3 The same problem occurs with ordering constraints. Let F = {a, b, c, f} with f > a > b > c.

a = c
f(x) = c ‖ x >?

∅ b

There is no constrained critical pair.
Nevertheless there exists a peak

c← f(a)→ f(c)

not convergent since neither c nor f(c) is reducible.

In the previous examples, the problem comes from the fact that there is a superposition in the constraint
part which is not taken into account by the computation of constrained critical pairs. A first idea is to look
for cases where superposition into constraints is useless. Using a hierarchical approach in which constraints
are restricted to a subsignature is enough to recover the critical pair lemma. This is done with so-called
built-in constraints in [KR93] for instance. When the initial set of equalities is unconstrained, the basic
superposition deduction rule (the rule Basic-Superpose given in Figure 21.1) is the basis of a saturation
process in [NR92b, BGLS92].

Theorem 21.1 [NR92a, NR92b, BGLS92] Let A = ∅ and E0 be a set of equalities without constraints and
let E be the closure of E0 under the superposition rule Superpose. Then E is confluent on ground terms.

Another alternative initially proposed in [KKR90] is to use propagation. Constraints are weakened
by partially solving them and propagating the instantiations in the equality. This formalized by the rule
Propagate given in Figure 21.2 for a general term-generated interpretation domain, where θ̂ is the equational
form of the substitution θ defined on the domain Dom(θ).

January 28, 2006 rewriting solving proving

268 Completion with constraints

Propagate CE ∪ {(g = d ‖ c)}
7→7→
CE ∪ {(θ(g) = θ(d) ‖ c′)}
if c ≡K c′ ∧ θ̂ and Dom(θ) ∩ Var(c′) = ∅

Figure 21.2: Propagation Rule

Example 21.4 Coming back to the example 21.2, the rule Propagate applies straightforwardly and yields
the (unconstrained) equality (f(g(y)) = a). Now Superpose applies and generates with (g(a) = b) the
critical pair (f(b) = a). The ordered rewrite system given by > and the equalities

g(a) = b f(g(y)) = a f(b) = a

is Church-Rosser and generates the same congruence as the initial set of constrained equalities.

Note however that applying the rule Propagate assumes that constraints have solved forms similar to
substitutions. This not the case indeed when membership constraints or disequations are considered for
instance, since we should allow x 6= a or x ∈ A as solved constraints.

Example 21.5 Consider for instance the specification defined by a set of sorts S = {s0, s1, s2, s3}, a set of
function symbols F = {a, f, g, h}, a set of function declarations

a : → s0
f : s0 → s0

s1 → s2
s2 → s2
s3 → s3

g : s0 → s1
s3 → s3

h : s3, s3 → s3

a set of subsort declarations
s0 ≤ s3
s1 ≤ s3
s2 ≤ s3

and a set of rewrite rules with membership constraints:

f(x)→ a ‖ x ∈ s2
g(x)→ h(x, x) ‖ x ∈ s3

Again Deduce does not apply, although we have a peak:

f(f(h(a, a))← f(f(g(a)))→ a

Now applying the rule Propagate is also problematic, since we do not know how to propagate solutions of
x ∈ s2. This problem is considered in [Com92]. Using the correspondance between order-sorted signature
and regular tree automaton, the constraint x ∈ s2 is first converted into a membership relation (x ∈?

f+(g(f∗(a)))) with a regular expression for s2. Then from

f(x)→ a ‖ x ∈? f+(g(f∗(a)))
g(x)→ h(x, x)

two constrained critical equalities are deduced:

a = f(X(h(x, x))) ‖ (x ∈? f∗(a) ∧X ∈? f+)
a = Y (a) ‖ (Y ∈? f+)

The computation mechanism of these critical pairs involves second order unification and the critical pairs
contain second order variables X and Y .

January 28, 2006 rewriting solving proving

21.4 Constrained superposition modulo A 269

21.4 Constrained superposition modulo A

Let us now come back to the more general case where A is not empty. In that case the completion process
requires the computation of constrained extensions as well as constrained critical pairs modulo A.

Definition 21.4 A constrained critical pair modulo A of (g = d ‖ c′) and (l = r ‖ c) is the constrained
equality (g[r]ω = d ‖ c ∧ c′ ∧ (g|ω =?

A l) ∧ (g >?
A d) ∧ (l >?

A r)) if c ∧ c′ ∧ (g|ω =?
A l) ∧ (g >?

A d) ∧ (l >?
A r) is

satisfiable.

A constrained critical pair of the form

(g[ω ←↩ r] = d ‖ (c ∧ c′ ∧ (g|ω =?
A l) ∧ (g >?

A d) ∧ (l >?
A r)))

schematizes the following set of formulas:

CP = {σ(g[ω ←↩ r]) = σ(d)|σ ∈ SSA(c ∧ c′ ∧ (g|ω =?
A l) ∧ (g >?

A d) ∧ (l >?
A r))}.

Definition 21.5 A constrained extended equality of (l = r ‖ c) w.r.t. (g = d) ∈ A is the constrained
equality (g[l]ω = g[r]ω ‖ c ∧ (g|ω =?

A l) ∧ (l >?
A r)) if c ∧ (g|ω =?

A l) ∧ (l >?
A r) is satisfiable.

For a set CE of constrained equalities, CEext denotes the saturation of CE under adjunction of con-
strained extended equalities.

As for ordered completion, more optimized rules may be given when A is composed of associativity and
commutativity axioms, which we assume from now on in this section. Let us call CCM the set of rules for
Constrained Completion Modulo given in Figure 21.3. The next result is a reformulation of Theorem 6.1
in [NR94].

Theorem 21.2 Let E0 be a set of equalities without constraints, > an AC-compatible simplification order-
ing total on A-equivalence classes of ground terms, and let CE be the closure of E0 under CCM . Then
(CEext, AC,L>) is Church-Rosser modulo AC.

A refutationally complete theorem prover based on constrained paramodulation and using a different
proof technique is proposed in [Vig93].

An additional difficulty in the completeness proof, is to prove that completeness is preserved when
simplification and deletion are incorparated into constrained completion. A simple sufficient condition is
expressed in the condition of rule Simplify in Figure 21.3, but more powerful conditions can be found
in [BGLS92].

A restricted form of simplification is applied in this process and the next section is devoted to a more
powerful notion of simplification using constrained rewrite rules.

21.4.1 Constrained simplification

Defining a very general notion of simplification for constrained formulas is more complex than constrained
deduction. This is because when simplifying, the starting formula is replaced by the simplified one and lost,
while otherwise, when a deduction step is applied, a new formula is added . In the simplification process, it
must be taken care of not loosing schematized instances of the initial formula. This is why the definition of
simplification given below involves two parts. The first one deals with instances which are really simplified
by an instance of the constrained rewrite rule. The second part deals with the non-simplifiable instances
and records the failure in the constraint. To simplify a constrained formula (F1 ‖ c1), where F1 may be in
particular a rewrite rule or an equality, using a constrained rewrite rule (l → r ‖ c), it is assumed that the
two constrained formulas are variable disjoint. This condition can always be satisfied by renaming variables
of the constrained rewrite rule. It is also assumed that (l → r ‖ c) satisfies Var(c) ⊆ Var(l) ∪ Var(r).

Definition 21.6 A constrained formula (F1 ‖ c1) simplifies to (F2 ‖ c2), with the rest (F1 ‖ c′2), at
the non-variable position ω of F1, with the constrained rewrite rule (l → r ‖ c), if the constraint
c2 = c1 ∧ (c ∧ (l =?

K F1|ω)) is satisfiable. Then F2 = F1[r]ω and c′2 = (c1 ∧ [∀Var(c) ∪ Var(l), ¬c ∨ ¬(l =?
K

F1|ω)]).

The previous definition given for simplifying a constrained formula (F ‖ c) takes into account all the
schematized formulas. Some of these instances that are not reducible are recorded in the rest. It should be
noted that solving constraints with negation is needed in this definition. This general form of simplification
is used in [LS93]. When the constraint associated to the rest is unsatisfiable, this means that all instances
of the formula are reducible. This case is sometimes called a total simplification.

January 28, 2006 rewriting solving proving

270 Completion with constraints

Deduce-Eq-Eq
CE ∪ {(g = d ‖ c), (l = r ‖ c′)}
7→7→
CE ∪ { (g = d ‖ c), (l = r ‖ c′),

(g[r]ω = d ‖ c ∧ c′ ∧ (g|ω =?
AC l) ∧ (g >?

AC d) ∧ (l >?
AC r))

}
if c ∧ c′ ∧ (g|ω =?

AC l) ∧ (g >?
AC d) ∧ (l >?

AC r) satisfiable

Deduce-Ext-Eq
CE ∪ {(g = d ‖ c), (l = r ‖ c′)}
7→7→
CE ∪ { (g = d ‖ c), (l = r ‖ c′),

(g[f(r, z)]ω = d ‖ c ∧ c′ ∧ (g|ω =?
AC f(l, z)) ∧ (g >?

AC d) ∧ (l >?
AC r))

}
if c ∧ c′ ∧ (g|ω =?

AC f(l, z)) ∧ (g >?
AC d) ∧ (l >?

AC r) satisfiable

Deduce-Ext-Ext
CE ∪ {(g = d ‖ c), (l = r ‖ c′)}
7→7→
CE ∪ { (g = d ‖ c), (l = r ‖ c′),

(f(d, z) = f(r, z′) ‖ c ∧ c′ ∧ (f(g, z) =?
AC f(l, z′)) ∧ (g >?

AC d) ∧ (l >?
AC r))

}
if c ∧ c′ ∧ (f(g, z) =?

AC f(l, z′)) ∧ (g >?
AC d) ∧ (l >?

AC r) satisfiable

Delete
CE ∪ {p = q ‖ c}
7→7→
CE

if p
∗←→AC q

Simplify
CE ∪ {p = q ‖ c}
7→7→
CE ∪ {p′ = q ‖ c}
if p→(g=d ‖ c′),σ

CE,AC,L>
p′ with Var(c′) ⊆ Var(g) ∪ Var(d) and Ran(σ) ⊆ Ran(θ), ∀θ ∈ CSSAC(c)

Figure 21.3: CCM: Constrained Completion Modulo AC

Example 21.6 Consider the constrained rewrite rule,

x ∗ x ∗ x ∗ x→ x ‖ (x 6=?
∅ a)

where ∗ is denoted in infix notation and the expressions are supposed to be left parenthesized, whenever
parentheses are implicit. The constrained equality ((b ∗ b ∗ b ∗ b) ∗ (y ∗ y ∗ y ∗ y) = a ‖ T) with the trivial
constraint T simplifies to another constrained equality

(b ∗ b ∗ b ∗ b ∗ x = a ‖ (x ∗ x ∗ x ∗ x =?
∅ y ∗ y ∗ y ∗ y) ∧ (x 6=?

∅ a))

with the rest

(b ∗ b ∗ b ∗ b) ∗ (y ∗ y ∗ y ∗ y) = a ‖ ∀x, ¬(x ∗ x ∗ x ∗ x =?
∅ y ∗ y ∗ y ∗ y) ∨ ¬(x 6=?

∅ a).

Example 21.7 Let us consider the simplification of (a ∗ y = z ‖ y ∗ z =?
AC d ∗ b) using (a ∗ b = b ‖ T)

and the substitution σ = {y 7→ b, z 7→ d}. Then the simplification produces two new constrained equalities:
(b = z ‖ y =?

AC b ∧ z =?
AC d) and (a ∗ y = z ‖ (y ∗ z =?

AC d ∗ b) ∧ ((y 6=?
AC b) ∨ (z 6=?

AC d))).

Beyond correctness, the definition of such a simplification relation rises two other problems: termination
and relationship with other definitions of simplification.

Constrained simplification needs to check first that the list of constraints c2 is satisfiable. Otherwise
obviously termination problems arise. But this is not enough to ensure termination of the process, as shown
in the next example. The growth of the constraints must be controlled too and this must be taken into
account by a reduction strategy.

January 28, 2006 rewriting solving proving

21.4 Constrained superposition modulo A 271

Example 21.8 Let us consider A = ∅, the constrained rewrite rule (f(x)→ f(y) ‖ (x >?
∅ y)) and the

equality (f(a) = b ‖ T). This equality is simplified into: (f(y) = b ‖ (x =?
∅ a) ∧ (x >?

∅ y)) and (f(a) =

b ‖ ∀x, y, (x 6=?
∅ a) ∨ ¬(x >?

∅ y)). The first constrained equality (f(y) = b ‖ (x =?
∅ a) ∧ (x >?

∅ y)) can be
simplified again; for instance, we obtain after n steps:

(f(yn) = b ‖ a >?
∅ y >

?
∅ · · · >?

∅ yn).

Let us consider now restrictions of Definition 21.6 that are used in practice.
• If the formula F1 is reducible by a constrained rewrite rule (l → r ‖ c), there exists a match σ that

satisfies also c. All formulas schematized by (F1 ‖ c1) are reducible by this rule and there is no rest in such
a simplification.

Example 21.9 Let us consider the simplification of (a ∗ b = z ‖ a ∗ z =?
AC a ∗ b) by constrained rewriting

with (x ∗ a → y ‖ x ∗ y =?
AC a ∗ b) and the substitution σ = {x 7→ b, y 7→ a} which is both a match

and a solution of the constraint. Then the simplification produces the constrained equality: (a = z ‖
(a ∗ z =?

AC a ∗ b)).

• If simplification is performed by matching l to a subterm of F1 with a substitution σ, variables from
the formula F1 are not instantiated. Then we can define F2 = F1[σ(d)]ω , c2 = c1 ∧ σ(c) and c′2 = c1 ∧
∀Var(c)−Var(l), ¬σ(c). In the case where the simplifying rule satisfies in addition Var(c) ⊆ Var(l), we get
c2 = c1 ∧ σ(c) and c′2 = c1 ∧ ¬σ(c).

Example 21.10 Let us consider the simplification of (a ∗ b = z ‖ a ∗ z =?
AC a ∗ b) by matching

(x ∗ a → y ‖ x ∗ y =?
AC a ∗ b) with the substitution σ = {x 7→ b}. Then the simplification produces

the constrained equality: (y = z ‖ (a ∗ z =?
AC a ∗ b) ∧ (b ∗ y =?

AC a ∗ b)) and the rest (a ∗ b = z ‖
(a ∗ z =?

AC a ∗ b) ∧ (∀y, b ∗ y 6=?
AC a ∗ b)).

• Restricting further to the case where c is an inequality constraint (u >?
∅ v) and Var(c) ⊆ Var(l), c′2 =

c1∧¬σ(u >?
∅ v). Assuming that> is interpreted as a total ordering on terms, this negation can be transformed

to a disjunction: c′2 = c1 ∧ (σ(v >?
∅ u) ∨ σ(u =?

∅ v)).

Example 21.11 Let us consider the equality (0 + (x+ y) = x+ (y + 0) ‖ T). It is simplified by
(x+ 0 → 0 + x ‖ x >?

∅ 0) into: (0 + (x+ y) = x+ (0 + y) ‖ y >?
∅ 0) and (0 + (x+ y) = x+ (y + 0) ‖

0 >?
∅ y ∨ y =?

∅ 0).

This last notion of simplification is used in the joinability test proposed in [Pet90]. A constrained critical

pair (p = q ‖ c) is joinable if for every instance σ satisfying c, σ(p)
∗−→CR,A,L>

◦ ∗←→A
∗←−CR,A,L>

σ(q).
Joinability is ensured if sufficient conditions are satisfied [Pet90].

Proposition 21.1 A constrained equation (p = q ‖ c) is joinable if one of the following cases occurs: either

p
∗←→A q ; or c is equivalent to F ; or c is equivalent to c′ ∧ θ and (θ(p) = θ(q) ‖ c′) is joinable ; or

(p = q ‖ c) can be simplified to a set of constrained equations, each of which being joinable.

This joinability test is applied to constrained critical pairs and additional critical equations (l = r ‖ ¬c)
systematically added for each (l = r ‖ c). This leads to the following result.

Theorem 21.3 [Pet90] (CR,A,L>) is Church-Rosser modulo A on ground terms iff every critical equation
is joinable.

Example 21.12 Using the method described in [Pet90], Church-Rosser sets of constrained rules for semi-
lattices, boolean algebras and ternary boolean algebras. For instance, for a semi-lattice, the set of constrained
rewrite rules below is

(x ∗ y) ∗ z → x ∗ (y ∗ z) ‖ T
x ∗ y → y ∗ x ‖ x >?

∅ y
x ∗ (y ∗ z) → y ∗ (x ∗ z) ‖ x >?

∅ y
x ∗ x → x ‖ T
x ∗ (x ∗ y) → x ∗ y ‖ T

has two constrained critical pairs between the two first rules

x ∗ (y ∗ z) = (y ∗ x) ∗ z ‖ x >?
∅ y

x ∗ (y ∗ z) = z ∗ (x ∗ y) ‖ x ∗ y >?
∅ z

that are proved joinable.

January 28, 2006 rewriting solving proving

272 Completion with constraints

The technique of constrained completion modulo A has been successfully applied to theories involving
commutativity, associativity and identity axioms (ACIdentity for short).

Example 21.13 A set of constrained rules with the Church-Rosser modulo ACIdentity property, for a
commutative group is computed with this method from the only initial equality (x+ (−x) = 0 ‖ T).
Axioms are

x+ y = y + x

(x+ y) + z = x+ (y + z)

x+ 0 = x

The produced set of constrained rewrite rules is

x+ (−y) + y → x ‖ T
−(−x) → x ‖ T
−(x+ y) → (−x) + (−y) ‖ x 6=?

ACIdentity 0 ∧ y 6=?
ACIdentity 0

Other examples of theories are handled in [BPW89]: commutative ring with unit, Boolean algebra, group
or ring homomorphism, distributive lattice. Comparisons of step size of derivations, run times, number and
symmetry of critical pairs are also considered.

21.5 Conclusions

We have shown how constraints help to describe completion procedures in a precise way and to improve
their efficiency. Although we focussed here on rewriting and completion with constraints, the formalism of
deduction with constraints goes much beyond the pure equational case [KKR90]. Several examples have been
developed in first-order logic. The notion of constrained resolution has already been studied for equational
constraints in the empty theory. Caferra and Zabel [CZ90] use it in a procedure which is able to refute or to
generate some kind of models when they exist. Buntine and Bürckert [BB89] also noticed that constrained
resolution improve the efficiency of theorem provers, for instance by preventing from the generation of tau-
tologies, an idea further developed in [Bür90]. Several other examples have been developed and implemented
in equational or first-order logic, using in particular the systems Datac [Vig93] and Saturate [NR94]. The
remaining important problems are to incorporate a powerful simplification mechanism and to study its in-
teraction with constraint propagation. A special investigation effort has to be put on the design of strategies
for managing deduction rules in an efficient way.

January 28, 2006 rewriting solving proving

Chapter 22

Proofs by induction

22.1 Introduction

Another class of equational theorems is considered in this chapter, namely those theorems that hold in the
initial algebra of an equational theory. An additional difficulty encountered in this framework is that the
proof of such theorems needs an induction principle. A surprising feature of the completion procedure is
that it is powerful enough to be used as an inductive theorem prover by applying the proof by consistency
method [KM87]. The methods presented here do not require the explicit expression of an induction principle.
This is why they are called implicit induction methods.

The general principle is as follows: Let R be a ground convergent rewrite system that presents the theory
E. An equational theorem (t = t′) holds in the initial algebra of E iff the completion of R ∪ {t = t′}
does not derive an inconsistency. Roughly speaking, the discovery of an inconsistency witnesses the fact
that the two sets of equalities R and R ∪ {(t = t′)} do not define the same initial algebra. According to
different authors, the detection of an inconsistency may change. In 1980, in work of Musser [Mus80] and
independently Goguen [Gog80], an inconsistency is the equality between boolean terms (true = false). This
assumes an axiomatization of booleans and an equality predicate eqs for each sort of data s. This also needs
that any expression eqs(t, t

′) reduces either to true or to false.

In 1982, Huet and Hullot showed how the notion of constructors (function symbols on which data are
built) allows dropping the requirements about the equality predicate [HH82], provided there is no relation
between constructors. An inconsistency is then just an equality between terms built only with constructors.

In 1986, Jouannaud and Kounalis, following previous ideas of Dershowitz [Der83b] and Rémy [Rém82],
introduced the important concept of ground reducibility [JK86b], which allows handling relations between
constructors. In their approach, an inconsistency is an equality between two irreducible ground terms.

In 1988, Bachmair adapted an unfailing completion procedure to produce a procedure for proof by
consistency that is refutationally complete [Bac88]. His method avoids two drawbacks of the previous ones:
first, it does not fail with a non-orientable equality, which was a case for which nothing could be concluded in
other methods. Second, inductive proofs are not concerned with the production of a (ground) Church-Rosser
set of rules, which was obtained as a side effect in previous approaches. Following Fribourg [Fri86], Bachmair
proposed a linear proof method that considerably reduces the number of equalities to be deduced.

A lot of work has been devoted to decreasing the number of necessary superpositions and avoiding
divergence of the above mentionned procedures, including [Küc89, BK89, Fri86, Gra89, HK88]. A comparison
between completion techniques and direct induction as performed in the Boyer-Moore or in the CLAM
systems is done in [BBH92].

In 1990, another major step was performed by formalizing the rewriting induction method that does not
require confluence nor ground confluence of the rewrite system [KR90, Red90]. The method gives a sufficient
condition for proving inductive theorems. In case where confluence is retained, the method is refutationally
complete.

This chapter gives an account of several approaches to automated inductive theorem proving.

22.2 Many-sorted specifications

We slightly generalise the algebraic framework of previous chapters by introducing the notion of sorts for
classifying terms, as in Section 2.5 of Chapter 2.

January 28, 2006 rewriting solving proving

274 Proofs by induction

Let us briefly remind the basic concepts. A many-sorted signature Σ is given by a (denumerable) set of
sorts S and a (denumerable) set of function symbols F with ranks. A function f with arity w = s1 . . . sn ∈ S∗
and co-arity (or value sort) s is written f : w 7→ s. Variables are also sorted and x : s means that variable x
has sort s. Xs denotes a denumerable set of variables of sort s and X =

⋃
s∈S Xs is the set of many-sorted

variables. Many-sorted terms are built on many-sorted signatures and classified according to their sorts.
The set of terms of sort s, denoted T (Σ,X)s is the smallest set containing Xs and any constant a : ε 7→ s
such that f(t1, . . . , tn) is in T (Σ,X)s whenever f : s1 . . . sn 7→ s and ti ∈ T (Σ,X)si

for i ∈ [1..n]. The set of
many-sorted terms T (Σ,X) is the family {T (Σ,X)s|s ∈ S}.

Many-sorted algebras have carriers corresponding to each sort and operations with sorted arguments.
Given a many-sorted signature Σ, a Σ-algebra A consists of a family {As|s ∈ S} of subsets of A, called the
carriers of A, and a family of operations fA : As1 × . . .×Asn

7→ As, associated to each function f ∈ Σ such
that f : s1, . . . , sn 7→ s.

Substitutions are defined as mappings σ from sorted variables to sorted terms such that if x : s then
σ(x) ∈ T (Σ,X)s. They induce Σ-homomorphisms on the Σ-algebra of many-sorted terms. Equalities are
built from many-sorted terms.

A specification, denoted SP = (Σ, E) is given by a many-sorted signature Σ, and a set E of universally
quantified equalities (∀X, t = t′) where V(t) ∪ V(t′) ⊆ X . (The quantification may be omitted when X =
V(t) ∪ V(t′)).

A specification SP = (Σ, E) actually describes a class of algebras, namely the class of Σ-algebras satisfying
the equalities E, denoted ALG(SP). ALG(SP) with SP -homomorphisms is a category also denoted by
ALG(SP).

Deduction rules for equational deduction given in Figure 2.1 of Chapter 2 generalize to the many-sorted
framework provided there is no empty sort. A precise analysis of the possible problems that may arise when
this hypothesis is not satisfied can be found in [MG85]. So in the following, only models with non-empty
sorts are considered. This means that for any model A and any s ∈ S, As is a non-empty set.

Let
∗←→E denote the replacement of equals by equals on T (Σ,X) which is correct and complete for

deduction in ALG(SP):

t
∗←→E t′ iff ∀A ∈ ALG(SP),A |= (∀X, t = t′).

The class ALG(SP) has an initial algebra denoted by T (Σ)/E or by TSP . T (Σ)/E is built as the quotient

algebra of the ground term algebra T (Σ) by the congruence
∗←→E generated by E.

22.3 Inductive theorems and consistency

Inductive theorems are equalities that hold in the initial algebra, which means that for all assignments of
variables by ground terms, we get equal ground terms.

Definition 22.1 An equality (t = t′) is an inductive theorem of E if for any ground substitution σ,

σ(t)
∗←→E σ(t′).

The inductive theory of E, denoted by ITh(E), is the class of equalities (t = t′) valid in T (Σ)/E.

Notation: This is denoted (t = t′) ∈ ITh(E) or T (Σ)/E |= (t = t′) or E |=ind (t = t′).
The inductive theory of E includes the equational theory of E, but this inclusion is in general strict. For

instance, associativity and commutativity of + on integers are not equational consequences of the theory E
that defines + on integers built with the constant 0 and the successor function s. Equational theories that
coincide with their inductive theories are called ω-complete and are studied in [Hen77, Tar68, Tay79, Hee86,
LLT90].

In what follows, we assume that E is presented by a ground convergent rewrite system R. The results
also hold for an ordered rewrite system (R,>) which is ground Church-Rosser with respect to the reduction
ordering >.

Remember that this means that R satisfies the following properties:

1. the congruences
∗←→E and

∗←→R coincide on ground terms,

2. any rewriting sequence issued from a ground term t terminates,

3. for any ground terms t and t′, t
∗←→R t

′ iff t
∗−→R t

′′ ∗←−R t′ for some ground term t′′.

Then different characterizations of an inductive theorem can be given:

January 28, 2006 rewriting solving proving

22.4 Ground reducibility 275

Proposition 22.1 Assume that E is presented by a ground convergent rewrite system R. The following
statements are equivalent:

• (t = t′) is an inductive theorem of E.

• for any ground substitution σ, σ(t)
∗←→E σ(t′).

• for any ground substitution σ, σ(t)
∗←→R σ(t′).

• for any ground substitution σ, σ(t) ↓R= σ(t′) ↓R.

• ∗←→R and
∗←→R∪{t=t′} coincide on T (Σ).

• T (Σ)/
∗←→R and T (Σ)/

∗←→R∪{t=t′} are isomorphic.

Any of these equivalent statements will be freely used in what follows. We shall use the word conjecture
to denote a theorem to prove or to refute in the initial algebra.

Definition 22.2 A conjecture is an implicitely universally quantified equality. A set of conjectures C is
consistent with R (or E) if all equalities of C are inductive theorems of R (or E). Otherwise C is said
inconsistent.

Consistency in this sense is not decidable. In order to find an operational concept, let consider necessary
conditions for being an inductive theorem:

Proposition 22.2 Let > be a reduction ordering, R a ground convergent rewrite system included into >
and (t = t′) an inductive theorem of R. Then

1. if t > t′, then for any ground substitution σ, σ(t) is R-reducible.

2. for any ground substitution σ, such that σ(t) 6= σ(t′), either σ(t) or σ(t′) is R-reducible.

Proof: 1. Assume that t > t′ and σ(t) is R-irreducible. Then for any ground substitution σ, σ(t)
∗←→R

σ(t′), so σ(t)
∗←−R σ(t′) and σ(t′) ≥ σ(t). This contradicts the fact that t > t′ implies σ(t) > σ(t′).

2. By definition, for any ground substitution σ, σ(t) ↓R= σ(t′) ↓R. If there exists a ground substitu-
tion σ such that σ(t) and σ(t′) are irreducible and σ(t) 6= σ(t′), this again yields a contradiction.

2

The concept of ground reducibility is deduced from this result.

22.4 Ground reducibility

Ground reducibility is first defined for a term. It amounts to check reducibility of all ground instances.

Definition 22.3 Given a ground convergent rewrite system R, a term t is ground reducible with R if all its
ground instances are R-reducible.

The notion of ground reducibility then extends to equalities.

Definition 22.4 Given a ground convergent rewrite system R, an equality (t = t′) is ground reducible with
R if for any ground substitution σ such that σ(t) 6= σ(t′), either σ(t) or σ(t′) is R-reducible.

Example 22.1 Consider the following signature:

sort Int
0 : 7→ Int
succ : Int 7→ Int

and the rewrite system

succ(succ(0)) → 0.

The term succ(succ(x)) is ground reducible, but the term succ(x) is not.

January 28, 2006 rewriting solving proving

276 Proofs by induction

Proposition 22.3 [KNZ87, Pla85] Ground reducibility is decidable for finite rewrite systems.

However deciding ground reducibility is in exponential time even for left-linear rules. Algorithms for
deciding ground reducibility in the case of left-linear rules have been proposed, for instance in [JK86b,
KNZ87, Bun87, Kuc88, NW83]. The general case is considered in [Der85a] and in [Kou85]. The former
defines a test set by instantiating the generic term f(x1, ..., xn) by ground substitutions in a finite set. The
number of substitutions to check is bounded by a number that depends on the maximal depth of left-hand
sides. The latter constructs a smaller test set, computed by repeated unification of f(x1, ..., xn) with the left-
hand sides. Another decision method is obtained by reducing ground reducibility to the emptiness problem
of the language describing the ground normal forms and produced by a conditional tree grammar [Com88a].
Ground reducibility for a class rewrite system R/E is undecidable when E is a set of associative and
commutative axioms [KNZ87] but is decidable when R is left-linear [JK86a].

In order to illustrate a test for ground reducibility, we restrict to the simpler case of left-linear rules and
describe the test given in [JK86b].

The goal is to exhibit a finite set of substitutions S such that a term is ground reducible iff all its instances
by substitutions in S are reducible. In the case of left-linear rules, the idea to construct S is that left-hand
sides of rules have a finite depth which bounds the number of substitutions to be tested.

Some preliminary notions are needed first. The length of a term t is the maximal size of positions ω in
Dom(t). Let d = depth(R) be the maximal depth of left-hand sides of rules in R.

The top of a term t at depth i is a term defined by:
top(t, i) = t if depth(t) < i
top(f(t1, ..., tn), 0) = f(x1, ..., xn) where xi are new variables
top(f(t1, ..., tn), i) = f(top(t1, i− 1), ..., top(tn, i− 1))
for any symbol f ∈ F .

Example 22.2

top(f(g(a, b), h(h(c))), 0) = f(x1, x2)

top(f(g(a, b), h(h(c))), 1) = f(g(x1, x2), h(x3))

top(f(g(a, b), h(h(c))), 2) = f(g(a, b), h(h(x)))

top(f(g(a, b), h(h(c))), 3) = f(g(a, b), h(h(c)))

Given a set of rewrite rules R of depth d, let

S(R) = { top(t0, d) | t0 is an R−irreducible ground term }

For practical reasons, variables in terms of S(R) are assumed distinct, which is always possible by renaming
them: ∀t, t′ ∈ S(R), V(t) ∩ V(t′) = ∅.

Theorem 22.1 [JK86b] A term t is ground reducible by a left-linear rewrite system R iff all its instances

{σ(t) | ∀σ : V(t) 7→ S(R)},

obtained by substitution of terms in S(R) to variables of t, are reducible by R.

Proof: [JK86a, JK89].

• Assume that all instances of t obtained by substitution of terms in S(R) to variables of t, are
reducible by R. For any ground substitution σ′, if σ′ is not R-normalized, then σ′(t) is R-reducible.
Otherwise, let define for any variable x of t, σ(x) = top(σ′(x), d). Then σ ∈ S(R) and σ(t) is
R-reducible by hypothesis. Since σ′ is an instance of σ, σ′(t) is also R-reducible.

• Assume now that t is ground reducible. Given σ ∈ S(R), let us define for any variable xi of t,
ti = σ(xi). Then there exists t′i an R-irreducible instance of ti such that ti = top(t′i, d). Finally
let us define σ′ such that σ′(xi) = t′i. Since t is ground reducible, σ′(t) is R-reducible by a rewrite
rule l → r, at some non-variable position ω in t because σ′ is normalized. But for any position
υ in l, the top symbols of l|υ, σ(t)|ω.υ and σ′(t)|ω.υ are the same, because of the definition of d
and the fact that ti = top(t′i, d). Now let W be the set of variable occurrences in l and for any
variable y at occurrence υ ∈ W define σ′′(y) = σ(t)|ω.υ. Note that σ′′ is well-defined because y
has only one occurrence in l. So σ(t)|ω = σ′′(l) and so σ(t) is R-reducible.

2

January 28, 2006 rewriting solving proving

22.5 Inductive completion 277

The set S(R) is computed from the limit of a stationary sequence of sets Si defined as follows:

Si = { top(t0, d) | ∀t0 R− irreducible ground term s.t. depth(t0) ≤ i }

Then S(R) = Sk as soon as Sk = Sk+1 for some k.

Example 22.3 Consider the following signature:

sort Int
0 : 7→ Int
succ : Int 7→ Int
+ : Int Int 7→ Int

Let R be the set of left-linear rules:

∀x : Int, x+ 0 → x

∀x, y : Int, x+ succ(y) → succ(x+ y).

The depth of R is d = 2.

S0 = {0}
S1 = {0, succ(0)}
S2 = {0, succ(0), succ(succ(x1))}
S3 = S2

In order to check that the term (x+ y) + z is ground reducible, every ground substitution from {x, y, z}
to {0, succ(0), succ(succ(x1))} has to be applied to (x+ y)+ z and it is easy to check that each ground term
so obtained is reducible.

A more general, but more complex test for checking ground reducibility without the restriction of left-
linearity on rules can be found in [Kou90].

22.5 Inductive completion

A first approach to use ground reducibility in the automatization of inductive theorem proofs is based on
the idea that enriching R with rules whose left-hand sides are ground reducible does not change the normal
forms for R.

Lemma 22.1 Let (l → r) be a rewrite rule such that l is ground reducible with R. Then a ground term t
is in normal form for R iff t is in normal form for R ∪ {l→ r}.

Proof: If t is a ground term in normal form for R but not for R∪{l→ r}, t has a subterm that is a ground
instance of l, so that is reducible by R, which is impossible.

The converse is obvious. 2

It follows that R and R ∪ {l→ r} have the same inductive theory.

Theorem 22.2 Let R be a ground convergent rewrite system and (l → r) be a rewrite rule such that l is
ground reducible with R. If R ∪ {l→ r} is ground convergent, then (l = r) is an inductive theorem of R.

Proof: Let R′ = R∪ {l→ r}. For any ground substitution σ, σ(l) ↓R′= σ(r) ↓R′ . Since R is contained into

R′ and R′ is confluent, σ(l)
∗−→R σ(l) ↓R ∗−→R′ σ(l) ↓R′ and σ(r)

∗−→R σ(r) ↓R ∗−→R′ σ(r) ↓R′ . But,

using Lemma 22.1, σ(l) ↓R= σ(l) ↓R′ and σ(r) ↓R= σ(r) ↓R′ . So σ(l)
∗←→R σ(r). 2

In general there is no reason for R ∪ {l → r} to be confluent. A completion procedure must be applied.
The only difference with standard completion is to check that when a rule is added, its left-hand side has to
be ground reducible with the initial convergent set of rewrite rules R0.

January 28, 2006 rewriting solving proving

278 Proofs by induction

Orient P ∪ {p = q}, R 7→7→ P,R ∪ {p→ q}
if p > q & p ground reducible with R0

Deduce P,R 7→7→ P ∪ {p = q}, R
if (p, q) ∈ CP (R)

Simplify P ∪ {p = q}, R 7→7→ P ∪ {p′ = q}, R
if p→R p

′

Delete P ∪ {p = p}, R 7→7→ P,R
Compose P,R ∪ {l→ r} 7→7→ P,R ∪ {l→ r′}

if r →R r
′

Collapse P,R ∪ {l→ r} 7→7→ P ∪ {l′ = r}, R
if l→g→d

R l′ & l → r >> g → d

Figure 22.1: Standard inductive completion

22.5.1 Transition rules for inductive completion

Let P be a set of equalities (quantified pairs of terms), R0 the initial ground convergent rewrite system,
R be the current rewrite system, and > a reduction ordering that contains R0. The inductive completion
procedure is expressed using the set of transition rules IC presented in Figure 22.1.

Note that R0 is used to check ground reducibility, but critical pairs are computed with R.
The correctness result presented below relies on the two following lemmas.

Lemma 22.2 If (P0, R0) 7→7→(P1, R1) 7→7→ is a derivation such that

• P∞ = ∅, R∞ is reduced and

• CP (R∞) is a subset of P∗

then for any ground terms t, t′, t
∗←→R0∪P0 t

′ implies t ↓R∞= t′ ↓R∞ .

Proof: As for the proof of the completion procedure, it is shown that any equational proof of (t = t′) is
reduced to a rewrite proof using R∞. 2

The next lemma proves that ground terms in normal form for R0 remain in normal form at each step of
the inductive completion procedure. This justifies the restriction to R0 in the test of ground reducibility of
the left-hand side of a new rule.

Lemma 22.3 For any ground term t, t is R∞-reducible iff t is R0-reducible.

Proof: Assume first that t is R0-reducible to t′. Then t > t′. Using Lemma 22.2, t ↓R∞= t′ ↓R∞= t′′. But
t 6= t′′, otherwise t ≤ t′, which is impossible.

If t is R∞-reducible, either t is reducible by a persisting rule of R0, or t is reducible by a rule (l → r)
added during the inductive completion procedure. But then l is ground reducible using R0 and thus t
contains a subterm R0-reducible. 2

If a successful derivation starting from (P0, R0) is found, R0 and R∞ define the same normal forms on
ground terms; this implies that each equality of P0 holds. Moreover if the process generates a rule whose
left-hand side is not ground reducible by R0, this gives the inconsistency.

Theorem 22.3 Let R0 be the initial ground convergent rewrite system presenting the theory E, P0 be the
set of conjectures to be proved, and > be a reduction ordering that contains R0. If (P0, R0) 7→7→(P1, R1) 7→7→
is a derivation such that

• P∞ = ∅, R∞ is reduced and

• CP (R∞) is a subset of P∗

then R∞ is Church-Rosser on ground terms, R∞ is terminating and P0 is consistent with R0. If
(P0, R0) 7→7→(P1, R1) 7→7→(Pi, Ri) is a derivation such that Pi contains an equality l = r with l > r and
l non ground reducible with R0, then P0 is inconsistent with R0.

January 28, 2006 rewriting solving proving

22.5 Inductive completion 279

Proof: For any equality (g = d) in P0 and any ground substitution σ, σ(g)
∗←→P0 σ(d). Using Lemma 22.3,

both t = σ(g) ↓R0 and t′ = σ(d) ↓R0 are also inR∞-normal form and using Lemma 22.2, t ↓R∞= t′ ↓R∞ .

Thus t = t′ and σ(g)
∗←→R0 σ(d).

If an equality (l = r), with l > r and l non ground reducible with R0, is generated, then there exists a
ground substitution σ such that σ(l) is R0-irreducible. By Proposition 22.2, (l = r) is not an inductive
theorem. 2

22.5.2 An inductive completion procedure

An inductive completion procedure can be derived from the standard completion procedure. An induc-
tive completion procedure is a program that takes a finite set of equalities P0, a convergent rewrite sys-
tem R0 and a reduction ordering > that contains R0, and that generates from (P0, R0) a derivation
(P0, R0) 7→7→(P1, R1) 7→7→, using the transition rules in IC.

An inductive completion procedure is presented in Figure 22.2.

PROCEDURE INDUCTIVE-COMP (P, R, >)

IF P is not empty

THEN choose a pair (p,q) in P ; P := P-{(p,q)};

p’:=R-normal form(p); q’:=R-normal form(q);

CASE p’ = q’ THEN R := INDUCTIVE-COMP(P, R, >)

p’ > q’ IF p’ ground reducible with R0

THEN l:=p’; r:=q’;

(P,R) := SIMPLIFICATION(P, R, l -> r);

R := INDUCTIVE-COMP(P, R U {l -> r}, >)

ELSE STOP with DISPROOF

END IF

q’ > p’ IF q’ ground reducible with R0

THEN l:=q’; r:=p’;

(P,R) := SIMPLIFICATION(P, R, l -> r);

R := INDUCTIVE-COMP(P, R U {l -> r}, >)

ELSE STOP with DISPROOF

END IF

ELSE STOP with FAILURE

END CASE;

ELSE IF all rules in R are marked

THEN RETURN R; STOP with SUCCESS

ELSE Choose an unmarked rule l -> r fairly;

P := CRITICAL-PAIRS (l -> r,R);

Mark the rule l -> r in R;

R := INDUCTIVE-COMP(P,R,>)

END IF

END IF

END INDUCTIVE-COMP

Figure 22.2: A standard completion procedure

Example 22.4 Let consider the following specification of integers modulo 2 defined by the signature:

sort Int
0 : 7→ Int
succ : Int 7→ Int

and the rewrite system R0:

succ(succ(0)) → 0.

Assume that the equality to be proved is

∀x : Int, succ(succ(x)) = x.

January 28, 2006 rewriting solving proving

280 Proofs by induction

The inductive completion procedure acts as follows: The equality is oriented into a rule

succ(succ(x))→ x

alfter checking that the term succ(succ(x)) is ground reducible. Since S(R0) = {0, succ(0)}, this is checked
by verifying that the two terms {succ(succ(0)), succ(succ(succ(0)))} are both reducible by R0. Then the
new rule is added, simplifies the rule in R0 and the process terminates, because there is only one critical pair
of the new rule on itself that is already convergent.

In order to improve efficiency of the inductive completion procedure and to avoid some cases of divergence,
it is sometimes possible to take advantage of the existence of constructors, that is a subset C of Σ such that
T (C) is exactly the set of normal forms of T (Σ). As a consequence, note that any term of T (C) is irreducible
by R.

Definition 22.5 A function symbol f ∈ Σ of arity n is a constructor if f(x1, ..., xn) is not ground reducible
by R.

A function symbol f ∈ Σ of arity n is a defined function if f(x1, ..., xn) is ground reducible by R.

Within this context, checking ground reducibility becomes trivial: a term t is inductively reducible iff it
contains a defined function symbol.

Existence of constructors may be taken into account during completion by adding to the set of transition
rules IC presented in Figure 22.1, the two transition rules in Figure 22.3.

Contradict
P ∪ {f(s1, ..., sn) = g(t1, ..tm)}, R
7→7→
Disproof
if f ∈ C & f(s1, ..., sn) > g(t1, ..tm)
Decompose
P ∪ {f(s1, ..., sn) = f(t1, ..tn)}, R
7→7→
P ∪ {(si = ti), i = 1, ..., n}, R
if f ∈ C

Figure 22.3: Optimization rules

However, even with this kind of improvement, the inductive completion procedure suffers from the fol-
lowing drawbacks.

• Inductive theorems, such as commutativity (of addition on integers, for instance), for which no ori-
entation is possible are not handled by this method. The inductive completion procedure terminates
with failure and nothing can be concluded about validity of the conjectures. Note however that some
solutions have been proposed in [Kir84b, JK86b] to handle anyway such non-orientable theorems, using
class rewriting and completion modulo a set of equalities.

• When interested in proofs of inductive theorems, there is no need to achieve the Church-Rosser property
on ground terms. This means that very often too many critical pairs are computed, much more than
necessary. In some cases, inefficiency and even divergence can result from that overhead.

• Moreover the set of rules R∞, convergent on ground terms, returned by the procedure is in general
different from R0. For repeated applications of inductive proofs, this may be disturbing.

22.6 Inductive proof by consistency

By contrast to the previous method, the proof by consistency procedure, presented hereafter, provides several
advantages.

• It avoids failure, because it never attempts to orient equalities into rewrite rules. In this way, it is close
from an unfailing completion method.

January 28, 2006 rewriting solving proving

22.6 Inductive proof by consistency 281

• It keeps the original set of rewrite rules unmodified.

• It avoids many unnecessary critical pairs computation, and in this respect can be called a linear
procedure, such as in [Fri86].

• It gives the possibility to add some lemmas, for instance given by the user, or coming from another
proof. Such adjunctions may help the termination of the process.

The method developed hereafter consists of transforming a set of initial conjectures and trying to generate
a provable inconsistency. Intuitively, a provable inconsistency is a minimal proof which implies an inconsis-
tency. The definition of a provable inconsistency comes from Proposition 22.2. This is an operational notion,
defined from ground reducibility.

Definition 22.6 Let > denote a reduction ordering that contains R. A set of equalities C is provably
inconsistent if it contains an equality (s = t) which satisfies either s > t and s is not ground reducible, or
(s = t) is not ground reducible.

The property of being provably inconsistent is decidable because ground reducibility is decidable.
Clearly, if C is provably inconsistent, it is inconsistent with R: if C is provably inconsistent, it contains

a provably inconsistent equality (s = t). According to Definition 22.6, there exists a ground substitution σ,
that can be assumed R-normalized without lost of generality, such that

• either σ(s)←→C σ(t)
∗−→R t

′ with σ(s) irreducible and σ(s) 6= t′ since σ(s) > σ(t) ≥ t′,

• or σ(s)←→C σ(t) with σ(s) and σ(t) irreducible and σ(s) 6= σ(t).

In both cases, s = t is not an inductive theorem of R.
If C is inconsistent, but not provably inconsistent, there exists an equality (s = t) ∈ C and a R-normalized

substitution σ such that

s′
∗←−R σ(s)[σ(r)] ←R σ(s)[σ(l)] ←→C σ(t)

∗−→R t
′

with s′ 6= t′. This proof can be transformed into a smaller proof (for some ordering defined later on)

s′
∗←−R σ(s)[σ(r)] ←→C′ σ(t)

∗−→R t
′

with s′ 6= t′, in which a reduction step has been eliminated and the set of conjectures has been enriched by an
equality (τ(s[r]) = τ(t)), where τ is a most general unifier of l with some subterm of s. This transformation
of C into C′ is done via a critical pair computation of rules of R into conjectures of C.
Notation: Let CP (R,C) denote the set of critical pairs obtained by superposition of a rule in R into an
equality of C.

22.6.1 Transition rules for proof by consistency

Let C be a set of conjectures (equalities), R the implicit ground convergent rewriting system, L be a set
of inductive lemmas, and > a reduction ordering that contains R. The proof by consistency procedure is
expressed by the set CP of transition rules presented in Figure 22.4.

Thanks to transition rule Induce, sets of axioms like commutativity or associativity and commutativity,
can be put in L, once they are proved valid, either by this method or by another one. They can then be
used in the simplification process, through application of the transition rule Simplify, without the need of
equational matching or unification.

Note also that, once a lemma has been proved valid, it can be deleted from C using Delete and put in
L using Induce. Then it may be used to simplify other conjectures.

As usual, let C∗ denote the union of generated conjectures and C∞ denote the set of persisting conjectures.
A first result states that consistency is preserved by applying each transition rule.

Proposition 22.4 Let (L,C) 7→7→(L′, C′). Then C is consistent with R iff C′ is consistent with R.

Proof: Let (s = t) be an equality in the difference C −C′ or C′−C. We need to prove that for any ground
substitution σ, σ(s) ↓R= σ(t) ↓R. Let us examine the different transition rules:

1. Deduce: C′−C = {(p = q) ∈ CP (R,C)}, so ∃u, p←R u→C q. Then for any ground substitution
σ, σ(p)←R σ(u)→C σ(q). So σ(p) ↓R= σ(u) ↓R= σ(q) ↓R.

January 28, 2006 rewriting solving proving

282 Proofs by induction

Deduce L,C 7→7→ L,C ∪ {p = q}
if (p, q) ∈ CP (R,C)

Induce L,C 7→7→ L ∪ {p = q}, C
if (p = q) ∈ ITh(R)

Delete L,C ∪ {p = q} 7→7→ L,C
if (p = q) ∈ ITh(R)

Simplify L,C ∪ {p = q} 7→7→ L,C ∪ {p′ = q}
if p > p′ & p

+←→R∪L p
′

Compose L,C ∪ {p = q} 7→7→ L,C ∪ {p′ = q}
if p←→g=d

C p′ & p A g > d

Figure 22.4: Proof by consistency rules

2. Induce: Then C′ = C.

3. Delete: C − C′ = {(p = q)|(p = q) ∈ ITh(R)}. Then for any ground substitution σ, σ(p) ↓R=
σ(q) ↓R by definition of ITh(R) and because R is ground convergent.

4. Simplify: C − C′ = {(p = q)} and C′ − C = {(p′ = q)}. Since p
+←→R∪L p′, then ∀σ ground,

σ(p)
+←→R∪L σ(p′), so σ(p) ↓R= σ(p′) ↓R.

Now if C′ is consistent with R, p
+←→R∪L p

′ ←→C′ q implies ∀σ ground, σ(p)
∗←→R σ(p′)

∗←→R

σ(q).

If C is consistent with R, p′
+←→R∪L p←→C q implies ∀σ ground, σ(p′)

+←→R σ(p)
∗←→R σ(q).

5. Compose: C − C′ = {(p = q)} and C′ − C = {(p′ = q)}. Since p ←→C p′, using an equality in
C ∩ C′, then ∀σ ground, σ(p) ↓R= σ(p′) ↓R, because σ(p)|ω = α(g), σ(p′)|ω = α(d), (g = d) ∈ C
so α(g)

∗←→R α(d).

Now if C′ is consistent with R, p←→C p′ ←→C′ q implies ∀σ ground, σ(p)
+←→R σ(p′)

∗←→R σ(q).

If C is consistent with R, p′ ←→C p←→C q implies ∀σ ground, σ(p′)
+←→R σ(p)

∗←→R σ(q).

2

The functionality of a proof by consistency procedure is as follows:

• If the starting set of conjectures C0 is inconsistent, then the procedure will generate a provably incon-
sistent set Ci.

• If the procedure reaches some step i where all equalities in Ci have been marked (which means that
all critical pairs of R on all equalities have been computed) and no provably inconsistent Cj with j ≤ i
has been detected, then all equalities in

⋃
j≤i Cj are inductive theorems of R.

• The procedure may not terminate. In this case, adding new lemmas, for instance obtained by gener-
alization as in Boyer and Moore’s theorem prover, can make the process terminate.

The desired property for this procedure is actually refutation completeness: for any unsatisfiable conjec-
ture, there exist a derivation using the transition rules applied with an adequate strategy that will provide
a provable inconsistency.

Definition 22.7 A proof by consistency procedure is refutationally complete if from an inconsistent set of
conjectures C, it generates a derivation in which some Ci is provably inconsistent.

Provable inconsistencies may be reflected at the level of proofs by the notion of inconsistency witness
due to Gramlich [Gra89]. This leads to look at a proof by consistency procedure as a proof transformation
process, but restricted to a specific kind of proofs. Let us make this notion more precise.

Indeed if C is inconsistent, there exists an equality (s = t) ∈ C and a R-normalized substitution σ such
that

s′
∗←−R σ(s)←→C σ(t)

∗−→R t
′

with s′ 6= t′. Such a proof witnesses inconsistency.

January 28, 2006 rewriting solving proving

22.6 Inductive proof by consistency 283

Definition 22.8 Let C be a set of conjectures. An inconsistency witness for C is any proof on ground terms
of the form:

s′
∗←−R σ(s)←→C σ(t)

∗−→R t
′

with s′ 6= t′ and σ R-normalized.

More precisely, such proofs can be of two forms:

Definition 22.9 Let C be a set of conjectures.
An indirect inconsistency witness for C is any proof on ground terms of the form:

s′
+←−R σ(s)←→C σ(t)

∗−→R t
′

with s′ 6= t′ and σ R-normalized.
A direct inconsistency witness for C is any proof on ground terms of the form:

• either σ(s)←→C σ(t)
∗−→R t

′ with σ(s) irreducible and σ(s) 6= t′ since σ(s) > σ(t) ≥ t′,

• or σ(s)←→C σ(t) with σ(s) and σ(t) irreducible and σ(s) 6= σ(t).

An ordering on proofs is now defined and tailored to the inconsistency witnesses transformation process.
An elementary proof step is here a proof σ(p) ←→C σ(q). The complexity measure of this elementary

proof step is defined by:
c(σ(p), σ(q)) = ({σ(p)}, p, σ(q)) if p > q
c(σ(p), σ(q)) = ({σ(q)}, q, σ(p)) if q > p
c(σ(p), σ(q)) = ({σ(p), σ(q)}) otherwise

Let >′ be a simplification ordering that contains R and > (for instance the transitive closure of
(> ∪�sub)). Complexities of elementary proof steps are compared using the lexicographic combination,
denoted >ec, of the multiset extension >′mult of the simplification ordering for the first component, the
strict encompassement ordering A for the second component and the simplification ordering >′ for the third
one. Since both > and A are well-founded, so is >ec. The complexity of a non-elementary proof of the form

s′
∗←−R σ(s)←→C σ(t)

∗−→R t
′

is defined as c(σ(s), σ(t)).
For any other proof P , c(P) = max where max is a symbol taken to be maximal in >ec.
Let define the well-founded ordering on proofs by:

P >c P ′ if c(P) >ec c(P ′).

The following lemma states that any application of the transition rules does not increase the complexity
of proofs.

Lemma 22.4 Whenever (L,C) 7→7→(L′, C′) and P is a proof using R ∪C, then there is a proof using R ∪C′
such that P ≥c P ′.

Proof: Let P be a proof using R∪C. If c(P) = max, the conclusion is clearly satisfied. Otherwise, P is an
inconsistency witness

s′
∗←−R σ(p)←→C σ(q)

∗−→R t
′

with s′ 6= t′ and s′, t′ both irreducible.

The proof P ′ is found by looking at the transformation induced by each transition rule.

1. Deduce: If Deduce applies on C, P is again a proof in C′ ∪R, so P ′ = P .

2. Induce: If Induce applies, C is not modified, again P ′ = P .

3. Delete: If Delete modifies C, this means that (p = q) ∈ ITh(R), so s′ = t′, which is impossible.

4. Simplify: If Simplify modifies (p = q), since σ(p)
+←→R∪L σ(p′), σ(p) ↓R= σ(p′) ↓R= s′. Let

choose P ′ as
s′

∗←−R σ(p′)←→C σ(q)
∗−→R t

′.

Now c(P) is

January 28, 2006 rewriting solving proving

284 Proofs by induction

• if p > q, c(σ(p), σ(q)) = ({σ(p)}, p, σ(q)), which is strictly greater w.r.t. >ec than c(P ′) whose
first component is either {σ(p′)}, or {σ(q)}, or {σ(p′), σ(q)}, since p > p′.

• if q > p, c(σ(p), σ(q)) = ({σ(q)}, q, σ(p)), which is strictly greater w.r.t. >ec than c(P ′) =
({σ(q)}, q, σ(p′)), by looking at the third component, since q > p > p′.

• otherwise, c(σ(p), σ(q)) = ({σ(p), σ(q)}) which is strictly greater w.r.t. >ec than c(P ′) whose
first component is either {σ(p′)}, or {σ(q)}, or {σ(p′), σ(q)}, since p > p′.

5. Compose: If Compose modifies (p = q), let assume that σ(p)←→g=d
C σ(p′) and σ(p′) ↓R= s′′.

If s′′ 6= t′, let choose P ′ as
s′′

∗←−R σ(p′)←→C σ(q)
∗−→R t

′.

Now c(P) >ec c(P ′) with the same proof as for Simplify, since again p > p′.

If s′′ = t′, the previous proof is no more an inconsistency witness and another P ′ must be
chosen. Since p ←→g=d

C p′, there exists a subterm of σ(p) at some position ω which is τ(g) and
σ(p′) = σ(p)[ω ←↩ τ(d)]. Let g′ = τ(g) ↓R and d′ = τ(d) ↓R. Since s′ 6= t′, s′′ 6= s′ so g′ 6= d′. So
let choose P ′ as

g′
∗←−R τ(g)←→C τ(d)

∗−→R d
′.

Now c(P ′) = ({τ(g)}, g, τ(d)) since g > d. Then c(P) is

• if p > q, c(σ(p), σ(q)) = ({σ(p)}, p, σ(q)), which strictly greater w.r.t. >ec than c(P ′) because
either τ(g) is a strict subterm of σ(p) and then σ(p) >′ τ(g), or σ(p) = τ(g) and p A g.

• if q > p, c(σ(p), σ(q)) = ({σ(q)}, q, σ(p)), which strictly greater w.r.t. >ec than c(P ′), since
σ(q) > σ(p) ≥′ τ(g).
• otherwise, c(σ(p), σ(q)) = ({σ(p), σ(q)}) which strictly greater w.r.t. >ec than c(P ′) because

either σ(p) >′ τ(g), or σ(p) = τ(g) and p A g.

2

To assure transformation of inconsistency witnesses of a set C which is inconsistent but not provably
inconsistent, the notion of covering set is introduced.

Definition 22.10 C′ is a covering set for C with respect to R and > if

• C ⊆ ITh(R) iff C ∪ C′ ⊆ ITh(R).

• for every indirect inconsistency witness of C, there is a smaller (w.r.t. >c) inconsistency witness in
C ∪ C′.

The first condition in Definition 22.10 is motivated by the fact that it is not suitable to introduce arbitrary
new conjectures in C′ that have nothing to do with C.

Definition 22.11 A derivation (L0, C0) 7→7→(L1, C1) 7→7→ is fair if C∗ is a covering set for C∞.

A sufficient condition to satisfy the fairness hypothesis can be given:

Proposition 22.5 A derivation (C0, L0) 7→7→(C1, L1) 7→7→ is fair if CP (R,C∞) ⊆ C∗.

Proof: Assume that CP (R,C∞) ⊆ C∗.

• C∞ ⊆ ITh(R) if C∗ ∪ C∞ = C∗ ⊆ ITh(R) is true since C∞ ⊆ C∗.
Conversely, if C∞ ⊆ ITh(R), this means that C∞ is consistent with R, which is equivalent,
according to Proposition 22.4, to C0 consistent with R, and for any i ≥ 0, Ci consistent with R.
So C∗ is consistent with R.

• Let P be an indirect inconsistency witness of C∞

s′
+←−R σ(s)←→C∞ σ(t)

∗−→R t
′

with σ R-normalized. Then there exists a critical pair p = q of R into C∞ which by hypothesis
belongs to C∗, and a substitution τ such that σ(s) →R τ(p) and σ(t) = τ(q). So there exists an
inconsistency witness P ′ in C∗

u′
+←−R τ(p)←→C∗ τ(q)

∗−→R v
′

such that P >c P ′.

January 28, 2006 rewriting solving proving

22.6 Inductive proof by consistency 285

2

Proving that the proof consistency procedure acts as described relies on the following theorem and
proposition.

Theorem 22.4 Let R be the initial ground convergent rewrite system presenting the theory E, C0 be the
set of conjectures to be proved, and L0 a set of inductive lemmas of R. If C0 is inconsistent and if
(L0, C0) 7→7→(L1, C1) 7→7→ is a fair derivation, then some set Ci is provably inconsistent.

Proof: If C0 is provably inconsistent, then the result is proved. Else there exists a proof that some conjecture
s = t is inconsistent with R:

P0 : s′
∗←−R σ(s)←→C σ(t)

∗−→R t
′

such that s′, t′ irreducible and distinct.

We first prove that for any proof P of the form

s′
+←−R σ(s)←→Ci

σ(t)
∗−→R t

′

such that s′, t′ irreducible and distinct and t 6> s, for some i ≥ 0, there exists a proof P ′ in R ∪ Cj for
some j ≥ 0, such that c(P) >c c(P ′).
By looking at the proof of Lemma 22.4, this is true if s = t does not persist. If s = t persists,
fairness implies that C∗ is a covering set for s = t. So there exists an inconsistent ground proof
τ(p) = τ(q) with p = q ∈ Cj for some j ≥ 0 such that c(σ(s), σ(t)) >c c(τ(p), τ(q)). Let P ′ be the

proof u′
∗←−R τ(p) ←→Cj

τ(q)
∗−→R v′ where u′ and v′ irreducible. Since τ(p) = τ(q) is inconsistent,

u′ 6= v′. So c(P ′) = c(τ(p), τ(q)) and c(P) >c c(P ′).
Now from P0, we can construct a sequence P0,P1,P2, ... such that Pi is a proof using R ∪ Cji and
c(P0) >c c(P1) >c c(P2) >c Since >c is well-founded, this sequence is finite. So for some k > 0, Pk
is a proof of the form

• either σ(s)←→Cjk
σ(t)

∗−→R t
′ with σ(s) irreducible and σ(s) 6= t′ and s > t,

• or σ(s)←→Cjk
σ(t) with σ(s) and σ(t) irreducible and σ(s) 6= σ(t).

This implies that Cjk is provably inconsistent and yields the result. 2

Lemma 22.5 A set C of equalities is consistent with R iff C is a covering set for itself and is not provably
inconsistent.

Proof: If C is consistent with R, it is easy to check that it is a covering set for itself and it is not provably
inconsistent.

Conversely, assume that C is a covering set for itself and is not provably inconsistent. If there exists
an inconsistency in C, it is possible to find an indirect inconsistency witness and to construct an
infinite sequence of indirect inconsistency witnesses which is strictly decreasing w.r.t. >c. This yields
a contradiction to the well-foundedness of >c. 2

This lemma directly implies the following result:

Proposition 22.6 Let R be the initial ground convergent rewrite system presenting the theory E, C0 be
the set of conjectures to be proved, L0 a set of inductive lemmas of R, and (L0, C0) 7→7→(L1, C1) 7→7→ a fair
derivation. If there exists a step i such that Ci is a covering set for itself and is not provably inconsistent,
then

⋃
j≤i Cj is consistent with R.

Proof: According to Lemma 22.5, Ci is consistent with R and according to Proposition 22.4, each Cj for
j ≤ i is also consistent with R. 2

Note that, according to Proposition 22.5, Ci will be a covering set for itself if CP (R,Ci) ⊆
⋃
j≤i Cj .

Computation of covering sets is usually based on critical pairs, but it is not always necessary to compute
all critical pairs of R into C. In order to improve the efficiency of the proof by consistency procedure, several
results are useful [Bac87]:

• If an equality in C is orientable, then it is enough to superpose rules of R in the greater term of the
equality only. This case is actually the same as for inductive completion where such an equality is
always oriented. If both members of the equality are incomparable (neither g > d nor d > g), it is also
enough to superpose rules of R in any of the two sides g or d, provided both are ground reducible.

January 28, 2006 rewriting solving proving

286 Proofs by induction

• If an equality (c(t1, ..., tn) = c(t′1, ..., t
′
n)) with c a constructor is generated, and provided that no rule in

R applies on ground terms built only with constructors, the equality can be replaced by the system of
equalities {(ti = t′i)|i = 1, ..., n}. It is straightforward to adapt the transition rules given in Figure 22.3
to incorporate them with CP.

• If an equality is generated which is a variant of an already existing equality in C, it is useless to consider
it.

• If an equality t[u] = t[v] is generated and if u = v is already in C, then it is useless to consider the first
one, since Compose and Delete would apply and make it disappear.

• A last optimization is to restrict superpositions to some subterms that correspond intuitively to induc-
tion subterms. Occurrences of such subterms are called comprehensive sets of positions in [Bac87] and
sets of complete superpositions in [Fri86].

Definition 22.12 A position ω in a term t is said to be comprehensive with respect to R if t|ω is not
a variable and each instance by an irreducible ground substitution σ(t|ω) is an instance of a left-hand
side in R.

Example 22.5 Consider again the following signature:

sort Int
0 : 7→ Int
succ : Int 7→ Int
+ : Int Int 7→ Int

and the set R of rules:

∀x : Int, x+ 0 → x

∀x, y : Int, x+ succ(y) → succ(x+ y).

In the term t = x+ (y + z) the position 2 referring to the subterm y + z is comprehensive.

If ω is a comprehensive position in the term p, the set of all critical pairs obtained by superposing R
on the equality (p = q) at position ω in p is a covering set for (p = q).

22.6.2 A proof by consistency procedure

A proof by consistency procedure is any program which takes as inputs a ground convergent rewrite system
R, a reduction ordering that contains R, a set of inductive lemmas L and a set of conjectures C, and uses
the transition rules of IC to generate a derivation from (L,C).

The procedure IND-PROVE presented in Figure 22.5 implements the proof by consistency method where
R is implicit. It has three possible issues: success when the conjectures are valid, disproof when there exists
an inconsistency and it may not terminate and generate an infinite number of covering sets of conjectures.

The SIMPLIFICATION procedure computes simplified forms of l and r, using equalities in C, rules in R
and lemmas in L, according to transition rules Simplify and Compose.

The COVERING-SET procedure computes the necessary superpositions of R on the equality (l′ = r′). The
equality is marked whenever the necessary critical pairs with rules in R have been computed and added to
C.

Example 22.6 Let consider the specification

sort Int

0 : 7→ Int

succ : Int 7→ Int

∀x : Int, x+ 0 → x

∀x, y : Int, x+ succ(y) → succ(x+ y).

January 28, 2006 rewriting solving proving

22.6 Inductive proof by consistency 287

PROCEDURE IND-PROVE (C, L, >)

IF all equalities in C are marked

THEN STOP with SUCCESS

ELSE Choose an unmarked equality (l = r) fairly;

C := C-{(l=r)};

(l’=r’) := SIMPLIFICATION (l = r, C, L);

CASE l’=r’ in ITh(R) THEN IND-PROVE(C, L U {(l’=r’)}, >)

(l’= r’) is provably inconsistent THEN STOP with DISPROOF;

ELSE C := C U {(l’=r’)} U COVERING-SET (R,l’=r’);

Mark the equality (l’=r’) in C;

IND-PROVE(C, L, >)

END CASE

END IF

END IND-PROVE

Figure 22.5: A proof by consistency procedure

In order to prove associativity of +, let C = {x+(y+ z) = (x+ y)+ z} and chose the ordering such that
x+ (y + z) > (x + y) + z. Then it is enough to superpose R on x+ (y + z). This gives, by unifying (y + z)
and x+ 0, the critical pair x+ y = (x+ y) + 0, that is simplified into x+ y = x+ y and eliminated.

By unifying (y+ z) and x+ succ(y), the critical pair x+ (y+ succ(z)) = (x+ y) + succ(z) is found. It is
reduced to succ(x+ (y+ z)) = succ((x+ y) + z). Both terms are C-equivalent and this equality disappears.

Assume now that the ordering is chosen such that x+ (y+ z) < (x+ y)+ z. Then more critical pairs are
obtained. By superposition of R on (x+ y), we get

x+ (0 + z) = x+ z (22.1)

x+ (succ(y) + z) = succ(x+ y) + z (22.2)

By superposition of R on (x+ y) + z, we get two new critical pairs that are convergent.
Then R is superposed on the subterm (0 + z) of Equation 22.1 and two convergent critical pairs are

obtained.
R is superposed on (succ(x+ y) + z) of Equation 22.2 and gives four critical pairs that are convergent.
Eventually R is superposed on the subterm (succ(y) + z) of Equation 22.2 and we get

x+ succ(y) = succ(x+ y) + 0 (22.3)

x+ succ((succ(y) + z)) = succ(x+ y) + succ(z) (22.4)

Both sides of the critical pair 22.3 reduce to succ(x+ y). The critical pair 22.4 reduces to

succ(x+ (succ(y) + y)) = succ(succ(x+ y) + z).

Both sides are C-equal using Equation 22.2. All the critical pairs have been computed and the procedure
stops.

The proof of commutativity of + is similar. After adding C = {x+ y = y + x}, the procedure finds two
critical pairs

0 + x = x (22.5)

succ(y) + x = succ(x+ y). (22.6)

Again critical pairs of R on Equation 22.5 are now convergent. Considering now superposition of R on
Equation 22.6, one gets

succ(0) + x = succ(x) (22.7)

succ(succ(y + x)) = succ(succ(x+ y)). (22.8)

The equality 22.7 satisfies, using 22.6,

succ(0) + x←→C succ(x+ 0)→R succ(x)

thus it can disappear. Both terms of equality 22.8 are C-equivalent, so the procedure terminates.

January 28, 2006 rewriting solving proving

288 Proofs by induction

Example 22.7 Consider an operation alter on lists built with construtors nil (empty list) and push, that
shuffle two lists and produces a third one. The list structure and the alter operation are described by the
following presentation giving ranks of operations

sorts : Elt, List

nil : 7→ List

push : Elt List 7→ List

alter : List List 7→ List

and rewrite rules to define alter:

alter(nil, z) → z

alter(push(x, y), z) → push(x, alter(z, y))

It is easy to check that this set of rewrite rules R is terminating and confluent. Consider now the conjecture
alter(y, nil) = y which is not an equational consequence of the previous rules. The proof by consistency
procedure initialized with C0 = {alter(y, nil) = y} works as follows:

- first ground reducibility of alter(y, nil) is checked. A test set for y is {nil, push(x, y)} and obviously
alter(nil, nil) and alter(push(x, y), nil) are R-reducible.

- second critical pairs are computed from R into alter(y, nil). They are two:
with y = nil, we get (nil = nil),
with y = push(x′, y′), we get (push(x′, alter(nil, y′)) = push(x′, y′)) which is obviously reducible to

(push(x′, y′) = push(x′, y′)). So the process terminates without detecting inconsistency, which proves the
conjecture.

Exercice 63 — Run the inductive completion procedure of Section 22.5 on Example 22.7. Compare.

Answer: Just do it.

Comparisons between inductive completion and proof by consistency procedures lead to interesting re-
marks. On one hand, it can be argued that inductive completion attempts to solve all possible induction
schemes and often fails to terminate, while the use of inductive positions in the proof by consistency procedure
can select a specific induction schema. On the other hand, it is possible that inductive completion deduces
equalities that are useful for simplification but cannot be deduced with the more restrictive deduction rule
of CP. This is illustrated by the following example [BD89b, Küc89].

Example 22.8 Consider the operations append and rev on lists built with construtors nil (empty list) and
cons.

sorts : Elt, List

nil : 7→ List

cons : Elt List 7→ List

append : List List 7→ List

rev : List 7→ List

Let R be the ground convergent rewrite system

append(nil, x) → x
append(cons(x, y), z) → cons(x, append(y, z))

rev(nil) → nil
rev(cons(x, y)) → append(rev(y), cons(x, nil))

and rev(rev(x)) = x the conjecture to be proved.
The last rule in R can be superposed on the conjecture to produce

rev(append(rev(y), cons(x, nil))) = cons(x, y)

The initial conjecture can be superposed on this new one to give

rev(append(y), cons(x, nil)) = cons(x, rev(y))

which can be oriented into a rewrite rule

rev(append(y), cons(x, nil))→ cons(x, rev(y))

January 28, 2006 rewriting solving proving

22.7 Inductive proofs by rewriting and implicit induction 289

The first critical pair can now be simplified and deleted. The remaining set of rules is convergent, which
implies that the conjecture holds.

On the other hand, with a linear deduction strategy that only allows for superpositions of R into conjec-
tures, the above rewrite rule cannot be deduced and an infinite derivation may be produced:

rev(append(rev(y), cons(x, nil))) = cons(x, y)
rev(append(append(rev(z), cons(y, nil)), cons(x, nil))) = cons(x, cons(y, z))

. . .

Exercice 64 — Consider the specification

sort Int

0 : 7→ Int

succ : Int 7→ Int

∀x : Int, x + 0 → x

∀x, y : Int, x + succ(y) → succ(x + y)

∀x : Int, x ∗ 0 → x

∀x, y : Int, x ∗ succ(y) → (x ∗ y) + x.

Assume given the following lemmas:

∀x, y : Int, x + y = y + x

∀x, y, z : Int, x + (y + z) = (x + y) + z

and prove the following conjectures:

∀x, y, z : Int, x ∗ (y + z) = (x ∗ y) + (x ∗ z)

∀x, y : Int, x ∗ y = y ∗ x

∀x, y, z : Int, x ∗ (y ∗ z) = (x ∗ y) ∗ z

Answer: Just do it.

22.7 Inductive proofs by rewriting and implicit induction

One major drawback of the previous methods is that the rewrite systems used to describe the underlying
theory have to be confluent or at least ground confluent. In this section, we drop this strong hypothesis and
describe a method initiated in [KR90, Red90], called rewriting induction and developed in [BKR92, Bou94].
The essential idea underlying rewriting induction is that, when a (conditional or unconditional) rewrite
system R is terminating, then the corresponding rewrite relation is a well-founded ordering on terms and
can be used as support for inductive reasoning. The method combines simplification by rewriting with
selection of significant terms selected in test sets. The key idea of the simplification strategy is to use
axioms, previously proved conjectures and instances of the conjecture itself as soon as they are smaller than
the current conjecture with respect to some well-founded relation. Using these ideas, a general inference
system to perform induction in conditional and equational theories is proposed in [BKR92, Bou94]. It is
proved correct in general and refutationally complete for convergent conditional (or equational) theories.

Formulas to be proved are clauses and > is a well-founded ordering on terms that extends to
clauses. R is a set of conditional equational clauses l → r if (s1 = t1 ∧ · · · ∧ sn = tn) such that
Var(r)⋃

i=1,...,n Var(si) ∪ Var(ti) is a subset of Var(l) and for any ground substitution σ, {σ(l)} >mult
{σ(r), σ(s1), σ(t1) . . . , σ(sn), σ(tn)}.

Inductively valid clauses are implications that hold in the initial algebra defined by R.

Definition 22.13 A clause (
∧
i=1,...,n si = tiif

∨
j=1,...,m uj = vj) is an inductive theorem of R if for any

ground substitution σ, whenever ∀i = 1, . . . , n, σ(si)
∗←→R σ(ti), then there exists j ∈ [1, . . . ,m] such that

σ(uj)
∗←→R σ(vj).

The clause c is said inductively valid in R, which is denoted by R |=ind c.

We describe here a general method that may be specialized with stronger hypotheses on the specifications.
For instance, for boolean specifications where conditions are boolean expressions, some of the concepts defined
below may be efficiently implemented. The interested reader can refer to [Bou94].

January 28, 2006 rewriting solving proving

290 Proofs by induction

22.7.1 Selection of induction schemes

To perform a proof by induction, it is necessary to provide some induction schemes. In the approach described
below, these schemes are provided by first selecting inductive variables on which induction has to be applied,
and second by a special set of terms called test-set.

A sort s is said infinitary if there exists an infinite set of ground terms of sort s irreducible by R. Otherwise
it is finitary.

Definition 22.14 Let R be a conditional rewrite system and c be a clause or a term. x of sort s is an
inductive variable of c if either s is finitary, or x occurs in a non-variable subterm u of c and there exists a
conditional rewrite rule in R l → r if (s1 = t1 ∧ · · · ∧ sn = tn) such that

- u and l are unifiable
- the position ω of x in u satisfies:
either l|ω is not a variable, or l|ω is a non-linear variable of l, or l|ω is an inductive variable of si or ti for

some i = 1, . . . , n.
The set of inductive variables of c is denoted by V ar − ind(c).

Example 22.9 Consider the following system that defines the two predicates odd and even on natural
numbers.

true 6= false
even(0) → true

even(s(0)) → false
even(s(s(x))) → even(x)

even(x) = true if odd(x) → false
even(x) = false if odd(x) → true

The variable x is an inductive variable both of the term even(x) and of the term odd(x).

In order to illustrate the computation of inductive variables, let us consider the pure equational case.
Induction variables are determined thanks to the preliminary computation of inductive positions of function
symbols.

Definition 22.15 Given a set of rewrite rule R, the set of inductive positions for a function symbol f is

Occ− ind(R, f) = {ω | ∃(l → r) ∈ R, l(Λ) = f, ω ∈ Dom(l)− {Λ}, and l|ω is not a linear variable of l }

An induction variable of a term t is either t itself if t is a variable, or a finitary variable, or a variable
that occurs at a position υω where ω is an inductive position of t|υ.

For a set of conditional rewrite rules R, a term t is weakly R-irreducible if for any subterm u such that
there exists a rule condplr and a substitution σ with σ(l) = u, σ(p) is unsatisfiable in the theory defined by
R.

For a term t and a set of terms T , a T -substitution is a substitution that instantiates each inductive
variable of t by a term of T whose variables have been renamed.

The notion of cover sets needed here is in essence a finite description of the initial model for a set of
conditional rewrite rules R. So any ground R-irreducible term is an instance of some element in the cover
set. The notion was introduced in [Red90, ZKK88].

Definition 22.16 A cover set for a set of conditional rewrite rules R is a finite set CS(R) of R-irreducible
terms that satisfies: for any R-irreducible ground term u, there exists a term t in CS(R) and a ground
substitution σ such that σ(t) = u.

Test-sets have an additional property:

Definition 22.17 A test set for a set of conditional rewrite rules R is a finite set S(R) of R-irreducible
terms that satisfies:

a. S(R) is a cover set for R.

b. for any term t in S(R) and any S(R)-substitution σ of t, if σ(t) is weakly R-reducible, then there exists
a ground substitution τ such that τ(σ(t)) is ground and R-irreducible.

The first condition in the definition of test sets allows restricting attention to the set of terms in R-normal
forms. The second condition b. is fundamental to refute theorems. It ensures that when an instance of an
equality by a S(R) substitution does not match any left-hand side of rules, an inconsistency is revealed.

January 28, 2006 rewriting solving proving

22.7 Inductive proofs by rewriting and implicit induction 291

Example 22.10 Consider the specification (Σ, R):

sort Int

0 : 7→ Int

succ : Int 7→ Int

pred : Int 7→ Int

∀x : Int, x+ 0 → x

∀x : Int, 0 + x → x

∀x, y : Int, succ(x) + y → x+ succ(y)

∀x, y : Int, x+ succ(y) → succ(x+ y)

∀x, y : Int, pred(x) + y → x+ pred(y)

∀x, y : Int, x+ pred(y) → pred(x+ y)

∀x : Int, succ(pred(x)) → x

∀x : Int, pred(succ(x)) → x.

Then S(R) = {0, succ(x), pred(x)}.

The construction of a test set for a rewrite system R is decidable and algorithms are given for the
equational case in [Kou90] and for the conditional case with free constructors in [KR90, BR93]. The set of
function symbols is divided into a set of completely defined function symbols and others called constructors.
As before, the depth of a term t, denoted depth(t), is the maximal size of positions ω in Dom(t). The strict
depth of a term t, denoted sdepth(t), is the maximal size of non-variable positions ω in Dom(t). The (strict)
depth of a rewrite rule set R, denoted by depth(R) (resp. sdepth(R)), is the maximum of the (strict) depths
of rules left-hand sides. Let |R| be defined as

depth(R)− 1 if sdepth(R) < depth(R) and R is left-linear
depth(R) otherwise. When all function symbols are completely defined with respect to a set of free

constructors, then the set of constructor terms of depth ≤ |R| where variables may occur only at depth |R|
is a test-set for R.

The role of test-set for refuting conjecture is enlightened by the following criterion of inconsistency witness
and its relation to non-inductive consequence.

Definition 22.18 Let R be a conditional rewrite system and > a well-founded ordering on clauses that
contains R. A clause c = ¬(t1 = u1) ∨ . . . ∨ ¬(tn = un) ∨ (v1 = w1) ∨ . . . ∨ (vm = wm) is an inconsistency
witness if there exists a S(R)-substitution σ such that for any i = 1, . . . , n, R |=ind σ(ti) = σ(ui) for any
j = 1, . . . ,m, σ(vj) and σ(wj) are distinct and the maximal elements of {σ(vj), σ(wj)} w.r.t. > are weakly
R-irreducible.

This definition is simpler when R is non-conditional:

Definition 22.19 Let R be a rewrite system and > a well-founded ordering on terms that contains R. An
equality (g = d) is an inconsistency witness w.r.t. R if there exists a S(R)-substitution σ such that σ(g) and
σ(d) are distinct and the maximal elements of {σ(g), σ(d)} w.r.t. > are R-irreducible.

This notion of inconsistency witness provides the basis for a proof by refutation.

Theorem 22.5 [Bou94] Let R be a ground confluent conditional rewrite system, > a well-founded ordering
on terms that contains R, and c a clause. If c is an inconsistency witness, then it is not an inductive
consequence of R.

Example 22.11 In example 22.9, the system R is confluent on ground terms. The conjecture even(x) =
true∨ odd(x) = false is an inconsistency witness as shown by the instance even(s(0)) = true∨ odd(s(0)) =
false.

Example 22.12 Consider the “union” operator defined on lists built on constructors {cons, nil}:

union(nil, nil) → nil

union(cons(x, nil), nil) → cons(x, nil)

union(nil, cons(x, l)) → cons(x, l)

union(cons(x, l), cons(y, l′)) → cons(x, cons(y, union(l, l′)))

January 28, 2006 rewriting solving proving

292 Proofs by induction

R is ground confluent and terminating. S(R) = {nil, cons(x.l)}. Consider the conjecture

union(l, l′) = union(l′, l)

Among the test-set instances, we have:
union(cons(x, l), cons(y, l′)) = union(cons(y, l′), cons(x, l))
which simplifies to
cons(x, cons(y, union(l, l′))) = cons(y, cons(x, union(l′, l))).
Among the test-set instances of this last conjecture, we have:
cons(x, cons(y, union(nil, nil))) = cons(y, cons(x, union(nil, nil)))
which simplifies to
cons(x, cons(y, nil)) = cons(y, cons(x, nil))
which is an inconsistency witness. So union(l, l′) = union(l′, l) is not an inductive consequence of R.

22.7.2 Transition rules for rewrite induction

The rewriting induction process described below is based on the expansion of a clause (or an equality) to be
proved, using test sets and rewriting. Intuitively, an expansion is a reduced instance of an equality. Rewriting
is performed on the greatest term of the instantiated equality or on both terms if they are uncomparable in
the ordering.

Definition 22.20 Given R, a set of conjectures C and a set of inductive hypotheses H , the expansion set of
a clause c in C, denoted Exp(c), is the set of clauses {c1, . . . , cn} such that for any CS(R)-substitution σ and
any ground substitution τ , there exists a k such that τ(σ(c)) > τ(ck) and τ(ck) ⇔ τ(σ(c)) is an inductive
consequence of R ∪ {θ(S) | S ∈ E ∪H ∪ {c}andτ(σ(c)) > θ(S)}.

This definition is quite general and a particular instance may be given for equalities.

Definition 22.21 The expansion set of an equality (p = q) such that p 6< q, w.r.t. a test set S(R) is the set
of equalities Exp(p = q) defined as

• if p > q,
Exp(p = q) = {p′ = σ(q) | σ ∈ S(R) and σ(p)→R p

′}

• if p and q are uncomparable,

Exp(p = q) = {p′ = q′ | σ ∈ S(R) and σ(p)→R p
′, σ(q)→R q

′}

A given clause may also be replaced by a set of smaller clauses.

Definition 22.22 Given R, a set of conjectures C and a set of inductive hypotheses H , the simplification
set of a clause c in E, denoted Simp(c) is the set of clauses {c1, . . . , cn} such that for any CS(R)-substitution
σ, there exists a k such that σ(c) > σ(ck) and σ(ck)⇔ σ(c) is an inductive consequence of R ∪ {θ(S) | S ∈
E and σ(c) > θ(S)} ∪ {θ(S) | S ∈ H and σ(c) ≥C θ(S)}.

Definition 22.23 Given R, a set of conjectures C and a set of inductive hypotheses H , a clause c in E is
redundant if for any ground substitution σ, σ(c) is an inductive consequence of R∪{θ(S) | S ∈ E and σ(c) >
θ(S)} ∪ {θ(S) | S ∈ H and σ(c) ≥ θ(S)}.

For instance in the equational case, an equality (p = p) trivially holds and thus may be deleted. Such
simple forms can be obtained from the original equalities to prove and their expansions by a process of
simplification. Let us first describe the rewriting induction process for the equational case. Given a set R
of rewrite rules, the rewriting induction process is parameterized by a reduction ordering > and transforms
two sets of equalities: C contains the set of equalities to be proved and H registers equalities from C, that
can be used as inductive hypotheses, after being expanded, The process is described by the following set of
transition rules RI in Figure 22.6.

These rules are instances of more complex rules for conditional theories given in [Bou94]. The process is
described by the following set of rules CRI in Figure 22.7.

Proposition 22.7 (Correctness of rewriting induction)
If there exists a derivation (C, ∅) 7→7→(C1, H1) 7→7→ 7→7→(∅, H), for some set H , then all equalities in C are

inductive consequences of R.

January 28, 2006 rewriting solving proving

22.7 Inductive proofs by rewriting and implicit induction 293

Expand C ∪ {p = q}, H 7→7→ C ∪ C′, H ∪ {p = q}
if p 6< q,C′ = Exp(p = q)

Delete C ∪ {p = p}, H 7→7→ C,H
Simplify C ∪ {p = q}, H 7→7→ C ∪ {p′ = q}, H

if p→R∪H∪C−{p=q} p
′

Figure 22.6: Induction by rewriting

Expand C ∪ {c}, H 7→7→ C ∪ Exp(c), H ∪ {c}
Delete C ∪ {c}, H 7→7→ C,H

if c redundant
Simplify C ∪ {c}, H 7→7→ C ∪ Simp(c), H

Figure 22.7: Induction by conditional rewriting

Proof: See [Red90] for the equational case, and [Bou94] for the conditional case. 2

Example 22.13 An easy illustration of the method is provided by the proof of the commutativity of + on
natural numbers. Consider the specification (Σ, R)

sort Int
0 : 7→ Int
succ : Int 7→ Int

∀x : Int, x+ 0 → x

∀x, y : Int, x+ succ(y) → succ(x+ y)

The chosen ordering is the recursive path ordering induced by + > succ > 0. Note that S(R) = {0, succ(z)}.
Let C0 = {u+ v = v + u}. The equality is first expanded into C1 = {u = 0 + u, succ(u+ z) = succ(z) + u}.
Then H1 = {u+ v = v + u}.

Again the first equality in C1 is expanded.
C2 = {0 = 0, succ(y) = 0 + succ(y), succ(u+ z) = succ(z) + u} and
H2 = {u+ v = v + u, u = 0 + u}.
The first equality in C2 is deleted and the second is simplified using the orientable equality 0 + u→ 0 in

H2 to succ(y) = succ(y) that can be deleted too. We are left with
C3 = {succ(u+ z) = succ(z) + u} and H3 = {u+ v = v + u, u = 0 + u}.
Again the first equality in C3 is expanded.
C4 = {succ(0 + z) = succ(z), succ(succ(y) + z) = succ(succ(z) + y)} and
H4 = {u+ v = v + u, u = 0 + u, succ(u+ z) = succ(z) + u}.
succ(0 + z) = succ(z) is simplified (by 0 + u→ u) and deleted. succ(succ(y) + z) = succ(succ(z) + y) is

simplified twice by succ(z) + u→ succ(z + u) and yields succ(succ(y+ z)) = succ(succ(z + y)). Using then
u+ v = v + u at position 22 to simplify again, we eventually get a trivial equality which is deleted. We end
with

C4 = ∅ and H4 = {u+ v = v + u, u = 0 + u, succ(u+ z) = succ(z) + u}.

More experiments with this technique, including with conditional rewrite systems, can be found in [Bou91].
Coming back to the assumption of confluence for the rewrite system R, the previous transition rules in

RI may be used in a refutationally complete method for inductive proofs.
In order to get this refutation completeness result, a new transition rule, the Refute rule given in

Figure 22.8, must be added to the set RI of Figure 22.6.

Theorem 22.6 Let R be a ground convergent conditionnal rewrite system. Let (C0, ∅) 7→7→(C1, H1) 7→7→ be
a derivation using CRI and Refute. If there exists j such that Refute applies to (Cj , Hj), then C0 is not
an inductive consequence of R.

January 28, 2006 rewriting solving proving

294 Proofs by induction

Refute C ∪ {c}, H 7→7→ refute
if c is an inconsistency witness

Figure 22.8: Refutation rule

Proof: See [Bou94]. 2

Exercice 65 — Consider the specification

sort Int
0 : 7→ Int
succ : Int 7→ Int
+ : Int, Int 7→ Int
− : Int, Int 7→ Int

∀x : Int, x + 0 → x

∀x, y : Int, x + succ(y) → succ(x + y)

∀x : Int, x− 0 → x

∀x : Int, 0− x → 0

∀x, y : Int, succ(x)− succ(y) → x− y.

Prove the following conjecture:

∀x, y, z : Int, (x + y)− y = x

Prove that the following conjecture

∀x, y, z : Int, (x + y)− y = x

is not valid in the initial algebra of the specification.
Answer: Derive the following equalities:

(x + y)− y = x

x− 0 = x

succ(x + y)− succ(y) = x

x + 0 = x

x = x

(x + y)− y = x

and conclude validity.
Derive the following equalities:

(x− y) + y = x

x + 0 = x

0 + y = y

(x− y) + succ(y) = succ(x)

x = x

0 + 0 = 0

succ(0 + y) = 0

succ(0) = 0

and conclude non validity.

22.8 Conclusion

Inductive reasoning is basic to computer science, proof theory and number theory. Automation of inductive
proofs is becoming a hot topic in automated deduction community. Due to the undecidable nature of the
domain of application, it is not likely that inductive theorem proving can be mechanized to as great a

January 28, 2006 rewriting solving proving

22.8 Conclusion 295

degree as first-order theorem proving. Thus, for an inductive theorem prover, issues such as user-interface,
strategies, heuristics and tactics provided to the user, easy analysis of the proof steps and introduction of
lemmas may become extremely crucial to the success of the prover. Current research problems are combining
inductive completion and explicit induction in an adequate formalism, finding mechanisms, based for instance
on generalisation, for suggesting missing lemmas, choosing induction rule in a (semi-)automatic way.

January 28, 2006 rewriting solving proving

296 Proofs by induction

January 28, 2006 rewriting solving proving

Chapter 23

Enrichment proofs

23.1 Introduction

Programming langages based on many-sorted equational logic or Horn clause logic with equality most often
provide also tools for modular and hierarchical algebraic specifications, namely importation, parametrization,
and combination of specifications. Such languages are promising for a safe software development with proof
assistance, including in industrial applications. However this precludes that automatic or partially automatic
verification tools are provided too. We focus here on equational languages (i.e. languages based on equational
logic) and examine what kind of proofs can be done.

This chapter is concerned with some properties of programs related to their modularity and with their
automatisation using rewriting and completion techniques. In building programs by successive enrichments
of existing parts, it is crucial to check that enrichments are protecting the imported parts. In other words,
the enrichment creates no junk and no confusion. Each of these requirements is more technically described
by two properties respectiveley called sufficient completeness and (relative) consistency. When programs are
given by sets of rewrite rules enjoying confluence and termination on ground terms, these properties can
effectively be checked.

Parameterization is a generic way for building families of specifications and for reusing specifications.
As a matter of fact, there is a strong connection between (protected) enrichment and (persistent) param-
eterized specifications. Intuitively persistency means that every parameter is protected. Similar rewrite
and completion techniques can thus provide effective tools to prove that a parameterized specification is
persistent.

An important concern is to also make use of parameterization at the proof level and to develop a generic
proof method. So generic proofs are performed in parameterized equational specifications and generic the-
orems hold for any instance of the parameter. This approach has several advantages: First, it allows
performing proofs in a structured way that reflects the program structure. Second, a generic proof must be
given only once and can be reused for each instantiation of the parameter.

23.2 Enrichments

We stay in the context of many-sorted specifications presented in Section 22.2 of Chapter 22. Componentwise
inclusion of specifications corresponds to enrichments.

Definition 23.1 An enrichment of a specification SP = (Σ, E) is a specification SP ′ = (Σ′, E′) such that
Σ ⊆ Σ′ and E ⊆ E′.

SP is often referred to as the primitive or basic specification, while SP ′ is called the enriched specification.

Definition 23.2 Sorts and operators of Σ are called primitive sorts and operators. A variable whose sort
is primitive is called a primitive variable. Terms of T (Σ,X), with X a set of primitive variables, are called
primitive terms. Equalities that contain only primitive terms are called primitive equalities.

Note that a term of primitive sort is not always a primitive term.
A forgetful functor is associated to an enrichment.

Definition 23.3 Assume that SP ⊆ SP ′. Then the forgetful functor V from ALG(SP ′) to ALG(SP) is
defined as follows:

January 28, 2006 rewriting solving proving

298 Enrichment proofs

• ∀A′ ∈ ALG(SP ′), A = V(A′) is the SP -algebra such that ∀s ∈ Σ, As = A′s and ∀f ∈ Σ, fA = fA′ .

• ∀h′ SP ′-morphism, h = V(h′) is the SP -homomorphism such that hs = h′s for any s ∈ Σ.

23.2.1 Properties of enrichments

Enrichments are classified according to their effect on the initial algebra of the enriched specification. Mainly,
enrichments can produce junks, that is new terms that are not equivalent to an already existing term, or
confusions, that is new equivalences between terms originally distincts.

Definition 23.4 Let SP = (Σ, E) ⊆ SP ′ = (Σ′, E′) be an enrichment.

The enrichment is consistent if for any sort s ∈ Σ, any ground terms t and t′ of sort s in T (Σ), t
∗←→E t′

iff t
∗←→E′ t′.

The enrichment is sufficiently complete if for any sort s ∈ Σ, any ground term t′ of sort s in T (Σ′), there

exists a term t of sort s in T (Σ) such that t
∗←→E′ t′.

An enrichment which is both consistent and sufficiently complete is said protected.

Example 23.1 Let consider the following specification (Σ, E) of integers.

sort Int

0 : 7→ Int

succ : Int 7→ Int

pred : Int 7→ Int

∀x : Int, succ(pred(x)) = x

∀x : Int, pred(succ(x)) = x.

T (Σ)/E is a set of equivalence classes of terms, whose representatives are

{...pred(pred(0)), pred(0), 0, succ(0), succ(succ(0)), ...}.

• A first enrichment consists in adding a new operator + and equalities for its definition.

+ : Int, Int 7→ Int

∀x : Int, x+ 0 = x

∀x, y : Int, x+ succ(y) = succ(x+ y)

∀x, y : Int, x+ pred(y) = pred(x + y).

This enrichment does not modify the previous set of ground terms. Each term built with the new
symbol + can be proved equivalent to a term in T (Σ)/E. The enrichment is consistent and sufficiently
complete.

• A second enrichment consists in adding to (Σ, E) two equalities to build integers modulo 2 and the
enriched specification SP ′ = (Σ′, E′):

succ(succ(x)) = x

pred(pred(x)) = x.

Now some elements in T (Σ)/E are made equivalent, for instance pred(pred(0)) and 0. Actually
in T (Σ′)/E′, there are only two equivalence classes whose representatives are 0 and succ(0). The
enrichment is not consistent but sufficiently complete.

• A third enrichment consists in adding a new constant to build integers with an infinity element:

∞ : 7→ Int

succ(∞) = ∞
pred(∞) = ∞.

This enrichment does not modify T (Σ)/E. But a new element exists now, namely the equivalence
class of ∞. The enrichment is consistent but not sufficiently complete.

January 28, 2006 rewriting solving proving

23.2 Enrichments 299

The notions of consistency and sufficient completeness have been introduced by Guttag (see for in-
stance [Gut78]) in a slightly more restrictive framework when the set of functions in the signature Σ can
be split into a set of constructors C and a set of defined functions D. The definition of functions of D is
sufficiently complete w.r.t. C if any ground term is provably equal to a ground constructor term, that is a
ground term built only with constructors.

Then E can also be split into EC∪ED−C where EC is the subset of equalities that contain only constructors
and variables. If EC = ∅, the constructors are said free. The specification is consistent w.r.t. C if for any
ground constructor terms s and t, s

∗←→E t iff s
∗←→EC t.

23.2.2 Sufficient completeness

The sufficient completeness is in general undecidable [KNZ87] but in some cases, it is equivalent to ground
reducibility.

The restriction is that terms built on the imported signature must be preserved.

Definition 23.5 Let consider an enrichment SP = (Σ, R) ⊆ SP ′ = (Σ′, R′) with R′ a ground convergent
term rewriting system on T (Σ′). R′ preserves Σ-terms and Σ-sorts if for any primitive term t ∈ T (Σ), its
R′-normal form is a primitive term in T (Σ), for any term t ∈ T (Σ′)s of primitive sort s ∈ Σ, its R′-normal
form is also of primitive sort.

Some sufficient conditions on the rewrite system R′ can be proposed to guarantee preservation of Σ-
terms and Σ-sorts. For instance, the property will be satisfied as soon as the rewrite rules fulfill the following
conditions: ∀(l → r) ∈ R′, if l ∈ T (Σ,X), then r ∈ T (Σ,X) and if l is of sort s ∈ Σ, then r is also of
sort s′ ∈ Σ. The property of preserving the Σ-terms and Σ-sorts is in practice very often satisfied. In a
structured programming methodology where new functions are defined w.r.t. existing data, this hypothesis
does not appear as a restriction.

Proposition 23.1 Let consider an enrichment SP = (Σ, R) ⊆ SP ′ = (Σ′, R′) with R′ a ground conver-
gent term rewriting system on T (Σ′) and R′ preserves Σ-terms. Then the two following propositions are
equivalent:

1. ∀f ∈ Σ′ − Σ, whose co-arity is a sort s ∈ Σ, f(x1, ..., xn) is ground reducible with R′,

2. ∀t′ ∈ T (Σ′) of sort s ∈ Σ, ∃t ∈ T (Σ) such that t
∗←→R′ t′.

Proof: • Let us first prove that (1) implies (2).
Consider a term t′ ∈ T (Σ′) of sort s ∈ Σ and its R′-irreducible form t′′. Since R′ is preserves
Σ-sorts, t′′ has a primitive sort s′′ ∈ Σ. Either t′′ ∈ T (Σ) and then t = t′′, or t′′ 6∈ T (Σ). In this
case, t′′ contains a subterm f(u1, ..., un), with u1, ..., un ∈ T (Σ′) and f ∈ Σ′ −Σ, which moreover
has a co-arity s′ ∈ Σ. (Either f(u1, ..., un) is t′′ of sort s′′ which is primitive, or f(u1, ..., un) is
a strict-subterm of t′′ that may be chosen so that any symbol above is in Σ. Since any symbol
in Σ must have its arguments of primitive sorts, f(u1, ..., un) must be of primitive sort s′′). The
subterm u = f(u1, ..., un) is indeed a ground instance of f(x1, .., xn), so is reducible with R′,
which contradicts the hypothesis that t′′ is R′-irreducible.

• Let us now prove that (2) implies (1).
If f(x1, .., xn) is not ground reducible for R′, there exists a ground substitution σ such that
t′ = f(σ(x1), .., σ(xn)) is irreducible for R′. Assume now that ∃t ∈ T (Σ) of sort s ∈ Σ, such that

t
∗←→R′ t′. Since R′ is convergent on T (Σ∪XSP), this implies that t′ is the R′-normal form of t.

Which is impossible if R′ preserves Σ-terms.

2

In this result, the hypothesis for R′ to be convergent is essential, as shown by the following counter-
example.

Example 23.2 Let consider the following specification (Σ, R) with R = ∅:

sort s

c : 7→ s.

January 28, 2006 rewriting solving proving

300 Enrichment proofs

and its enrichment (Σ′, R′) with

g : s 7→ s

∀x : s, g(g(x)) → g(x)

∀x : s, g(g(x)) → x.

The term g(x) is not ground reducible with R′. However the enrichment is sufficiently complete because

g(c)
∗←→R′ c.

Also the hypothesis that R′ preserves Σ-terms cannot be dropped, as shown next:

Example 23.3 Let consider the following specification (Σ, R) with R = ∅:

sort s
f : s 7→ s
c : 7→ s.

and its enrichment (Σ′, E′) with

g : s 7→ s

∀x : s, f(x) → g(x).

The term g(x) is not ground reducible with R′. However the enrichment is sufficiently complete because
any term that contains g is R′-equivalent to a term without g.

The hypothesis that R′ is terminating cannot be dropped as well:

Example 23.4 Let consider the following specification (Σ, R) with R = ∅:

sort s

c : 7→ s.

and its enrichment (Σ′, E′) with

f : s 7→ s

∀x : s, f(x) → f(f(x)).

The term f(x) is ground reducible with R′. However the enrichment is not sufficiently complete because
any term that contains f cannot be R′-equivalent to a term without f .

Exercice 66 — Let consider the following specification (Σ, R) with R = ∅:

sort s

c : 7→ s.

and its enrichment (Σ′, E′) with

a : 7→ s

b : 7→ s

a → c

b → c.

What can be said about this enrichment?

Answer: The enrichment is consistent and sufficiently complete.

23.2.3 Consistent enrichments

There exists a strong relation between the notion of consistent enrichment and inductive theorems. This
connection is explicited in the following result:

Proposition 23.2 Let SP = (Σ, E) ⊆ SP ′ = (Σ, E′) be an enrichment with only new equalities: E′ =
E ∪ E0. The enrichment is consistent iff any equality in E0 is an inductive consequence of E, i.e. E0 is
consistent with E.

January 28, 2006 rewriting solving proving

23.2 Enrichments 301

Proof: Let (u = v) ∈ E0. For any ground substitution σ, σ(u)
∗←→E0 σ(v) and since E0 ⊆ E′, σ(u)

∗←→E′

σ(v). Then by consistency of the enrichment, σ(u)
∗←→E σ(v).

Conversely, assume that t, t′ are in T (Σ) and satisfy t
∗←→E′ t′. In order to prove that t

∗←→E t′, it

is enough to prove that whenever t ←→E0 t
′, then t

∗←→E t′. This is clear, since then, there exist
(u = v) ∈ E0, a ground substitution σ and an occurrence ω in t such that t|ω = σ(u) and t′|ω = σ(v).

Then σ(u)
∗←→E σ(v), which implies t

∗←→E t′. 2

It must be emphasized that this result is no more true if the enrichment adds new sort symbols or new
function symbols, as proved by the following counter-example.

Example 23.5 Let consider the following specification (Σ, E)

sort Int

0 : 7→ Int

s : Int 7→ Int

succ(succ(0)) = 0

and its enrichment (Σ′, E′) with

pred : Int 7→ Int

∀x : Int, pred(x) = succ(x).

This enrichment is of course consistent but the equality pred(x) = succ(x) is not an inductive theorem
of E.

The reason is that Σ also defines the language of assertions. So an equality that contains a function
symbol or a sort in Σ′ − Σ cannot be an assertion of SP = (Σ, E).

Turning back to the case where the theories are presented by ground convergent term rewriting systems,
the completion process appears as the important tool to both prove consistency of an enrichment and produce
simultaneously a ground convergent term rewriting system for the enriched specification.

23.2.4 Completion process for consistency proof

Let us consider an enrichment SP = (Σ, R0) ⊆ SP ′ = (Σ′, R0 ∪ E0) with R0 a ground convergent term
rewriting system on T (Σ). The general idea is to complete (R0 ∪ E0) into a ground convergent system R′

on T (Σ′) and to check that whenever a rewrite rule, whose left and right-hand sides both belong to T (Σ), is
added, then this rule is an inductive consequence of R0. Transition rules for a completion process that checks
consistency of enrichments are the same as transition rules for inductive completion. The only modification
is the condition for applying the orientation rule Orient. More precisely, let ⊃ be defined by s ⊃ t if

1. p > q and

2. either p 6∈ T (Σ,X), or p, q ∈ T (Σ,X) and p ground reducible with R0.

Let P be a set of equalities (quantified pairs of terms), R0 the initial convergent rewriting system, R be
the current rewriting system, and > a reduction ordering that contains R0. The completion procedure for
consistency is expressed by the set of transition rules CE presented in Figure 23.1.

If a sucessful completion sequence starting from (P0, R0) is found, R0 and R∞ define the same normal
forms on ground terms of T (Σ). This implies that the enrichment is consistent. Moreover if the process
generates a rule whose left-hand side is not ground reducible by R0, the enrichment is inconsistent.

Theorem 23.1 Let consider an enrichment SP = (Σ, R0) ⊆ SP ′ = (Σ′, R0 ∪ E0) with R0 a ground con-
vergent term rewriting system on T (Σ). Let P0 = E0 and > be a reduction ordering that contains R0. If
(P0, R0) 7→7→(P1, R1) 7→7→ is a derivation such that P∞ = ∅, R∞ is reduced and CP (R∞) is a subset of P∗,
then R∞ is convergent on T (Σ′) and the enrichment is consistent.

If (P0, R0) 7→7→(P1, R1) 7→7→(Pi, Ri) is a derivation such that Pi contains an equality (l = r) with l, r ∈
T (Σ), l > r and l non ground reducible with R0, then the enrichment is inconsistent.

January 28, 2006 rewriting solving proving

302 Enrichment proofs

Orient P ∪ {p = q}, R 7→7→ P,R ∪ {p→ q}
if p ⊃ q

Deduce P,R 7→7→ P ∪ {p = q}, R
if (p, q) ∈ CP (R)

Simplify P ∪ {p = q}, R 7→7→ P ∪ {p′ = q}, R
if p→R p

′

Delete P ∪ {p = p}, R 7→7→ P,R
Compose P,R ∪ {l→ r} 7→7→ P,R ∪ {l→ r′}

if r →R r
′

Collapse P,R ∪ {l→ r} 7→7→ P ∪ {l′ = r}, R
if l→g→d

R l′ & l → r >> g → d

Figure 23.1: Consistent enrichment by completion

Proof: Let consider the case where the completion process does not stop with a non-orientable equality.
Then R∞ is convergent on T (Σ′). Let t, t′ ∈ T (Σ), t

∗←→R0∪P0 t
′ iff t

∗←→R∞ t′ iff t ↓R∞= t′ ↓R∞ .

But t ↓R∞= t ↓R0 and t′ ↓R∞= t′ ↓R0 . Thus t
∗←→R0 t

′.

If an equality (l = r), with l, r ∈ T (Σ), l > r and l non ground reducible with R0, is generated,
then there exists a ground substitution σ such that σ(l) is R0-irreducible. If (l = r) is an inductive

theorem, then σ(l) ↓R0= σ(r) ↓R0 and σ(r)
∗−→R0 σ(l). Thus σ(r) ≥ σ(l), which contradicts l > r and

σ(l) > σ(r). So the enrichment is not consistent because σ(l)
∗←→R0∪P0 σ(r) and not σ(l)

∗←→R0 σ(r).
2

Note that if there exists an equality (l = r) such that l ∈ T (Σ), r 6∈ T (Σ) and l > r, the process stops
with failure, but nothing can be precluded. This does not mean that the enrichment is not consistent, as
shown in the following example.

Example 23.6 Consider again the following specification (Σ, E)

sort Int

0 : 7→ Int

succ : Int 7→ Int

succ(succ(0)) → 0

and its enrichment (Σ′, E′) with

pred : Int 7→ Int

∀x : Int, pred(x) = succ(x).

Assume in addition that the given reduction ordering > satisfies succ(x) > pred(x). Although this
enrichment is of course consistent, the process will stop with failure.

The way out is of course to design an unfailing completion process, since in addition the interesting
property for the equalities of the enrichment is the Church-Rosser property on ground terms and the proof
by consistency of every equation generated in the primitive specification.

23.2.5 An unfailing completion process for consistency proof

In the completion process for consistency proof, the set of equalities is split into two parts: one, called C,
which contains only primitive equalities, and the other, called P , that contains non-primitive ones. The
enrichment is consistent iff, at each step, all equalities in C are consistent with R. In order to prove that, a
proof by induction procedure is needed, for instance the one given by Bachmair [Bac88] which relies on the
operational notion of provable inconsistency.

January 28, 2006 rewriting solving proving

23.2 Enrichments 303

OCP (P ∪ R,P) denote the set of ordered critical pairs obtained by superposition of P ∪ R on P and
conversely. CP (R,C) as usual denote the set of critical pairs obtained by superposition of R on C.

In order to cover a larger class of proofs, introduction of lemmas is allowed in the imported theory.

Let P be a set of equalities (quantified pairs of terms), C be a set of conjectures (primitive equalities),
R the implicit rewrite system, terminating and confluent on ground primitive terms, L be a set of inductive
lemmas (primitive equalities) consistent with R, and > a reduction ordering that contains R. The consistency
proof procedure is expressed by the set UC of transition rules given in Figure 23.2.

Deduce P,C, L
7→7→
P ∪ {p = q}, C, L
if (p, q) ∈ OCP (P ∪R,P)

Deflation P ∪ {p = q}, C, L
7→7→
P,C ∪ {p = q}, L
if p and q primitive

Delete P ∪ {p = p}, C, L
7→7→
P,C, L

Collapse P ∪ {p = q}, C, L
7→7→
P ∪ {p′ = q}, C, L
if (p→l→r

R∪P> p′ with p A l) or (p = l and q > r)
Conjecture P,C, L

7→7→
P,C ∪ {p = q}, L
if (p, q) ∈ CP (R,C)

Induce P,C, L
7→7→
P,C, L ∪ {p = q}
if (p = q) ∈ ITh(R) & p, q primitive

Discharge P,C ∪ {p = q}, L
7→7→
P,C, L
if (p = q) ∈ ITh(R)

Simplify P,C ∪ {p = q}, L
7→7→
P,C ∪ {p′ = q}, L
if p > p′ & p

+←→R∪L p
′

Compose P,C ∪ {p = q}, L
7→7→
P,C ∪ {p′ = q}, L
if p > p′ & p←→g=d

C p′ & p A g > d
Disproof P,C ∪ {p = q}, L

7→7→
Disproof
if (p = q) provably inconsistent

Figure 23.2: Unfailing consistency rules

Note that this set of transition rules is more general than the sets U for unfailing completion, obtained
as a subset when C = L = ∅, and IC for proof by consistency, obtained for P = ∅.

The soundness of this transition system UC is given by the following lemmas.

Lemma 23.1 If (P,C, L) 7→7→(P ′, C′, L′), then the congruences on ground terms
∗←→P∪C∪L∪R and

∗←→P ′∪C′∪L′∪R coincide.

January 28, 2006 rewriting solving proving

304 Enrichment proofs

Proof: by looking at the different transition rules. 2

Lemma 23.2 If (P,C, L) 7→7→(P ′, C′, L′), then =ind(P∪C∪L∪R) and =ind(P ′∪C′∪L′∪R) coincide.

Proof: It is a consequence of Lemma 23.1. 2

The considered set of proofs are proofs on ground terms using equalities in P ∪ C ∪ L ∪ R. The goal is
to transform such a proof s

∗←→P∪C∪L∪R t into a proof of the form

s
∗−→R∪P> s′

∗←→R t
′ ∗←−R∪P> t

or to find a provable inconsistency.
For that, the proof transformation relation must eliminate several kinds of subproofs:

• First of all, since L is a set of inductive lemmas in R, any use of a lemma to prove an equality can be
replaced by a sequence of R-equality steps.

• The same remark holds for an equality step using a conjecture in C, provided this conjecture is valid
in R.

• So the proof by refutation of conjectures in C is performed and this amounts reducing ground proofs

s′
+←−R σ(g) ←→C σ(d)

∗−→R t′ to τ(u) ←→C′ τ(v) where (u = v) ∈ C′, τ(u) R-irreducible and
either τ(v) R-irreducible or u > v. Either a provable inconsistency is detected and the process stops,
or when all conjectures are marked, this means that C-equality steps can be replaced by R-equality
steps. Moreover whenever a conjecture is proved, it can be added to the set of inductive lemmas L
and thus used for simplification.

• Finally peaks between R and P are eliminated thanks to the ordered critical pairs computation between
rules of R and P>.

The proof reduction relation that reflects the transition rule system UC, is now defined.

1. Deduce: t′ ←g=d
P>∪R t→l=r

P> t′′ =⇒ t′ ←→p=q
P t′′

2. Deflation: t←→p=q
P t′ =⇒ t←→p=q

C t′

3. Delete: t←→p=p
P t′ =⇒ Λ where Λ is the empty proof.

4. Collapse: t←→p=q
P t′ =⇒ t→l→r

P>∪R t
′′ ←→p′=q

P t′.

5. Conjecture: t′ ←l→r
R t←→g=d

C t′′ =⇒ t′ ←→p=q
C t′′

6. Induce: t
+←→R t

′ =⇒ t←→p=q
L t′

7. Discharge: t←→p=q
C t′ =⇒ t

∗←→R t
′

8. Simplify: t←→p=q
C t′ =⇒ t

+←→R t
′′ ←→p′=q

C t′

9. Compose: t←→p=q
C t′ =⇒ t←→g=d

C t′′ ←→p′=q
C t′

10. Peak without overlap: t′ ←g=d
R∪P> t→l=r

P> t′′ =⇒ t′ →l=r
P> t1 ←g=d

R∪P> t′′

11. Peak with variable overlap: t′ ←g=d
R∪P> t→l=r

P> t′′ =⇒ t′
∗−→R∪P> t1

∗←−R∪P> t′′

Lemma 23.3 If > is a reduction ordering that can be extended to a reduction ordering � on T (Σ′) total
on E′-equivalence classes, then the proof reduction relation is noetherian.

Proof: Let define the complexity measure of elementary proof steps by:

c(s←→g=d
P t) = (2, s, g, t) if s� t

c(s←→g=d
P t) = (2, t, d, s) if t� s

c(s←→g=d
C t) = (1, s, g, t) if s� t

c(s←→g=d
C t) = (1, t, d, s) if t� s

c(s→ g→d
R t) = (0, s, g, t)

January 28, 2006 rewriting solving proving

23.2 Enrichments 305

Let � ∪�sub denote the union of the complete reduction ordering � and the strict subterm ordering
�sub. Complexities of elementary proof steps are compared using the lexicographic combination,
denoted >ec of the standard ordering on natural numbers, � ∪�sub, A and � ∪�sub.

The complexity of a non-elementary proof is the multiset of the complexities of elementary proof steps
that it contains. Complexities of non-elementary proofs are compared using the multiset extension >c
of >ec. 2

An unfailing completion procedure that handles all the ordered critical pairs of (P ∪ R) on P produces
a set of rules and equalities that has the Church-Rosser property on T (Σ′). Moreover if all critical pairs of
R on equalities in C are computed and no inconsistency is generated, then the enrichment is consistent.

Theorem 23.2 Let consider an enrichment SP = (Σ, E) ⊆ SP ′ = (Σ′, E′) with R a ground convergent
term rewriting system on T (Σ) presenting E. Let split the set of equalities E′−E added in the enrichment,
into P0 and C0 such that C0 contains only primitive equalities and P0 contains all other equalities.

Let > be a reduction ordering that contains R and can be extended to a reduction ordering � on T (Σ′)
total on E′-equivalence classes, such that no primitive term is greater than a non-primitive one.

If (P0, C0, L0) 7→7→(P1, C1, L1) 7→7→ is a derivation such that OCP (P∞ ∪R,P∞)∪CP (R,C∞) is a subset
of P∗ ∪C∗. Then

• If C∞ is empty, then (P∞ ∪ R) is Church-Rosser with respect to � on T (Σ′) and the enrichment is
consistent.

• If there exists a step i and an equality in Ci that is provably inconsistent, then the enrichment is not
consistent.

Proof: • If C∞ is empty, let us prove by induction on =⇒ that for any i ≥ 0, for any proof
s
∗←→Pi∪Ci∪Li∪R t, there exists a proof

s
∗−→R∪P∞ s′

∗←→R t
′ ∗←−R∪P∞ t.

Since no provable inconsistency has been found, this means that Ci is consistent with R and
the Ci-equality steps can be replaced by R-equality steps. The same remark holds for Li-steps.
So if the proof s

∗←→Pi∪Ci∪Li∪R t is not already of the desired form, then either it contains a
peak of R ∪ P∞, or a non-persisting equality. In both cases, the proof is reducible by =⇒ into
s
∗←→Pj∪Cj∪Lj∪R t and the induction hypothesis gives the result.

Given two ground primitive terms, s and t, such that s
∗←→P0∪C0∪L0∪R t, or equivalently

s
∗←→P0∪C0∪R t, there exists a proof

s
∗−→R∪P∞ s′

∗←→R t
′ ∗←−R∪P∞ t.

But since s and t are primitive and greater then any other term appearing in the proof, all these
terms must be primitive. So no equality in P∞ can apply since P∞ contains non-primitive terms.
So we get s

∗←→R t. Then the enrichment is of course consistent.

• If a provable inconsistency is detected at some step k, there exists a proof τ(g)←→Ck
τ(d), such

that τ(g) is R-irreducible and τ(d) is R-irreducible or g > d. So we get τ(g)
∗←→P0∪C0∪L0∪R τ(d)

and not τ(g)
∗←→R τ(d), which proves that the enrichment is not consistent.

2

The following procedure CONSISTENT, described in Figure 23.3, implements the proof of consistency of
an enrichment. L has been chosen empty and R is implicit. It has three possible issues: success when the
enrichment is consistent, disproof when there exists an inconsistency and it may not terminate and generate
an infinite number of equalities.

The SIMPLIFICATION procedure computes simplified forms of l and r, according to transition rules
Collapse, Simplify and Compose.

The CRITICAL-PAIRS procedure computes all superpositions of R on the equality (l′ = r′) if (l′ = r′) is
in T (Σ), or oriented critical pairs of (l′ = r′) with P ∪R. The equality is marked whenever all these critical
pairs have been computed and added to C if they are primitive or to P otherwise.

Another procedure is proposed, that gives priority to detection of inconsistencies. This is achieved by a
sub-procedure PROVE that implements the proof by consistency procedure described by the set of transition

January 28, 2006 rewriting solving proving

306 Enrichment proofs

PROCEDURE CONSISTENT (P, C, >)

IF all equalities in P U C are marked

THEN RETURN P; STOP with SUCCESS

ELSE Choose an unmarked equality (l = r) fairly in P U C;

P U C := (P U C)-{(l=r)};

(l’=r’) := SIMPLIFICATION (l = r, P, C, R);

CASE l’ = r’ THEN P := CONSISTENT(P, C, >)

l’,r’ primitive AND l’ =ind(R) r’

THEN P := CONSISTENT(P, C, >)

l’,r’ primitive AND (l’= r’) provably inconsistent

THEN STOP with DISPROOF;

ELSE P U C := P U C U {(l’=r’)}

U CRITICAL-PAIRS (P,R,l’=r’);

Mark the equality (l’=r’) in P U C;

P := CONSISTENT(P, C, >)

END CASE

END IF

END CONSISTENT

Figure 23.3: A consistency completion procedure

rules IC. The control is given back to PROVE each time new conjectures built on primitive terms are found.
The procedure is described in Figure 23.4.
Exercice 67 — Consider the following specification SP0

sort Nat

0 : 7→ Nat

s : Nat 7→ Nat

− : Nat, Nat 7→ Nat

∀n : Nat, n− 0 = n

∀n : Nat, 0− n = 0

∀n, m : Nat, s(n)− s(m) = n−m

∀n : Nat, n− n = 0.

Prove that that these four equalities define a convergent rewrite system.
Consider the following enrichment SP1 of SP0 by:

a : 7→ Nat

∀n : Nat, s(a) = a

Prove that this enrichment is consistent.
Consider the second enrichment SP of SP0 by:

∀n : Nat, s(n)− n = s(0)

Prove that there still exists a convergent rewrite system for SP .
Prove that the enrichment SP2 of SP by

a : 7→ Nat

∀n : Nat, s(a) = a

is inconsistent now.
Answer: In the first enrichment SP1 the superposition of s(a) = a with s(n)−s(m) = n−m gives two new equalities

a− s(m) = a−m

s(n)− a = n− a

Other critical pairs are convergent.

In the second enrichment SP2, there is also a superposition with s(n) − n = s(0), that gives a − a = s(0), and

the inconsistency 0 = s(0).
Exercice 68 — A specification SP ′ = (Σ′, R′) is operationally sufficiently complete w.r.t. SP = (Σ, R) if for any

sort s ∈ Σ, any ground terms t′ of sort s in T (Σ′), there exists a term t of sort s in T (Σ) such that t
∗
−→R′ t′.

January 28, 2006 rewriting solving proving

23.3 Parameterization 307

PROCEDURE CONSISTENT (P, C, L, >)

PROVE(C, L, >);

IF DISPROOF THEN STOPS with INCONSISTENT

ELSE L := C; C := emptyset;

IF all equalities in P are marked

THEN RETURN P; STOP with SUCCESS

ELSE Choose an unmarked equality (l = r) fairly in P;

P := P - {(l=r)};

(l’=r’) := SIMPLIFICATION (l = r, P, C, L, R);

CASE l’ = r’ THEN P := CONSISTENT(P, C, L, >)

l’,r’ primitive

THEN C := C U {(l’= r’)};

P := CONSISTENT(P, C, L, >)

ELSE P := P U {(l’=r’)} U CRITICAL-PAIRS (P,R,l’=r’);

Mark the equality (l’=r’) in P;

P := CONSISTENT(P, C, L, >)

END CASE

END IF

END IF

END CONSISTENT

Figure 23.4: Another consistency completion procedure

1. Prove that SP ′ operationally sufficiently complete w.r.t. SP implies SP ′ sufficiently complete w.r.t. SP .

2. Prove that the converse does not hold.

3. Prove that if R is confluent on T (Σ′) and if T (Σ) is closed by →R′ , then SP ′ sufficiently complete w.r.t. SP
implies SP ′ operationally sufficiently complete w.r.t. SP .

4. Let SP ′ be operationally sufficiently complete w.r.t. SP . Assume that R is confluent on T (Σ′) and that terms
in T (Σ) are irreducible by R′ −R. Prove that the two following properties are equivalent:

• SP ′ is consistant w.r.t. SP

• R′ is confluent on T (Σ′)

5. Prove that this equivalence is no more true if SP ′ is only sufficiently complete w.r.t. SP .

Answer:

1. Easy because
∗
−→R′⊆←→ ∗R′ .

2. Consider S = {s},F = {a0}, R = ∅ for SP and S′ = {s},F ′ = {a, b}, R = {b → a, b → a0} for SP ′, with
a0, a, b nullary operators.

3. If t←→ ∗R′ t′, there exists t′′ such that t
∗
−→R′ t′′

∗
←−R′ t′ and t′′ ∈ T (Σ).

4. Let SP ′ be operationally sufficiently complete w.r.t. SP . Assume that R is confluent on T (Σ′) and that terms
in T (Σ) are irreducible by R′ −R.

• If SP ′ is consistent w.r.t. SP , consider t
∗
←−R′ t′′

∗
−→R′ t′, whic implies t ←→ ∗Rt′ and thus t

∗
−→R

u
∗
←−R t′ which yields the confluence of R′ since R ⊆ R′.

• Conversely if R′ is confluent on T (Σ′), for t, t′ ∈ T (Σ), t ←→ ∗R′t′ implies t
∗
−→R′ u

∗
←−R′ t′ and

t
∗
−→R u

∗
←−R t′. So If SP ′ is consistent w.r.t. SP .

5. Consider S = {s},F = {a0}, R = ∅ for SP and S′ = {s},F ′ = {a0, a, b}, R = {b → a, b → a0} for SP ′, with
a0, a, b nullary operators.

23.3 Parameterization

In this section we first establish the strong connection between (protected) enrichment and (persistent)
parameterized specifications. This makes possible to reduce a persistency proof to a proof of a protected
enrichment, using an adequate notion of generic ground reducibility. Moreover the rewrite and completion
techniques used in Section 23.2 are easily adapted.

Persistency is a property important at the semantic level, but also for theorem proving: an equational
theorem holds in the generic theory of the parameterized specification if and only if it is an inductive theorem

January 28, 2006 rewriting solving proving

308 Enrichment proofs

in a particular initial algebra, called the generic algebra. Provided persistency, such a theorem is generic: for
any specification morphism m, the translated equality using m holds in the initial algebra of the instantiated
specification.

Tehniques for inductive proofs can thus be generalized and provide effective tools to prove that a param-
eterized specification is persistent, to prove generic theorems and to prove generic ground reducibility.

23.3.1 Parameterized specifications

Definition 23.6 A parameterized specification PSP is a pair (SP, SP ′) of specifications where SP = (Σ, E)
is called the formal parameter, SP ′ = SP + (Σ′′, E′′) is called the target specification, and (Σ′′, E′′) is called
the body of the parameterized specification.

Terms built on the signature Σ and a denumerable set XSP of parameter variables, i.e. variables of sort
s ∈ Σ, are called parameter terms.

Example 23.7 Let us axiomatize the list structure on any kind of elements. Classically “nil′′ is the empty
list and “cons′′ the constructor for lists. Concatenation of lists is denoted by the function “append′′. In order
to define a product operation on lists that computes the product of its elements, it is needed to constrain
the elements to be in a monoid with an identity element. Then the formal parameter SP is the following
specification MONOID, in which equalities have been oriented into rewrite rules:

sort Elem

id : 7→ Elem

π : Elem,Elem 7→ Elem

∀e : Elem, π(e, id) → e

∀e : Elem, π(id, e) → e

∀e1, e2, e3 : Elem, π(π(e1, e2), e3) → π(e1, π(e2, e3)).

Let us consider the following parameterized specification with the formal parameter MONOID and the
body:

sort List

cons : Elem,List 7→ List

nil : 7→ List

append : List, List 7→ List

prod : List 7→ Elem

∀l : List, append(nil, l) → l

∀e : Elem, l, l′ : List, append(cons(e, l), l′) → cons(e, append(l, l′))

∀l : List, prod(nil) → id

∀e : Elem, l : List, prod(cons(e, l)) → π(e, prod(l)).

23.3.2 Semantics

Semantics for parameterized specifications have been widely studied, for instance in the many-sorted case
in [EM85, Gan83, Pad88] and in the order-sorted case in [Poi86, GMP83, Gog84]. The case of Horn clauses
parameterized specifications is considered for example in [Gan87, NO87].

To give a semantics to a parameterized specification consists in associating to SP the class ALG(SP) with
its SP -homomorphisms, to SP ′ the class ALG(SP ′) with its SP ′-homomorphisms and to PSP a functor
from the category ALG(SP) to ALG(SP ′).

Let V be the forgetful functor associated to the enrichment SP ⊆ SP ′. From a given SP -algebra
A ∈ ALG(SP), a SP ′-algebra denoted TSP ′(A) can be explicitely built, in the following way: let

• Const(A) = {a :7→ s | a ∈ As, s ∈ Σ}.

• Eqns(A) = {f(a1, ..., an) = fA(a1, ..., an) | ∀ai ∈ A, ∀f ∈ Σ}.

• SP ′(A) = (Σ′ ∪ Const(A), E′ ∪Eqns(A)).

• TSP ′(A) = VA(TSP ′(A)), where VA is the forgetful functor from the category of the SP ′(A)-algebras
to the category of the SP ′-algebras.

January 28, 2006 rewriting solving proving

23.3 Parameterization 309

TSP ′(A) is the free construction on A w.r.t. V . The concepts of free construction and free functor are
precisely defined for instance in [EM85].

Theorem 23.3 [EM85] Let V be the forgetful functor from ALG(SP ′) to ALG(SP). For any A ∈
ALG(SP), let F(A) be defined as TSP ′(A). Then F extends to a free functor from ALG(SP) to ALG(SP ′)
called the free functor w.r.t. V.

Definition 23.7 F , the free functor w.r.t. V , is the semantics of the parameterized specification PSP .

Note that a first kind of genericity is obtained with the free functor: from a class ALG(SP) of SP -
algebras, the free functor F generates the class of algebras

F(ALG(SP)) = {F(A) | A ∈ ALG(SP) }.

A second kind of genericity obtained from a parameterized specification, is to generate specifications and,
for this purpose, the notion of parameter passing is necessary.

23.3.3 Parameter passing

Parameter passing is intended to formalize the instantiation of the formal parameter specification SP into
an actual specification SP1.

Definition 23.8 A signature morphism m from Σ to Σ1 is a function m : Σ 7→ Σ1 such that:

∀f : s1, ...sn 7→ s ∈ Σ,m(f) : m(s1), ...,m(sn) 7→ m(s) ∈ Σ1.

Given a signature morphism m from Σ to Σ1 and a Σ-axiom e = (t = t′), the translated axiom denoted
m∗(e) = (m∗(t) = m∗(t′)) is inductively defined by

m∗(x : s) = x : m(s) and m∗(f(t1, ..., tn)) = m(f)(m∗(t1), ...,m
∗(tn)).

Definition 23.9 A specification morphism m from SP = (Σ, E) to SP1 = (Σ1, E1) is a signature morphism
from Σ to Σ1 such that for any axiom e ∈ E, the translated axiom m∗(e) is valid in the initial SP1-algebra.

A forgetful functor is associated to a specification morphism m.

Definition 23.10 Assume that m is a specification morphism from SP = (Σ, E) to SP1 = (Σ1, E1). Then
the forgetful functor Vm from ALG(SP1) to ALG(SP) is defined as follows:

• ∀A′ ∈ ALG(SP1), A = Vm(A′) is the SP -algebra such that ∀s ∈ Σ, As = A′m(s) and ∀f ∈ Σ, fA =

m(f)A′ .

• ∀h′ SP1-morphism, h = V(h′) is the SP -homomorphism such that hs = h′m(s) for any s ∈ Σ.

Given a specification morphism from the formal parameter specification to the actual parameter specifi-
cation, an instantiated specification can be built.

Definition 23.11 Given a parameterized specification PSP = (SP, SP ′) and a specification morphism m
from SP to SP1, a parameter passing is given by:

• The specification morphism m′ defined by

∀s′ ∈ Σ′,m′(s′) = if s′ ∈ S then m(s′) else s′

∀f ′ : s′1, ..., s′n 7→ s′ ∈ Σ′,m′(f ′) = if f ′ ∈ Σ
then m(f ′) : m(s′1), ...,m(s′n) 7→ m(s′)
else f ′ : m′(s′1), ...,m

′(s′n) 7→ m′(s′).

• The instantiated specification SP ′1 = SP1 + (m′(Σ′ − Σ),m′∗(E′ − E)).

• The specification morphisms p : SP 7→ SP ′ and p1 : SP1 7→ SP ′1 which are inclusions.

January 28, 2006 rewriting solving proving

310 Enrichment proofs

Notation: Vm, Vm′ , Vp and Vp1 denote the forgetful functors [EM85] respectively associated to specification
morphisms m,m′ and inclusions p, p1.

Paramater passing is usually represented by a parameter passing diagram.

SP
p−→ SP ′ ALG(SP)

F−→ ALG(SP ′)
Vp←−

m ↓ ↓ m′ Vm ↑ ↑ Vm′

SP1
p−→ SP ′1 ALG(SP1)

Vp1←− ALG(SP ′1)

The unicity of m′ and p1 comes from the fact that a parameter passing diagram is a pushout in the
category of specifications with their morphisms. This property also implies that the composition of two such
diagrams is again a parameter passing diagram and this composition is associative.

Example 23.8 Let us consider the parameterized specification of Example 23.7 and the actual parameter
NAT:

sort Nat

0 : 7→ Nat

s : Nat 7→ Nat

+ : Nat,Nat 7→ Nat

∀n : Nat, n+ 0 → n

∀n,m : Nat, n+ s(m) → s(n+m).

Let m be the specification morphism defined by:

m(Elem) = Nat,m(id) = 0,m(π) = +.

Instantiation of MONOID by NAT needs to prove that the equalities

∀n : Nat, n+ 0 = n

∀n : Nat, 0 + n = n

∀n1, n2, n3 : Nat, ((n1 + n2) + n3 = n1 + (n2 + n3)).

hold in the initial algebra of NAT.
The instantiated specification is:

sort Nat

sort List

0 : 7→ Nat

s : Nat 7→ Nat

+ : Nat,Nat 7→ Nat

cons : Nat, List 7→ List

nil : 7→ List

append : List, List 7→ List

prod : List 7→ Nat

∀n : Nat, n+ 0 → n

∀n,m : Nat, n+ s(m) → s(n+m)

∀l : List, append(nil, l) → l

∀n : Nat, l, l′ : List, append(cons(n, l), l′) → cons(n, append(l, l′))

∀l : List, prod(nil) → 0

∀n : Nat, l : List, prod(cons(n, l)) → n+ prod(l)).

The question is now: is the syntactic construction of SP ′1 compatible with the semantics respectively
chosen for PSP , SP1 and SP ′1? Here the semantics given to specifications SP1 and SP ′1 are the initial algebras
of these specifications denoted respectively by TSP1 and TSP ′

1
.1 The answer is yes, provided correctness.

1It is implicitely assumed that SP1 and SP ′
1 have no empty sorts

January 28, 2006 rewriting solving proving

23.3 Parameterization 311

Definition 23.12 The parameter passing is correct for a parameterized specification PSP and a specifica-
tion morphism m from SP to SP1 if

1. Vp1(TSP ′
1
) = TSP1 , property called protection of actual parameter,

2. Vm′(TSP ′
1
) = F ◦ Vm(TSP1) property called compatibility of parameter passing.

The first property expresses that SP ′1 is a protected enrichment of SP1. The second property expresses
the fact that the semantics F of PSP agrees with the semantics of the instantiated specification SP ′1.

This definition of correctness is relative to one specification morphism. In order to get a notion of
correctness that holds for any specification morphism, a stronger property on functors is needed.

23.3.4 Persistency

The correctness of parameter passing for every specification morphism requires that the functor F be per-
sistent. Intuitively, persistency means that for any SP -algebra A ∈ ALG(SP), A is protected in F(A).

Definition 23.13 [EM85] Given a parameterized specification PSP and the forgetful functor Vp :
ALG(SP ′) 7→ ALG(SP), the free functor F : ALG(SP) 7→ ALG(SP ′) is said persistent if Vp ◦ F = I,
where I is the identity functor on ALG(SP), up to a natural isomorphism.

The parameterized specification PSP is also said persistent.

Proposition 23.3 [EM85] Given a parameterized specification PSP with a persistent functor F :
ALG(SP) 7→ ALG(SP ′) and a specification morphism m from SP to SP1, there exists a persistent functor
F1 : ALG(SP1) 7→ ALG(SP ′1), called extension of F according to m. Moreover F1 is uniquely defined by

Vm′ ◦ F1 = F ◦ Vm and Vp1 ◦ F1 = I1

where I1 is the identity functor on ALG(SP1).

If F is persistent, then for any specification morphism m, the functor F1 exists and is persistent. This is
exactly what is needed for correctness of parameter passing, for each specification morphism.

Theorem 23.4 [EM85] Given a parameterized specification PSP , the parameter passing is correct for PSP
and any specification morphism m iff PSP is persistent in ALG(SP).

Proof: With the same notations as before:

• If PSP is persistent, F is persistent and F1 is uniquely defined by Vp1 ◦ F1 = I1 and Vm′ ◦ F1 =
F ◦ Vm, according to Proposition 23.3. The two properties defining correctness are just obtained
by applying them to the initial object of ALG(SP1), namely TSP1 .

• Conversely, assume that parameter passing is correct and let us prove that ∀A ∈ ALG(SP),Vp ◦
F(A) = A. Let us choose the special morphism mA : SP 7→ SP (A) = SP +
(∅, Const(A), Eqns(A)). It can be proved that VmA(TSP (A)) = A and thus Vp ◦ F(A) =
Vp ◦ F ◦ VmA(TSP (A)) = Vp ◦ Vm′

A
(TSP ′(A)) = VmA ◦ Vp1(TSP ′(A)) = VmA(TSP (A)) = A.

2

Example 23.9 A example of a non-persistent parameterized specification [EM85] is given by PSP =
(SP, SP ′) where SP = {{s}, ∅, ∅} and SP ′ = {{s}, {e}, ∅}.

Let NAT be the usual specification of natural numbers,
NAT = {{Nat}, {0 :7→ Nat, succ : Nat 7→ Nat}, ∅},
consider now the actual parameter
SP1 = NAT +{succ(succ(x)) = x},
and the specification morphism m defined by m(s) = Nat.

Then the respective domains of sort Nat of TSP1 , F ◦ Vm(TSP1), and TSP ′
1

are respectively {0, succ(0)},
{0, succ(0), e} and {0, succ(0), e, succ(e)}. Neither the compatibility of parameter passing nor the protection
of actual parameter are satisfied.

January 28, 2006 rewriting solving proving

312 Enrichment proofs

23.3.5 Generic algebra

We now consider different questions: how to prove correctness of parameter passing, for any specification
morphism m? How to prove a generic assertion, that is, how to prove that for any specification morphism
m, the translated assertion (using m) is valid in the initial algebra of the instantiated specification? Both
questions have answers that need the introduction of a generic algebra.

Let SP = (Σ, E) be a specification and X a denumerable set of variables whose sorts are in Σ. Let
TSP (X) be the initial term algebra associated to the specification (Σ ∪X , E). TSP (X) is a Σ-algebra whose

carrier is the quotient T (Σ ∪ X)/E of the set of terms T (Σ ∪ X) by the congruence
∗←→E . Note that if X

is any set of variables with sorts in Σ, TSP (X) is the free SP -algebra generated by X . TSP (∅) is the initial
SP -algebra. The PSP -generic algebra is obtained for a third choice of X :2

Definition 23.14 Let PSP = (SP, SP ′) be a parameterized specification and XSP a set of variables of
parameter sorts. The PSP -generic algebra is the Σ′-algebra TSP ′(XSP), whose carrier T (Σ′ ∪ XSP)/E′ is

the quotient by
∗←→E′ of the set T (Σ′ ∪XSP) of PSP -generic terms.

23.3.6 Generic theory of a parameterized specification

The set of theorems valid in the class of algebras F(ALG(SP)) associated to a parameterized specification,
defines the generic theory of the parameterized specification.

Definition 23.15 The generic theory of the parameterized specification PSP denoted Th(PSP) is the set

{(∀X, t = t′)|∀A ∈ ALG(SP),F(A) |= (∀X, t = t′)}.

The generic theory is also called equational theory of PSP in [Pad88]. Note that in the degenerated case
where SP is the empty specification, then Th(PSP) is the inductive theory of SP ′.

Definition 23.16 Any substitution σ : X 7→ T (Σ′ ∪XSP), is called a PSP -generic substitution.

As a consequence of previous definitions, an equality (∀X, t = t′) holds in the PSP -generic alge-
bra TSP ′(XSP), which is denoted by TSP ′(XSP) |= (∀X, t = t′), if for any PSP -generic substitution

σ : X 7→ T (Σ′ ∪XSP), σ(t)
∗←→E σ(t′).

Example 23.10 Let us consider again the parameterized specification of Example 23.7.
The term append(cons(e, nil), nil) with e a variable of sort Elem, is a PSP -generic term.
Given a variable l : List, substitutions (l 7→ nil), (l 7→ cons(e, nil)), (l 7→ append(cons(e, nil), nil)) are

PSP -generic substitutions.
The equality (∀e : Elem, l : List, append(cons(e, nil), l) = cons(e, l)) holds in the PSP -generic algebra,

just because it holds in the whole class of SP ′-algebras.

The next theorem states that the generic theory is exactly the set of theorems valid in the PSP -generic
algebra.

Theorem 23.5 [Pad88] Let PSP = (SP, SP ′) be a parameterized specification, XSP a set of variables of
parameter sorts and TSP ′(XSP) the PSP -generic algebra.

TSP ′(XSP) |= (∀X, t = t′) iff (∀X, t = t′) ∈ Th(PSP).

Proof: (Sketch) If (∀X, t = t′) ∈ Th(PSP), then it holds in F(TSP (XSP)) that is isomorphic to TSP ′(XSP).

Conversely, assume that TSP ′(XSP) |= (∀X, t = t′). To prove that the equality holds in F(A) for any
A, let us prove that it holds in TSP ′(A) which is isomorphic to F(A). Any assignment σ : X 7→ TSP ′(A)
can be decomposed into µ : X 7→ TSP ′(XSP) and α : TSP ′(XSP) 7→ TSP ′(A). Then from µ(t) = µ(t′),
it is easily deduced that σ(t) = α(µ(t)) = α(µ(t′)) = σ(t′). 2

The following result explains in which sense a theorem in Th(PSP) is generic: validity of an equality in
the PSP -generic algebra means validity of the translated equality in any instantiation of the parameterized
specification, provided that the parameterized specification is persistent. A similar result is given in [DJvP89].

Theorem 23.6 Let PSP = (SP, SP ′) be a persistent parameterized specification and XSP a set of variables
of parameter sorts. Then the two following properties are equivalent:

2The word generic is currently used for free algebras [Tay79] but less often in the context of parameterization [DJvP89].

January 28, 2006 rewriting solving proving

23.3 Parameterization 313

1. TSP ′(XSP) |= (∀X, t = t′)

2. for any specification morphism m, TSP ′
1
|= (∀m′∗(X),m′∗(t) = m′∗(t′)).

Proof: If TSP ′(XSP) |= (∀X, t = t′), then the equality holds in F(A) for any A, for instance in F ◦Vm(TSP1)
for any specification morphism m. Assuming persistency, the compatibility of parameter passing for
m yields F ◦ Vm(TSP1) = Vm′(TSP ′

1
). Then Vm′(TSP ′

1
) |= (∀X, t = t′), so TSP ′

1
|= (∀m′∗(X),m′∗(t) =

m′∗(t′)).

Conversely, for anyA ∈ ALG(SP), there exists a specification morphismmA and a specification SP (A)
such that A = VmA(TSP (A)). Since TSP ′(A) |= (∀m′∗A(X),m′∗A(t) = m′∗A(t′)) implies Vm′

A
(T(SP ′(A))) |=

(∀X, t = t′), then F ◦ VmA(TSP (A)) |= (∀X, t = t′) and F(A) |= (∀X, t = t′). By Theorem 23.5,
TSP ′(XSP) |= (∀X, t = t′). 2

Actually only the compatibility of parameter passing is used in this proof. But this property is equivalent
to persistency, as shown in [Ore87].

The next theorem relates the notion of persistency with proof theoretical properties.

Theorem 23.7 [Gan83] Let PSP = (SP, SP ′) be a parameterized specification and XSP a set of variables
of parameter sorts. PSP is persistent iff the following two properties are satisfied:

1. PSP = (SP, SP ′) is generic sufficiently complete, i.e.: ∀t ∈ T (Σ′ ∪ XSP), t of parameter sort,

∃t0 ∈ T (Σ ∪XSP) such that t
∗←→E′ t0.

2. PSP = (SP, SP ′) is generic consistent, i.e.: ∀t, t′ ∈ T (Σ ∪ XSP) of parameter sorts, t
∗←→E′ t′ iff

t
∗←→E t′.

This definition expresses in other words that the enrichment (Σ∪XSP , E) ⊆ (Σ′ ∪XSP , E
′) is protected.

In order to go further and design effective tools for parameterized proofs, we now focus on equational
theories described by rewrite systems.

Persistency is a very strong property that sometimes one may want to drop. So a first question that arises
is the following: which results remain true if persistency is not assumed? Actually persistency is assumed
in Theorem 23.6, and only the compatibility of parameter passing is used in its proof. Theorem 23.6 could
be weakened as follows: if TSP ′(XSP) |= (∀X, t = t′), then for any specification morphism m satisfying the
compatibility of parameter passing, TSP ′

1
|= (∀m′∗(X),m′∗(t) = m′∗(t′)). However the problem of checking

the compatibility of parameter passing, even for a specific specification morphism, is not solved. Moreover
assuming compatibility of parameter passing for every specification morphism has been proved equivalent to
persistency in [Ore87].

23.3.7 Generic ground reducibility

In order to check persistency of a parameterized specification and validity in the PSP -generic algebra, the
notion of PSP -generic ground reducibility is needed.

Let PSP = (SP, SP ′) be a parameterized specification with SP = (Σ, R) and SP ′ = (Σ′, R′) where R
and R′ are rewrite systems. Let XSP be an infinite set of variables of parameter sorts.

Definition 23.17 Given a rewrite system R′, terminating on T (Σ′ ∪XSP), a term t ∈ T (Σ′ ∪X) is PSP -
generic ground reducible with R′ if for any PSP -generic substitution σ : X 7→ T (Σ′∪XSP), σ(t) is reducible
using R′.

An equality (∀X, t = t′) is PSP -generic ground reducible with R′ if for any PSP -generic substitution
σ : X 7→ T (Σ′ ∪XSP), such that σ(t) 6= σ(t′), either σ(t) or σ(t′) is reducible using R′.

Algorithms for checking ground reducibility can be extended to check PSP -generic ground reducibility.
Here, the test for ground reducibility in the case of left-linear rules given in [JK86b] is generalized to a test
for generic ground reducibility. The goal is to exhibit a finite set of substitutions S such that a term is
generic ground reducible iff all its instances by substitutions in S are reducible.

Given a set of rewrite rules R′ of depth d, let

S(R′) = { top(t0, d) | t0 is an R′−irreducible PSP−generic term }

be called the PSP -generic test set. For practical reasons, variables in terms of S(R′) are assumed distinct,
which is always possible by renaming them: ∀t, t′ ∈ S(R′), V(t) ∩ V(t′) = ∅. The set S(R′) is computed as
the limit of a stationary sequence of sets Si defined as follows:

January 28, 2006 rewriting solving proving

314 Enrichment proofs

Si = {top(t0, d) | t0 is an R′-irreducible PSP -generic term such that depth(t0) ≤ i}.

Then S(R′) = Sk as soon as Sk = Sk+1 for some k.

Theorem 23.8 A term t is PSP -generic ground reducible by a left-linear rewrite system R′ iff all its
instances

{σ(t) | σ : V(t) 7→ S(R′)},
obtained by substituting variables of t by terms in S(R′), are reducible by R′.

Proof: The proof is similar to the proof in [JK89] and of Theorem 22.1 of Chapter 22.

• Assume that all instances of t obtained by substituting variables of t by terms in S(R′), are
reducible by R′. For any PSP -generic substitution σ′, if σ′ is not R′-normalized, then σ′(t) is
R′-reducible. Otherwise, let us define for any variable x of t, σ(x) = top(σ′(x), d). Then σ ∈ S(R′)
and σ(t) is R′-reducible by hypothesis. Since σ′ is an instance of σ, σ′(t) is also R′-reducible.

• Assume now that t is PSP -generic ground reducible. Given σ ∈ S(R′), let us define for any
variable xi of t, ti = σ(xi). Then there exists t′i an R′-irreducible instance of ti such that
ti = top(t′i, d). Finally let us define σ′ such that σ′(xi) = t′i. Since t is PSP -generic ground
reducible, σ′(t) is R′-reducible by a rewrite rule l → r, at some non-variable position ω in t
because σ′ is normalized. But for any position υ in l, the top symbols of l|υ, σ(t)|ω.υ and σ′(t)|ω.υ
are the same, because of the definition of d and the fact that ti = top(t′i, d). Now let W be the set
of variable occurrences in l and for any variable y at occurrence υ ∈ W define σ′′(y) = σ(t)|ω.υ.
Note that σ′′ is well-defined because y has only one occurrence in l. So σ(t)|ω = σ′′(l) and so σ(t)
is R′-reducible.

2

Example 23.11 Consider the parameterized specification of Example 23.7. In order to check the PSP -
generic ground reducibility of prod(append(l, l′)), the following generic test set needs to be considered:

{nil, cons(e0, nil), cons(e1, cons(e2, nil))}.

where e0, e1, e2 are new variables of sort Elem in XSP . For each deduced substitution α, α(t) is reducible
using R′.

23.3.8 Proof of generic sufficient completeness

We now extend the proof of sufficient completeness for convergent rewrite systems of Kapur, Narendran
and Zhang in [KNZ87]. Their result states the equivalence between sufficient completeness and a check for
ground reducibility, provided that terms built on the imported signature are preserved.

Definition 23.18 Let PSP = (SP, SP ′) be a parameterized specification such that SP = (Σ, R) and
SP ′ = (Σ′, R′). R′ preserves parameters if for any parameter term t ∈ T (Σ), its R′-normal form is a
parameter term in T (Σ), for any term t ∈ T (Σ′)s of parameter sort s ∈ Σ, its R′-normal form is also of
parameter sort.

Some sufficient conditions on the rewrite system R′ can be proposed to guarantee preservation of param-
eters. For instance, the property will be satisfied as soon as the rewrite rules fulfill the following conditions:
∀(l → r) ∈ R′, whenever l has a parameter sort, r has a parameter sort, and whenever l is a parameter term,
r is a parameter term.

Proposition 23.4 Let PSP = (SP, SP ′) be a parameterized specification such that SP = (Σ, R) ⊆ SP ′ =
(Σ′, R′), XSP is a denumerable set of variables of parameter sorts, and R′ is a convergent rewrite system on
T (Σ′ ∪XSP) preserving parameters.

Then the following propositions are equivalent:

1. ∀f ∈ Σ′ − Σ, whose range is a sort s ∈ Σ, f(x1, ..., xn) is PSP -generic ground reducible with R′,

2. ∀t′ ∈ T (Σ′ ∪XSP) of sort s ∈ Σ, ∃t ∈ T (Σ ∪XSP) such that t
∗←→R′ t′.

Proof: The proof is an extension of [KNZ87] and similar to the proo of Proposition 23.1.

January 28, 2006 rewriting solving proving

23.3 Parameterization 315

• Let us first prove that (1) implies (2).
Consider a term t′ ∈ T (Σ′ ∪ XSP) of sort s ∈ Σ and its R′-irreducible form t′′. Since R′ is
preserves parameters, t′′ has a parameter sort s′′ ∈ Σ. Either t′′ ∈ T (Σ ∪XSP) and then t = t′′,
or t′′ 6∈ T (Σ∪XSP). In this case, t′′ contains a subterm f(u1, ..., un), with u1, ..., un ∈ T (Σ′∪XSP)
and f ∈ Σ′ − Σ, which moreover has a co-arity s′ ∈ Σ. The subterm u = f(u1, ..., un) is indeed a
PSP -generic instance of f(x1, .., xn), so is reducible for R′, which contradicts the hypothesis that
t′′ is R′-irreducible.

• Let us now prove that (2) implies (1).
If f(x1, .., xn) is not PSP -generic ground reducible for R′, there exists a PSP -generic substitution
σ such that t′ = f(σ(x1), .., σ(xn)) is irreducible for R′. Assume now that ∃t ∈ T (Σ ∪ XSP) of

sort s ∈ Σ, such that t
∗←→R′ t′. Since R′ is convergent on T (Σ∪XSP), this implies that t′ is the

R′-normal form of t. Which is impossible if R′ preserves parameters.

2

23.3.9 Proof of generic consistency

In Sections 23.2.4 and 23.2.5, given an enrichment SP = (Σ, R) ⊆ SP ′ = (Σ′, E′) with R a ground convergent
rewrite system on T (Σ), the completion mechanism appeared as an interesting tool to both prove consis-
tency of an enrichment and produce simultaneously a ground convergent rewrite system for the enriched
specification. We now design a similar consistency proof procedure in the slightly more general framework
of a parameterized specification PSP with SP = (Σ, R) ⊆ SP ′ = (Σ′, E′) with R a convergent rewrite
system on T (Σ ∪ XSP). (This can be checked by completion). PSP is generic consistent if whenever an
equality, whose left and right-hand sides both belong to T (Σ ∪XSP), is added, then this is a theorem valid

in ALG(SP), that is t
∗←→R t

′. In order to detect inconsistencies, we need the following definition:

Definition 23.19 Let us consider a parameterized specification PSP with SP = (Σ, R) ⊆ SP ′ = (Σ′, E′)
with R a convergent rewrite system. A set of equalities C is provably inconsistent with Th(SP) if it contains

an equality (∀X, t = t′) such that t and t′ are in T (Σ ∪XSP) and are not
∗←→R-equivalent.

If SP is itself a parameterized specification, say SP = (SP0, SP1), then Th(SP) is its generic theory

and the previous definition must be refined by replacing
∗←→R-equivalence by validity in the SP0-generic

algebra.
In the completion process described below, it is convenient to split the set of equalities E′ − R into two

parts: one, called C, which contains only parameter equalities (i.e. built on terms of T (Σ ∪ XSP)), and
the other, called P , that contains non-parameter ones. OCP (P ∪ R,P) denote the set of ordered critical
pairs [Bac87, BDP89] obtained by superposition of P ∪R on P and conversely. There is no need to superpose
rules in R with themselves. CP (R,C) as usual denote the set of critical pairs obtained by superposition of
R on C.

Let P be a set of equalities (quantified pairs of terms), C a set of conjectures (parameter equalities),
R the underlying rewrite system on parameter terms, terminating and confluent on T (Σ ∪ XSP), and > a
reduction ordering that contains R and can be extended to a reduction ordering on T (Σ′ ∪ XSP) total on
E′-equivalence classes. The generic consistency proof procedure is expressed by the set GC of transition rules
given in Figure 23.5, in which R is implicit:

In these transition rules, A denotes the strict encompassment ordering. Note that this set of transition
rules is more general than the one for unfailing completion [Bac87], obtained as a subset when C = ∅, and
the one for proof by consistency [Bac87], obtained for P = ∅. The Deflation transition rule is used first to
split the set of equalities E′−E added in the enrichment, into P and C such that C contains only parameter
equalities and P0 contains all other equalities.

Lemma 23.4 If (P,C) 7→7→(P ′, C′), then the congruences
∗←→P∪C∪R and

∗←→P ′∪C′∪R coincide on T (Σ′ ∪
XSP).

Proof: by looking at the different transition rules. 2

The considered set of proofs are proofs on PSP -generic terms using equalities in P ∪C ∪R. The goal is
to transform such a proof t

∗←→P∪C∪R t
′ into a proof of the form

t
∗−→R∪P> t′′

∗←−R∪P> t′

or to find a provable inconsistency with Th(SP).
The proof reduction relation that reflects the transition rule system GC, is now defined.

January 28, 2006 rewriting solving proving

316 Enrichment proofs

Deduce P,C
7→7→
P ∪ {p = q}, C
if (p, q) ∈ OCP (P ∪R,P)

Deflation P ∪ {p = q}, C
7→7→
P,C ∪ {p = q}
if p and q parameter terms

Delete P ∪ {p = p}, C
7→7→
P,C

Collapse P ∪ {p = q}, C
7→7→
P ∪ {p′ = q}, C
if (p→l→r

R∪P> p′ with p A l) or (p = l and q > r)
Conjecture P,C

7→7→
P,C ∪ {p = q}
if (p, q) ∈ CP (R,C)

Discharge P,C ∪ {p = q}
7→7→
P,C
if (p = q) ∈ Th(SP)

Simplify P,C ∪ {p = q}
7→7→
P,C ∪ {p′ = q}
if p > p′ & p

+←→R p
′

Compose P,C ∪ {p = q}
7→7→
P,C ∪ {p′ = q}
if p > p′ & p←→g=d

C p′ & p A g > d
Disproof P,C ∪ {p = q}

7→7→
Disproof
if (p = q) provably inconsistent with Th(SP)

Figure 23.5: Generic consistency by completion

1. Deduce: t′ ←g=d
P>∪R t→l=r

P> t′′ =⇒ t′ ←→p=q
P t′′

2. Deflation: t←→p=q
P t′ =⇒ t←→p=q

C t′

3. Delete: t←→p=p
P t′ =⇒ Λ where Λ is the empty proof.

4. Collapse: t←→p=q
P t′ =⇒ t→l→r

P>∪R t
′′ ←→p′=q

P t′.

5. Conjecture: t′ ←l→r
R t←→g=d

C t′′ =⇒ t′ ←→p=q
C t′′

6. Discharge: t←→p=q
C t′ =⇒ t

∗←→R t
′

7. Simplify: t←→p=q
C t′ =⇒ t

+←→R t
′′ ←→p′=q

C t′

8. Compose: t←→p=q
C t′ =⇒ t←→g=d

C t′′ ←→p′=q
C t′

9. Peak without overlap: t′ ←g=d
R∪P> t→l=r

P> t′′ =⇒ t′ →l=r
P> t1 ←g=d

R∪P> t′′

10. Peak with variable overlap: t′ ←g=d
R∪P> t→l=r

P> t′′ =⇒ t′
∗−→R∪P> t1

∗←−R∪P> t′′

January 28, 2006 rewriting solving proving

23.3 Parameterization 317

Lemma 23.5 If > is a reduction ordering that can be extended to a reduction ordering > on T (Σ′ ∪XSP)
total on E′-equivalence classes, then the proof reduction relation is noetherian.

Proof: Let us define the complexity measure of elementary proof steps by:

c(s←→g=d
P t) = (2, s, g, t) if s > t

c(s←→g=d
P t) = (2, t, d, s) if t > s

c(s←→g=d
C t) = (1, s, g, t) if s > t

c(s←→g=d
C t) = (1, t, d, s) if t > s

c(s→ g→d
R t) = (0, s, g, t)

where s, t ∈ T (Σ′ ∪XSP). Let > ∪�sub denote the union of the reduction ordering > and the strict
subterm ordering �sub. Complexities of elementary proof steps are compared using the lexicographic
combination, denoted >ec of the standard ordering on natural numbers, > ∪�sub, A, and > ∪�sub.
The complexity of a non-elementary proof is the multiset of the complexities of elementary proof steps
that it contains. Complexities of non-elementary proofs are compared using the multiset extension >c
of >ec. For any proof reduction rule L =⇒ R defining the proof reduction relation, c(L) >c c(R). 2

Theorem 23.9 Let us consider a parameterized specification PSP with SP = (Σ, E) ⊆ SP ′ = (Σ′, E′) with
R a convergent rewrite system on T (Σ ∪XSP) presenting E.

Let > be a reduction ordering that contains R and can be extended to a reduction ordering > on T (Σ′ ∪
XSP), total on E′-equivalence classes, and such that no parameter term is greater than a non-parameter one.

Let (P0, C0) = (E′, ∅) 7→7→(P1, C1) 7→7→ be a derivation using GC, P∗ =
⋃
i≥0 Pi, C∗ =

⋃
i≥0 Ci, P∞ =⋃

i≥0

⋂
j>i

Pj, C∞ =
⋃
i≥0

⋂
j>i

Cj . Assume that OCP (P∞ ∪R,P∞) ∪ CP (R,C∞) is a subset of P∗ ∪ C∗.

• If C∞ is empty, (P∞ ∪R) is Church-Rosser with respect to > on T (Σ′ ∪XSP) and the parameterized
specification is generic consistent.

• If a provable inconsistency with Th(SP) has been detected, the parameterized specification is not generic
consistent.

Proof: • Assume that C∞ is empty. Let us prove by induction on =⇒ that for any i ≥ 0, for any proof
t
∗←→Pi∪Ci∪R t

′ where t, t′ ∈ T (Σ′ ∪XSP), there exists a proof

t
∗−→R∪P>

∞
t′′

∗←−R∪P>
∞
t′.

Since C∞ is empty, this means that any Ci-equality step has been replaced by R-equality steps.
So if the proof t

∗←→Pi∪Ci∪R t′ is not already of the desired form, then either it contains a peak
of R ∪ P>∞, or a non-persisting equality in P . In both cases, the proof is reducible by =⇒ into

t
∗←→Pj∪Cj∪R t

′ and the induction hypothesis gives the result.

Given two terms, t and t′ of T (Σ ∪ XSP) of parameter sorts, such that t
∗←→P0∪C0∪R t′, there

exists a proof

t
∗−→R∪P>

∞
t′′

∗←−R∪P>
∞
t′.

But since t and t′ are parameter terms and greater then any other term occurring in the proof,
all these terms must be parameter terms. So no equality in P∞ can apply since P∞ contains
non-parameter terms. So we get t

∗←→R t
′.

• If a provable inconsistency with Th(SP) has been detected, this means that there exist g, d ∈
T (Σ ∪ XSP) such that g ←→Ck

d, for some k, but do not satisfy g
∗←→R d. So g and d are

∗←→P0∪C0∪R-equivalent but not
∗←→R-equivalent, which proves that the parameterized specifica-

tion is not generic consistent.

2

Example 23.12 The parameterized specification of Example 23.7 is persistent.
The first step is to prove that the enrichment (Σ ∪XSP , R) ⊆ (Σ′ ∪XSP , R

′) is generic consistent. For
that, the consistency proof procedure is applied. Since there is no critical pair, the enrichment is obviously
consistent.

Second, in order to prove that the enrichment (Σ ∪ XSP , R) ⊆ (Σ′ ∪ XSP , R
′) is generic sufficiently

complete, we check that R′ preserves parameters.

January 28, 2006 rewriting solving proving

318 Enrichment proofs

Then we have to check that prod(l) is PSP -generic ground reducible with R′. The instantiations to be
checked are:

(l 7→ nil)

(l 7→ cons(e0, nil))

(l 7→ cons(e1, cons(e2, l)))

where e0, e1, e2 ∈ XSP and l is a variable of sort List. For these three instantiations σ, the term σ(prod(l))
is clearly reducible.

23.3.10 Proof of a generic theorem

In the context of proving and disproving theorems in a parameterized specification, we need a slightly
different notion of provable inconsistency, that is directly inspired by the one used in [Bac88]. We assume
in this section that PSP is a parameterized specification defined by the formal parameter SP = (Σ, R) and
SP ′ = (Σ′, R′), where R and R′ are rewrite systems.

Definition 23.20 Let us consider a parameterized specification PSP with SP = (Σ, R) ⊆ SP ′ = (Σ′, R′),
where R′ is a terminating rewrite system and > a reduction ordering that contains R′. A set of equalities C
is provably inconsistent with Th(PSP) if it contains an equality (∀X, t = t′) which satisfies either t > t′ and
t is not PSP -generic ground reducible, or (∀X, t = t′) is not PSP -generic ground reducible.

Replacing the notion of provable inconsistency by the notion of provable inconsistency with Th(PSP)
allows applying the proof by consistency method to the proof of theorems in Th(PSP).

Let C be a set of conjectures, R′ the underlying rewrite system of the parameterized specification,
terminating and confluent on T (Σ′ ∪XSP), and > a reduction ordering that contains R′. The generic proof
procedure is expressed by the following set GI of transition rules, given in Figure 23.6. This is a subset of
GC, obtained with P = ∅.

Conjecture C
7→7→
C ∪ {p = q}
if (p, q) ∈ CP (R′, C)

Discharge C ∪ {p = q}
7→7→
C
if (p = q) ∈ Th(PSP)

Simplify C ∪ {p = q}
7→7→
C ∪ {p′ = q}
if p > p′ & p

+←→R′ p′

Compose C ∪ {p = q}
7→7→
C ∪ {p′ = q}
if p←→g=d

C p′ & p A g > d
Disproof C ∪ (p = q)

7→7→
Disproof
if (p = q) provably inconsistent with Th(PSP)

Figure 23.6: Generic proof by consistency rules

Theorem 23.10 Let PSP = (SP, SP ′) be a parameterized specification and XSP a set of variables of
parameter sorts. Let R′ be a terminating and confluent rewrite system on T (Σ′ ∪ XSP) presenting E′,
C0 be the set of PSP -generic conjectures to be proved, and > be a reduction ordering that contains R′. Let
C0 7→7→C1 7→7→ be a derivation using GI such that CP (R′, C∞) is a subset of C∗. If no provable inconsistency
with Th(PSP) has been detected, then C0 is included in Th(PSP).

January 28, 2006 rewriting solving proving

23.4 Conclusion 319

Proof: It is a consequence of the proof by consistency method in TSP ′(XSP) [Bac87, Bac88]. 2

Example 23.13 In the parameterized specification of Example 23.7, let us prove that the PSP -generic
conjecture

∀l, l′ : List, prod(append(l, l′)) = π(prod(l), prod(l′))

is valid.
This conjecture is PSP -generic ground reducible. By choosing a precedence such that prod > π, the

left-hand side is bigger than the right-hand side. Superpositions on the bigger term are enough. So two
superpositions have to be computed:

- With the rule ∀l : List, append(nil, l)→ l, we get

prod(l′) = π(prod(nil), prod(l′)).

The term π(prod(nil), prod(l′)) reduces to prod(l′) and the conjecture becomes a trivial equality.
- With the rule ∀e : Elem, l, l′ : List, append(cons(e, l), l′)→ cons(e, append(l, l′)), we get

prod(cons(e, append(l1, l2))) = π(prod(cons(e, l1)), prod(l2)).

After reduction on both sides, we get

π(e, prod(append(l1, l2))) = π(e, π(prod(l1), prod(l2)))

that can be simplified using the initial conjecture.

23.4 Conclusion

Very few programming environments currently benefit from automated theorem provers, even in the case of
rewrite programs that do have adequate proof tools. One obstacle to their use is often a matter of size of
programs and this is why hierarchical and parameterized programs are so important.

Proofs in parameterized specifications have been experimented in several systems like CEC [Gan87] or
Reveur4 [RZ84]. Now several research directions can be outlined.

• This chapter focussed on equational parameterized specifications. In the case of conditional specifica-
tions, some results can be extended along the lines of Navarro and Orejas [NO87], but an adequate
notion of persistency needs the introduction of so-called LOG-algebras, that have an initial boolean
domain, together with a property of persistency with respect to booleans. Note that Theorem 23.7
has been proved by Ganzinger [Gan83] in the case where the considered class of algebras is the class
ALG(SP) of all algebras satisfying SP , and by Orejas and Navarro [NO87] in the case where the class
of algebras is restricted to LOG-algebras.

• We have only considered here the techniques of proofs by consistency. Everone agrees now that they
are sometimes inefficient and more direct inductive proof methods have been developed, for instance
by U.Reddy [Red90] in the equational case, or by E.Kounalis and M.Rusinowitch [KR90] in the Horn
clause case. These methods are briefly described in Section 22.7 of Chapter 22. Extending these
methods for proving theorems in parameterized specifications does not seem too difficult, and would
lead to interesting applications.

January 28, 2006 rewriting solving proving

320 Enrichment proofs

January 28, 2006 rewriting solving proving

Chapter 24

Gröbner bases

24.1 Introduction

The motivation of this chapter is to describe some applications of rewriting techniques to polynomial equa-
tions. In 1965, Buchberger introduced the notion of Gröbner bases and devised an algorithm to compute
the Gröbner basis of a finite set of polynomials. Buchberger’s algorithm can be roughly sketched as follows:
Assume that all monomials are totally ordered with a well-founded ordering < compatible with the product.
Each polynomial equation g =? 0 in E (for instance 2x−6y2+4z =? 0) is considered as a reduction rule that
reduces the greatest monomial in the equation. For instance 2x−6y2 +4z =? 0 is considered as x→ 3y2−2z
if x is greater than y2 and z. Now two reduction rules whose left-hand sides are not mutually prime are said
to overlap. In this case the least common multiple of the two left-hand sides can be rewritten in two different
ways, producing a critical pair (g, h). If further rewriting does not succeed in simplifying the critical pair to
a same polynomial, the reduced critical pair (g′, h′) produces a new polynomial equation g′ − h′ =? 0 added
to E. By iterating the process, a confluent reduction system R is obtained and is called the Gröbner basis
of E. The main result, due to Buchberger, states that a polynomial g belongs to I if and only if g reduces
to 0 with R.

This algorithm has been widely used in computer algebra over the past few years. It provides algorithmic
solutions to a variety of problems, such as exact solutions of a set of algebraic equations, computations in
the residue class ring modulo an ideal, decision about various properties of an ideal, polynomial solution of
linear homogeneous equation with polynomial coefficients, word problems modulo ideals and in commutative
semigroups. Such examples are described in [Buc85]. It was also applied to propositional logic or geometrical
theorem proving.

24.2 Polynomial ideal theory

Let A = K[x1, . . . , xn] by the polynomial ring on the field K with n variables x1, . . . , xn, also called indeter-
minates. The function symbols + and × respectively denote usual addition and multiplication of the ring.
Most often the symbol × is omitted, for instance in the notation xp used to denote the product of p elements
equal to x.

Definition 24.1 A power product is a polynomial of the form xi11 . . . xinn . x0
1 . . . x

0
n is denoted by 1. A

monomial m is a product of a constant in K by a power product xi11 . . . xinn . Note that 0 is not a monomial.
A polynomial p is a sum of monomials whose power products are pairwise distinct.

This definition of polynomials amounts to choose the usual distributive normal form representation of
polynomials.

A finite set of polynomials determines a congruence, thanks to the notion of ideal.

Definition 24.2 Let E ⊆ K[x1, . . . , xn] be a finite set of polynomials. The ideal generated by E is defined
by:

Ideal(E) = {
m∑

i=1

hifi | fi ∈ E and hi ∈ K[x1, . . . , xn]}.

Two polynomials f, g are congruent modulo E, denoted by f ≡E g if f − g ∈ Ideal(E).

January 28, 2006 rewriting solving proving

322 Gröbner bases

The goal is now to show the congruence modulo E is decidable. This will be done by proving its
equivalence with the reflexive transitive closure of a reduction relation on polynomials. But this reduction
relation needs to introduce first a suitable ordering on power products.

Definition 24.3 A total ordering > on the set P of power products is admissible if

• for every p ∈ P , p 6= 1, p > 1.

• for any p1, p2, p ∈ P , p1 > p2 implies p× p1 < p× p2.

Two specific orderings are examples of admissible ordering, especially useful for polynomials.

1. The pure lexicographic ordering defined by:

xi11 ...x
in
n > xj11 ...x

jn
n

if there exists k ≤ n such that il = jl for l < k and ik > jk.

2. The total degree ordering defined by:

xi11 ...x
in
n > xj11 ...x

jn
n

if i = i1 + ... + in > j = j1 + ... + jn or i = j and there exists k ≤ n such that il = jl for l < k and
ik > jk.

Example 24.1 In the pure lexicographic ordering,

x3 > x2y5 > x2y3z2 > x2y3 > x2yz4.

Example 24.2 In the total degree ordering,

x2y5 > x2y3z2 > x2yz4 > x2y3 > x3.

Theorem 24.1 Every admissible ordering > is well-founded.

Proof: Assume that there exists an infinite strictly decreasing sequence of power products p1 > p2 >
... > pk > To pi = xi11 . . . xinn is associated the n-tuple ei = (i1 . . . in). According to Dickson’s
lemma [Dic13], in the infinite sequence e1, . . . , ek . . . of n-tuples of natural numbers, there exist indices
i, j with i < j such that ik ≤ jk for k = 1, . . . n. So there exists p such that pi × p = pj .
If p = 1, pi = pj which contradicts pi > pj .
If p 6= 1, then p > 1 since > is admissible. For the same reason, pj = pi × p > pi × 1 = pi, which
contradicts pi > pj . 2

In the following, > denotes an admissible ordering.
We need some additional definitions on polynomials.

Definition 24.4 Consider any non-zero polynomial t = c1p1+...+ckpk where the ci are non-zero coefficients
in K and p1, ..., pk are decreasing power products p1 > ... > pk.

M(t) = c1p1, ..., ckpk denotes the set of monomials of t.
P (t) = p1, ..., pk denotes the set of power products of t.
The monomial c1p1 is called the leading monomial in t and is denoted by lm(t).
The power product p1 is called the leading power product in t and is denoted by lp(t).
lc(t) = c1 is the leading coefficient.
Finally, rm(t) denotes the polynomial t− lm(t).

24.3 Polynomial reduction

A reduction relation on polynomials can be defined with a set of polynomials E.

Definition 24.5 A polynomial reduction system (PRS for short) is a pair (E,>) composed of a finite set
of polynomials E that does not contain 0 and an admissible ordering >. To any f ∈ E corresponds the
polynomial reduction rule

f> : lm(f)→ −rm(f)

January 28, 2006 rewriting solving proving

24.4 Gröbner bases 323

These polynomial reduction rules induce a relation →E as follows:

Definition 24.6 Let E be a set of polynomials. A polynomial t reduces to t′ if there exist a monomial
m ∈M(t), a polynomial f ∈ E (a reduction rule lm(f)→ −rm(f)), and a monomial m′ s.t. m = m′× lm(f)
and t′ = t−m−m′ × rm(f). This relation is denoted by t→E t′.

Example 24.3 Let E = {xy+x−1} and t = x2y−y+x2−1. The polynomial t is reducible to t′ = x−y−1.

Exercise: Consider E = {2x2y− x2 − 2, 3y2− xy+ 3x}. Find all possible reduction sequences issued from
the polynomial 6x2y2 − y2 using the PRS E.

By associating to any PRS E the abstract reduction system 〈K[x1, . . . , xn],→E〉, all notions of Chapter 4
carry over to polynomial reduction.

However it must be emphasized that one big difference with term rewriting is that polynomial reduction
is not closed under contexts, i.e. the implication t →E t′ implies t + u →E t′ + u does not hold. This
considerably complicates the theory.

Example 24.4 Consider E = {x2 − y} and the polynomials t = 2x2 + xy, t′ = xy + 2y and u = x2 − xy.
Then t→E t′ but t+u = 3x2 reduces to 3y, and t′+u = x2 +2y. However one can notice that t′+u reduces
to 3y.

This is the case in general since it can be proved that t→E t′ implies t+ u ↓E t′ + u.
We do not prove here the next properties.

Proposition 24.1 Let E be a PRS.

• The relation
∗←→E is closed under multiplication by monomial:

if t
∗←→E t′ then m× t ∗←→E m× t′.

• The relation
∗←→E is closed under context:

if t
∗←→E t′ then t+ u

∗←→E t′ + u.

• The relations ≡E and
∗←→E coincide.

Proof: See for instance [MS92] 2

As a corollary, we get that for two PRS E and E′, E and E′ define the same ideal iff
∗←→E and

∗←→E′

are the same.
Another important difference with term rewriting is that the reduction always terminates. This is a

consequence of Theorem 24.1. We just sketch the proof here.

Theorem 24.2 Every PRS E is terminating.

Proof: The admissible ordering on power products is extended to polynomials by multiset extension. It is
then possible to prove that if t →E t′ then t > t′. The proof is obtained by contradiction. See for
instance [MS92] for more details. 2

Thus any polynomial has a normal form for the reduction rellation associated to a PRS E. However
in general this normal form is not unique. Unicity is obtained if E is a Gröbner basis, i.e. if its reduction
relation is confluent. Note that confluence is sufficient to get decidability of the congruence ≡E.

24.4 Gröbner bases

Several definitions of a Gröbner basis have been given in the literature.

Definition 24.7 A confluent PRS is called a Gröbner basis.

Theorem 24.3 The following statements are equivalent:

• E is a Gröbner basis.

• Every polynomial t has a unique normal form for →E.

• Every polynomial t ∈ Ideal(E) reduces to 0.

January 28, 2006 rewriting solving proving

324 Gröbner bases

• 0 is the only normal form in Ideal(E).

Exercise: Prove the equivalences of Theorem 24.3.
Whenever an ideal I has a finite Gröbner basis, the last theorem provides a method for deciding whether

a polynomial belongs to I.
But in general a given PRS E is not confluent and the problem is now to find a PRS E′ which is a

Gröbner basis and generates the same ideal. This is the result of a completion process described now.
The algorithm is based on the computation of overlappings between polynomials. Its efficiency is improved

when reductions are performed as during the completion processes. However a big difference with completion
is that the algorithm always terminates.

The first step is to define critical pairs and prove a lemma similar to Newman’s Lemma.

Definition 24.8 Let l1 → r1 and l2 → r2 be two distinct polynomial reduction rules, with l1 = c1p1 and
l2 = c2p2. The lower product lcm(l1, l2) is the least common multiple of p1 and p2. So lcm(l1, l2) is equal to
l1m1 and to l2m2 for some monomials m1 and m2 and can be reduced to both r1m1 and to r2m2. The pair
(r1m1, r2m2) is called the critical pair of the two polynomial reduction rules.

The critical pairs (r1m1, r2m2) originating from l1 → r1 and l2 → r2 and the critical pairs (r2m1, r1m1)
originating from l2 → r2 and l1 → r1 are identified. So a PRS with n rules has C2

n = n(n − 1)/2 critical
pairs.

Definition 24.9 The critical pair (r1m1, r2m2) is connected if r1m1 and r2m2 are connected below
lcm(l1, l2), i.e. r1m1 ↓E r2m2 and lcm(l1, l2) is greater than every polynomial of this proof.

With these definitions, we get a result similar to Newman’s Lemma (Theorem 16.1 of Chapter 16).

Theorem 24.4 A PRS E is confluent (i.e. is a Gröbner basis) iff all its critical pairs are connected.

Proof: See [MS92]. 2

The algorithm for building a Gröbner basis from a PRS E can be informally described as follows:

1. Build all the critical pairs between all the polynomials of E0 = E.

2. Reduce all critical pairs to their normal forms w.r.t. E0. Add all the non-trivial normal forms to obtain
a new set of polynomials E1.

3. Repeat the same procedure for E1 to obtain E2 and so on.

This näıve process always terminates but its efficiency can be improved by interreducing polynomial
rewrite rules during the process, as in Knuth-Bendix completion.

Definition 24.10 A PRS E is called interreduced if any t ∈ E is a normal form w.r.t. E−{t} and lc(t) = 1.

Proposition 24.2 Any PRS E can by transformed into an interreduced PRS E! s.t.
∗←→E and

∗←→E′ are
the same and the sets of normal forms are the same.

Proof: See [MS92]. 2

A polynomial completion algorithm is described in Figure 24.1. It takes as input argument a polynomial
rewrite system E aand returns an irreducible Gröbner basis G with the same conversion as E. The simplification
of polynomial reduction rules is performed by the procedure SIMPLIF and the computation of critical pairs
of G is done by CP(G). Critical pair criteria may improve this last step.

This algorithm is actually a simple version of Buchberger’s algorithm described in [Buc85]. Especially
the statement P := CP(G) is too coarse since many critical pairs of G are already known to be connected.
The reader may find in [Buc85] the precise bookkeeping of unuseless and necessary critical computations.

Theorem 24.5 The procedure GROBNER applied to E always terminates and computes a reduced Gröbner
basis G s.t.

∗←→E and
∗←→G are the same.

Proof: See [MS92]. 2

January 28, 2006 rewriting solving proving

24.4 Gröbner bases 325

PROCEDURE GROBNER (E)

G := SIMPLIF(E)

P := CP(G)

WHILE P is not empty

DO choose a pair (p,q) in P;

p’:= G-normal form(p-q);

CASE p’ = 0 THEN P := P - {(p,q)};

ELSE G := SIMPLIF(G U {p’})

P := CP(G)

END CASE;

END DO

return G

END GROBNER

Figure 24.1: Buchberger’s algorithm

Example 24.5 The procedure GROBNER applied to G0 = {x2y − y + x2 − 1, xy + x − 1, xy3 + y3 + y + 2}
produces the following sets:

G1 = {x− y − 1, x2 − x+ y, x− y3 − y2 − 3}
G2 = {x− y − 1, y3 + y2 − y + 2, y4 + 2y3 + y2 + 3y + 2}
G3 = {x− y − 1, y3 + y2 − y + 2,−y2 − 2y}
G4 = {x+ 1, y + 2}

The Gröbner basis obtained in G4 allows for checking whether the polynomial

p = x3y5 − 4x2y3 + 5xy − 1

belongs to the ideal generated by G0 just by reducing it to its normal form:

x3y5 − 4x2y3 + 5xy − 1
→ −x2y5 − 4x2y3 + 5xy − 1
→ xy5 − 4x2y3 + 5xy − 1
→ −y5 − 4x2y3 + 5xy − 1
→ −4x2y3 + 5xy − y5 − 1
→ 4xy3 + 5xy − y5 − 1
→ 5xy − y5 − 4y3 − 1
→ 2y4 − 4y3 − 5y − 1
→ −8y3 − 5y − 1
→ 16y2 − 5y − 1
→ −37y − 1→ 73.

Since 73 6= 0, p does not belong to the ideal.

Exercise: Prove that the Gröbner basis of the ideal generated by

{xy2 − y2 − x+ 1, xy2 − y, x3 − x2 − x+ 1}

is {x2 − 1, xy − y − x+ 1}.
Exercise: One may wonder whether an interreduced PRS generating the same equivalence than a Gröbner
basis is a Gröbner basis. This exercise provides a counterexample.

Consider the two PRS
E = {x2y → x, xy2 → x}

and
G = {x2y → x, xy2 → x, x2 → xy}.

1. Prove that E is interreduced but not confluent.

2. Prove that G is a Gröbner basis not interreduced.

3. Prove that
∗←→E and

∗←→G are the same.

January 28, 2006 rewriting solving proving

326 Gröbner bases

This section is concluded with a uniqueness result for intereduced Gröbner bases, similar to Theorem 16.4
of Chapter 16 for rewrite systems.

Theorem 24.6 Let G1 and G2 be two interreduced Gröbner bases that generate the same equivalence relation
(
∗←→G1=

∗←→G2). If they have the same underlying admissible ordering, then they are identical up to variable
renaming.

In other words, given an admissible ordering, the interreduced Gröbner basis of an ideal Ideal(E) is
unique.

24.5 Application to geometrical problems

Interesting applications of the Gröbner bases method are described in [CSY89]. In this section, a classical
geometrical problem is solved by using Gröbner basis techniques.

Let ABCD be a parallelogramme and E be the intersection of AC and DB. Prove that AE = CE, or
in other words, the diagonals intersect in the middle.

The first point is to choose adequate coordinates. Here let A = (0, 0), B = (u1, 0), C = (u2, u3), D =
(x2, x1), E = (x4, x3). Proving that AE = CE amounts proving that g = 2u2x4 + 2u3x3 − u2

3 − u2
2 = 0.

The hypothesis of the problems are translated as follows:

• AB and AC are parallel: h1 = u1x1 − u1x3 = 0.

• DA and CB are parallel: h2 = u3x2 − (u2 − u1)x1 = 0.

• E belongs to BD: h3 = x1x4 − (x2 − u1)x3 − u1x1 = 0.

• E belongs to AC: h4 = u3x4 − u2x3 = 0.

In general the hypotheses are expressed as a system S of polynomial equations:

h1(u1, .., ui, x1, ..., xj) = 0

...

hn(u1, .., ui, x1, ..., xj) = 0

where the uk are independent and the xm dependent of uk. The conclusion is also expressed as a polynomial
equation g = g(u1, .., ui, x1, ..., xj) = 0. h1, ..., hn and g are polynomials in Q[u1, .., ui, x1, ..., xj].

One looks for the Gröbner basis of the ideal generated by S and proves that g reduces to 0.
By solving the two first equations, one gets x1 = u3, x2 = u2 − u1. Solving the two last equations yields

x3 = u3/2, x4 = u2/2. Then by replacing in g variables by their solutions, one gets g = 0. Problems arise
with degenerated cases, for instance u1 = 0, u3 = 0 in which A,B,C are co-linear.

24.6 Comparison with completion modulo AC

Buchberger’s algorithm computes the Gröbner basis for an ideal presented by a set of polynomial equations
and always terminates. The completion procedure (modulo AC) computes a convergent rewrite systems
for a set of first-order equalities. Both procedures are built around a concept of critical pairs computation.
Despite these similarities, it is not possible to describe one procedure in terms of the other. On one hand,
the term structure is more general than polynomial’s one. On the other hand a first-order presentation of
polynomials conflicts with the fact that fields may not be presented purely equationally.

So a first direction was an attempt to unify the two procedures and to propose a common ancestor of
the two procedures: this is the approach followed by Winkler [Win89], who introduces rewriting modulo a
simplification relation. The simplification relation takes into account the specific polynomials simplification
that may hide the field specific operations.

A second approach, presented by Bündgen [Bün91], is to propose a convergent rewrite system whose
initial model is isomorphic to A = K[y1, ..., yn] in the case where K is a finite field of characteristic k. Using
this set of rewrite rules and additional ground equalities specifying an ideal, the Buchberger’s algorithm
for polynomials over finite fields is simulated using completion modulo AC. In this way the Buchberger’s
algorithm can be considered as a special purpose completion with built-in AC-matching, AC-unification,
polynomial normalization and specific critical pair transformation. Indeed this does not mean it is suitable

January 28, 2006 rewriting solving proving

24.7 Conclusion 327

to use this simulation for Gröbner basis computations but brings an explanation of the strong connections
between the two procedures.

A third attempt, due to Middeldorp [MS92], showed that the construction of Gröbner bases can also be
based on the completion modulo an equivalence relation as described in Chapter 18 and on Theorem 18.1
of Section 18.2. They observe that the lack of closure under context of the polynomial rewriting relation
is source of annoyance in the development of the Gröbner bases theory. So they propose to abandon the
distributive normal form representation and to write a polynomial as a finite sum of monomials instead.
For instance, x − x + y, 2y − y and y are distinct polynomials but are equivalent because they have the
same distributive normal form y. This method does not provide a competitive way to replace Buchberger’s
algorithm, but explains in yet another way its relation with completion.

24.7 Conclusion

The Gröbner basis approach has been recently be applied to the study of Boolean polynomials, built on the
function symbols ⊕ and ∩ that represent exclusive disjunction and conjunction on booleans [SS88]. This
technique is used to build constraint solvers for boolean constraints [SS90a], and constraints over sets [SSS90].
Since constraints are sets of polynomial equations, a Gröbner basis procedure allows checking satisfiability of
such systems and also produces a simplified form of the constraints, namely the reduced Gröbner basis of the
set of polynomial equations. Such constraint solvers are implemented in the constraint logic programming
language CAL [ASS+88].

January 28, 2006 rewriting solving proving

Index

(CR,A,LK)-rewrites, 99
(E,>)-rewrites, 78
(E,A,>)-rewrites, 89
(E/A,>)-rewrites, 89
(R,A)-rewrites, 80
(R/A)-rewrites, 80
=?
E , 119

> contains R, 67
A- overlap, 228
CMW

E (f, V), 152
CUWE (f, g, V), 152
DA, 125

DlAUr, 125

E-unification, 115, 119
Ei-unifier with linear restriction, 142
PSP -generic algebra, 312
PSP -generic ground reducible, 313
PSP -generic substitution, 312
PSP -generic terms, 312
PSP -generic test set, 313
R-normal form, 64
R-unifier, 186
Λ, 20
⇔E , 119
Ω-free, 32
ω-complete, 274
→-normal form, 58
i-pure, 136
i-term, 136
t[s]ω, 20
A-equal, 120
A-equivalent, 118
A-solution, 118
A-subsumption, 120
A-unifier, 118
BVar(P), 117
C-free F -algebra, 26
C-initial, 26
Dom(t), 20
F -algebra, 25
Grd(t), 20
R(E), 155
T (F ,X), 20
U(D), 118
UA(D), 118
Var(P), 117
Var(t), 20
Λ, 20
Λ-confluent, 159
SolA(D), 118

(inter-)reduced, 67
(weakly) normalizing, 64

instantiated specification, 309
translated axiom, 309

A, 148

A(+), 126, 148

Abelian
semi-group, 30
ring, 30

abstract reduction system, 58
abstraction, 136
AC(+), 156

admissible, 221, 322
algebra

term generated, 27
boolean, 31
free, 26
initial, 26
trivial, 26

Alien, 136
almost-free, 32
alphabet, 19
antisymmetric, 53
arity, 20, 21
Arnborg, 115, 125
assignment, 26
axioms, 19

Bürckert, 125
Baader, 115, 121
basic, 183
basic narrowing, 183, 183
basic positions, 183
BasicArithmetic, 118, 119, 125, 182, 183, 186, 189

Bendix, 63
BHSS, 126

Bidoit, 115
Birkhoff, 26
blocked, 251
Bockmayr, 125
body, 308
Boole, méthode, 172
boolean algebra, 31
boolean ring, 31, 170
Boudet, 115
bound, 117

lower, 54
upper, 54

January 28, 2006 rewriting solving proving

INDEX 329

C, 131, 132

C(+), 148, 152

c-narrows, 183
carrier, 25
Chain, 54
Church-Rosser, 59, 81, 89
Church-Rosser modulo A, 81, 89
class problem, 32
class rewrite system, 79
cliff, 223, 227, 234
co-arity, 21
coherent modulo A, 82, 89
collapse-free, 32
collapsing, 31

subterm, 31
collapsing rule, 105
combined solution, 143
combined theory, 135
common part, 48
commutative

semi-group, 30
ring, 30

commutative unification procedure, 130
commutes, 108, 109
Comon, 116, 117
compatibility of parameter passing, 311
compatible, 86
complete, 54, 250, 263
complete set of most general unifiers, 121
complete set of unifiers, 120
complete sets of E-unifiers, 115
completion procedure, 196, 199
composite, 250, 251, 262
composition of substitutions, 22
comprehensive, 286
comprehensive sets of positions, 286
conclusion, 34
concurrent R-rewrite, 66
condition, 34, 90
conditional critical pair, 254
conditional equality, 34
conditional ordered critical pair, 257
conditional ordered narrowing, 258
conditional rewrite rules, 90
conditional rewrite system, 90

decreasing, 92
reductive, 93

conditional rewriting
joint, 91
natural, 91
normal, 91

conditional system, 34
conditional theory of E, 34
conflicting, 181
confluent, 59
confluent modulo A, 82, 89
confusions, 298
congruent modulo E, 321
conjecture, 275

connected, 324
connectedness criterion, 249
consistent, 34, 275, 298
consistent w.r.t. C, 299
constants, 20
constrained critical pair, 266
constrained critical pair modulo A, 269
constrained equality, 98
constrained extended equality, 269
constrained rewrite rule, 99
constrained system, 186
constraint narrowing tree, 188
constraint term, 183
constructor, 280
constructor system, 105
constructor term, 299
Contejean, 115
context deletion, 73
contradiction, 36
contraint narrowing, 183
convergent, 60
conversion, 37
Corbin, 115
correct, 208, 249, 311
cover set, 290
covering set, 284
critical pair, 199, 224

Λ-confluent, 159
critical pair criterion, 249
critical pair of the two polynomial reduction rules,

324
critical pairs, 199
Curry, 64

D, 157

DA, 125

dag solved form, 43, 129
decidable

deduction system, 19
decision procedure, 19
decomposable, 181
decompositon

ordering, 75
decreasing, 92
deduction process, 195
Deduction system, 19
defined function, 280
derivability relation, 64
derivation, 19
Devie, 115
dimension, 42
dio-systems, 165
direct inconsistency witness, 283
Distributivity, 116
domain, 20, 22
Dougherty, 116
duplicating rule, 105

element

January 28, 2006 rewriting solving proving

330 INDEX

greatest, 54
least, 54
maximal, 54
minimal, 54

embedding
homeomorphic, 56

embedding relation induced by a well-quasi-ordering,
73

empty term, 20
encompassment ordering, 23
endomorphism, 26
enrichment, 297
equality, 24
equality Herbrand interpretation, 35
equation, 24, 28, 117
equational axiom, 24
equational clause, 34
equational Horn clause, 34
equational problem, 29
equational theory of E, 24
equational unification, 121
equivalent, 29, 98
expansion set, 292
extended equality, 244
extended rule, 228
extension, 228, 311

Fages, 115
fails, 208
fair, 197, 204, 245, 246, 263, 284
fair refutation, 221
fair with respect to a critical pair criterion, 249
Fay, 116
feasible, 254
FH, 124–126

finitary, 290
finite, 31
finite labeled tree, 20
finitely generated, 31
finitely presented, 31
flattening, 85
forgetful functor, 297, 309
formal parameter, 308
formulas, 19
Fortenbacher, 115
Fourier, 116
free, 117, 299

Ω, 32
almost, 32

free algebra, 26
free functor, 309
frontier, 48
frozen, 142
function

arity, 20
interpretation, 25

function symbols, 20

Gallier, 116, 181

general
most — unifier, 41

general equation, 152
general matching equation, 152
general presentation, 155
general unification equation, 152
generic consistent, 313
generic sufficiently complete, 313
generic theory, 312
Goldfarb, 115, 116
Gröbner basis, 323
greatest element, 54
greatest lower bound, 54
ground, 20
ground Church-Rosser, 67, 78
ground confluent, 67
ground convergent, 67, 274
ground instantiation, 22
ground locally confluent, 67
ground reducible, 275
ground rewrite proof, 78
ground substitution, 22
ground terminating, 67
ground-total, 78
group, 30

Herbrand, 115
higher-order unification, 121
Hilbert, 118
Hindley, 108
homeomorphic embedding, 56
homomorphism, 26
Huet, 60, 115–117
Hullot, 116, 117
Hussmann, 65

ideal, 321
idempotent, 22
identification, 142
implies, 34
incomparable

position, 20
inconsistency witness, 283, 291
inconsistent, 34, 275
indirect inconsistency witness, 283
inductive positions, 290
inductive theorem of E, 274
inductive theorem of R, 289
inductive theory, 274
inductive variable, 290
inference rules, 19
infinitary, 290
initial algebra, 26
instance, 23, 24, 98, 120
interpretation, 25
interreduced, 324
inverse semigroups, 125
invertible, 22
irreducible, 64

January 28, 2006 rewriting solving proving

INDEX 331

ISG, 125

isomorphism, 26

Jensen, 116
join conditional rewriting, 91
joinable, 200, 254
Jouannaud, 115
junks, 298

Kapur, 67
Kirchner, 115, 117
Klay, 157
Knight, 115
Knuth, 63
Kruskal, 57

λ-calculus, 121
Lambert, 115
Lassez, 115
lattice, 31
Le Chenadec, 115
leading coefficient, 322
leading monomial, 322
leading power product, 322
least element, 54
least upper bound, 54
left-cancellable, 247
left-hand side, 64
Lescanne, 117
lexicographic extension, 55
lexicographic path ordering, 75
lexicographical extension, 54, 55
linear, 20
locally coherent modulo A, 89
locally coherent with A modulo A, 82
locally coherent with R modulo A, 82
locally confluent, 59
locally confluent modulo A, 89
lower bound, 54
lower product, 324

Maher, 115
Makanin, 115
many-sorted signature, 21, 274
many-sorted terms, 21, 274
Marriot, 115
Martelli, 115
match, 23, 64
match modulo A, 81
match-equation, 38
matching system, 38
Matijasevič, 115, 118
maximal, 54
Meseguer, 65
mgu, 41
minimal, 54
minimal generating set, 122
model, 27, 34
modular, 103
monadic, 32

mono-sorted algebras, 25
monoid, 30
monomial, 321
monotonic, 65
Montanari, 115
more general, 23, 24, 120
more general modulo A, 28
more general than, 251
most general unifier, 41
multiequation, 117
multiset, 55
multiset extension, 55, 56
multiset path ordering, 74
mutation, 130

Narendran, 67
narrowed, 182
Narrowing, 182
narrowing, 116, 182

basic, 183
constraint, 183

natural conditional rewriting, 91
Nipkow, 161
Noetherian, 32, 54, 58, 68

rewrite system, 68
Noetherian induction principle, 54
non-overlapping, 200
non-variable positions in t, 20
normal conditional rewriting, 91
Nutt, 116

occur-check, 44
occurrence, 20, see position
one-step CR-rewrite, 100
one-step concurrent R-rewrite, 66
open, 20
ordered, 94
ordered class rewrite system, 89
ordered conditional rewrite system, 94
ordered critical disequality modulo A, 246
ordered critical pair, 213
ordered critical pair modulo A, 244
ordered instance, 78, 95
ordered rewrite system, 78
ordered rewriting relation, 78
ordering, 53

partial, 53
pre, 53
quasi, 53
recurvive decomposition, 75
strict, 53
total, 53
well-founded, 54
well-quasi, 56

orthogonal, 68
outside the set of variables W , 121
overlap, 199
overlapped term, 199, 254, 257

parameter passing, 309

January 28, 2006 rewriting solving proving

332 INDEX

parameter terms, 308
parameter variables, 308
parameters, 42
paramodulation, 222
partial ordering, 53
Paterson, 115
peak, 194, 223, 227, 234
Peano, 125
permutation, 22
Permutative, 31
permutative, 31

variable, 31
persistent, 311
Pietrzykowski, 116
Plotkin, 115, 117
polynomial, 321
polynomial interpretations, 85
polynomial reduction rule, 322
polynomial reduction system, 322
poset, 53
position, 20

incomparable, 20
position, alien AlienPos(t), 136
positions

basic, 183
Pottinger, 62
pre ordering, 53
precedence, 74
predicate

complete, 54
premises, 19
Presburger, 115
presentation, 33

general, 155
preserves Σ-terms and Σ-sorts, 299
preserves parameters, 314
preunifiers, 115
primal, 175
prime, 251
primitive, 297
primitive equalities, 297
primitive terms, 297
primitive variable, 297
proof, 19, 193

syntactic, 147
proof ordering, 194
proof pattern, 194
proof transformation relation, 194
proof transformation rule, 194
proper subterm, 21
protected, 229, 298
protected for coherence of l → r, 234
protection of actual parameter, 311
provability relation, 25
provably inconsistent, 281
provably inconsistent with Th(PSP), 318
provably inconsistent with Th(SP), 315
pure lexicographic ordering, 322

quasi ordering, 53
quasi-commutes, 108
quasi-ordered set, 53

Réty, 116
range, 22
rank, 42
rational trees, 21
recursive decomposition ordering, 75
recursive path ordering with status, 75
redex, 64
reduced, 236
reduction ordering, 70
reductive, 93
redundant, 197, 259
reflect, 204
reflects, 196, 204
reflexive, 53
reflexive resolvent, 258
refutation, 221, 246
refutationally complete, 221, 282
regular, 31, 32
relation

derivability, 64
narrowing, 182
ordered rewriting, 78
rewrite, 64

relatively terminating, 108
renaming, 22, 37
replacement of equals by equals, 25
reproductive, 171
resolution, 222
resolvent, 147
restriction, 22
rewrite

ordered class rewrite system, 89
ordered rewrite system, 78

rewrite ordering, 65
rewrite proof, 81, 194, 199
rewrite proof modulo A, 223, 227, 234
rewrite rule, 64
rewrite system, 64
rewrites, 64, 91
rewriting

ordered rewriting relation, 78
rewriting derivation, 64
rewriting relation, 64
right-cancellable, 247
right-hand side, 64
ring, 30

boolean, 31
Robinson, 49, 115
root, 20
Rosen, 108

satisfiable, 29
satisfies, 34
satisfy, 35
saturated, 197, 259

January 28, 2006 rewriting solving proving

INDEX 333

Schönfinkel, 64
Schmidt-Schauß, 115, 116
semantic unification, 121
semantics of the parameterized specification, 309
semi-decidable

deduction system, 19
semi-group, 30
sequential R-rewriting, 66
sequents, 65
set

quasi-ordered, 53
set of A-critical pairs, 228, 232
set of variables in t, 20
sets of complete superpositions, 286
Shostak, 115
Siekmann, 116
signature, 20

many-sorted, 21
signature morphism, 309
simple, 32, 136
simple theory, 136
simplification ordering, 73
simplification set, 292
simplifies, 269
simplifying, 219
simply terminating, 74
size

term, 20
Smolka, 116
Snyder, 116, 181, 209
solution, 29, 41, 171

match-equation, 38
solved form, 128

dag, 43
tree, 42

solved variable, 41
sorts, 21
sound, 249
specification, 33, 274
specification morphism, 309
Stickel, 115
strict ordering, 53
strict subsumption, 23, 24, 37
strict subterm, 21
strongly confluent, 61
strongly non-ambiguous, 256
strongly normalizing, 58, 68
subproof, 149
substitution, 21

addition, 22
composition, 22
ground, 22
restriction, 22
subsumption, 24

subsumed, 250
subsumes, 23
subsumption, 23, 24, 120
subsumption equivalence, 23, 24, 37
subsumption ordering modulo A, 27

subterm, 20
subterm collapsing, 31
subterm deletion, 73
successful, 208
successful leave, 188
sufficiently complete, 298
sufficiently complete w.r.t. C, 299
superposition test, 200
symbol

variable, 20
symbolic solution, 98
syntactic, 147

proof, 147
theory, 147

Syntactic unification, 41
syntactic unification procedure, 45
system, 117

constrained, 186
ordered class rewrite, 89
ordered rewrite, 78

Szabó, 125, 126

target specification, 308
Tarjan, 115
tautology, 36
term

constraint, 183
domain, 20
ground, 20
linear, 20
open, 20

term generated, 27
term rewriting system, 64
term-closed, 65
terme, alien subterm AST (t), 136
terme, layers of theories ht(t), 136
terminating, 58, 81
termination property, 69
terms, 20
test set, 276, 290
the free construction, 309
theorem, 19
theory

collapse-free, 32
variable permutative, 32
finite, 31
regular, 32
syntactic, 147

Tiden, 115, 125
total (quasi) ordering, 53
total degree ordering, 322
transition rule, 201
transitive, 53
tree, 20

infinite, 21
narrowing, 188
rational, 21

tree solved form, 42, 128
trivial, 254

January 28, 2006 rewriting solving proving

334 INDEX

trivial algebra, 26
type zero, 122

unblocked, 251
undecidable

deduction system, 19
unification

higher-order, 121
unification problem, 117
unification problems, 41
unifier, 41, 171

A, 118
most general, 41

unique normal form property, 58
universal unification, 116
unsatisfiable, 34, 36
unsorted algebras, 25
upper bound, 54

valid, 27, 34
variable, 20

away from, 117
bound, 117
free, 117
outside the set of –, 121
parameter, 42
solved, 41, 42

variable abstraction, 136, 141
variable overlap, 199, 224
variable permutative, 31, 32
variety, 26

weakly innermost normalizing, 68
weakly normalizing, 58, 68
Wegman, 115
well-founded, 54
well-founded lower semi-lattice, 39
well-founded ordering, 54
well-quasi ordering, 56
word problem, 29

Yelick, 115

zero-step R-rewrite, 66
Zorn, 54

January 28, 2006 rewriting solving proving

Bibliography

[Abd87] H. Abdulrab. Résolution d’équations sur les Mots : étude et Implantation LISP de l’algorithme
de Makanin. Thèse de Doctorat d’Université, Université de Rouen (France), March 1987. III,
10.1

[AH90] Siva Anantharaman and J. Hsiang. An automated proof of the Moufang identities in alternative
rings. Journal of Automated Reasoning, 6:79–109, 1990. 19.1

[AHM89] Siva Anantharaman, J. Hsiang, and J. Mzali. Sbreve2: A term rewriting laboratory with (AC-
)unfailing completion. In N. Dershowitz, editor, Proceedings 3rd Conference on Rewriting Tech-
niques and Applications, Chapel Hill (N.C., USA), volume 355 of Lecture Notes in Computer
Science, pages 533–537. Springer-Verlag, April 1989. 7.1

[AM90] J. Avenhaus and K. Madlener. Term rewriting and equational reasoning. In R. B. Banerji,
editor, Formal Techniques in Artifial Intelligence, pages 1–43. Elsevier Science Publishers B. V.
(North-Holland), Amsterdam, 1990. 1

[AN80] A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and topological properties.
Fundamenta Informaticae, 3(4):181–205, 1980. 2.2.5

[AP90] H. Abdulrab and J.-P. Pécuchet. Solving word equations. Journal of Symbolic Computation,
8(5):499–522, 1990. 10.1

[ASS+88] A. Aiba, K. Sakai, Y. Sato, D. Hawley, and R. Hasegawa. Constraint logic programming language
cal. In ICOT, editor, Proceedings of the International Conference on Fifth Generation Computer
Systems, volume 1, 1988. 24.7

[AT85] S. Arnborg and E. Tiden. Unification problems with one-sided distributivity. In Proceedings 1st
Conference on Rewriting Techniques and Applications, Dijon (France), volume 202 of Lecture
Notes in Computer Science, pages 398–406, Dijon (France), May 1985. Springer-Verlag. 10.1

[B+87] H. P. Barendregt et al. Term graph rewriting. In Proc. of PARLE’87, volume 259 of Lecture
Notes in Computer Science. Springer-Verlag, 1987. 7.7

[Baa86a] Franz Baader. Unification in idempotent semigroups is of type zero. Journal of Automated
Reasoning, 2(3):283–286, 1986. 10.2.3, 10.1

[Baa86b] Franz Baader. Unification in varieties of idempotent semigroups. Internal report, Institut für
Mathematische Maschinen und Datenverarbeitung, Universität Erlangen, 1986. 10.1

[Baa87] Franz Baader. Unification in varieties of idempotent semigroups. Semigroup Forum, 36, 1987.
10.2.3

[Baa89a] Franz Baader. Characterizations of unification type zero. In N. Dershowitz, editor, Proceedings
3rd Conference on Rewriting Techniques and Applications, Chapel Hill (N.C., USA), volume
355 of Lecture Notes in Computer Science, pages 2–14. Springer-Verlag, April 1989. III, 10.2.2,
10.2.2

[Baa89b] Franz Baader. Unification in commutative theories. Journal of Symbolic Computation, 8(5):479–
498, 1989. 10.1

[Baa91] F. Baader. Unification, Weak Unification, Upper Bound, Lower Bound, and Generalization
Problems. In Book [Boo91], pages 86–97. 2.3.3, 10.1, 10.2.1

January 28, 2006 rewriting solving proving

336 BIBLIOGRAPHY

[Bac87] Leo Bachmair. Proof methods for equational theories. PhD thesis, University of Illinois, Urbana-
Champaign, (Ill., USA), 1987. Revised version, August 1988. 5.1, 15.2, 16.3, 16.3, 16.3, 17.3,
17.1, 17.3, 17.5, 17.3, 18.1, 18.2.2, 18.3.2, 18.3.3, 18.6, 18.4.2, 22.6.1, 23.3.9, 23.3.9, 23.3.10

[Bac88] L. Bachmair. Proof by consistency in equational theories. In Proceedings 3rd IEEE Symposium
on Logic in Computer Science, Edinburgh (UK), pages 228–233, 1988. 22.1, 23.2.5, 23.3.10,
23.3.10

[Bac91] L. Bachmair. Canonical equational proofs. Computer Science Logic, Progress in Theoretical
Computer Science. Birkhäuser Verlag AG, 1991. 20.5

[Bar84] H. Barendregt. The Lambda-Calculus, its syntax and semantics. Studies in Logic and the
Foundation of Mathematics. Elsevier Science Publishers B. V. (North-Holland), Amsterdam,
1984. Second edition. 4.6.2

[Bar90] F. Barbarena. Adding algebraic rewriting to the calculus of constructions: strong normalization
preserved. In S. Kaplan and M. Okada, editors, Proceedings 2nd International Workshop on
Conditional and Typed Rewriting Systems, Montreal (Canada), volume 516 of Lecture Notes in
Computer Science, pages 262–271. Springer-Verlag, June 1990. 8.6

[BB88] Franz Baader and W. Büttner. Unification in Commutative Idempotent Monoids. Theoretical
Computer Science, 56(1):345–352, 1988. 10.1

[BB89] W. Buntine and H.-J. Bürckert. On solving equations and disequations. Technical Report SR-
89-03, Universität Kaiserslautern, 1989. 21.5

[BBH92] R. Barnett, D. Basin, and J. Hesketh. A recursion planning analysis of inductive completion. In
Proc. 2nd Symposium on Mathematics and Artificial Intelligence, Annals of Mathematics and
Artificial Intelligence, 1992. 22.1

[BCL87] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polynomial interpretations
and its implementation. Science of Computer Programming, 9(2):137–160, October 1987. 6.3.2,
7.3.3

[BD86a] L. Bachmair and N. Dershowitz. Commutation, transformation and termination. In J. Siekmann,
editor, Proceedings 8th International Conference on Automated Deduction, Oxford (UK), volume
230 of Lecture Notes in Computer Science, pages 5–20. Springer-Verlag, 1986. 7.3.3, 8.3, 8.1,
8.11

[BD86b] L. Bachmair and N. Dershowitz. Critical pair criteria for the Knuth-Bendix completion proce-
dure. Technical report, University of Illinois at Urbana-Champaign, 1986. 19.3

[BD87] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. In Proceedings
2nd Conference on Rewriting Techniques and Applications, Bordeaux (France), volume 256 of
Lecture Notes in Computer Science, pages 192–203, Bordeaux (France), May 1987. Springer-
Verlag. 16.3

[BD88] L. Bachmair and N. Dershowitz. Critical pair criteria for completion. Journal of Symbolic
Computation, 6:1–18, 1988. 19.3

[BD89a] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a congruence. Theoretical
Computer Science, 67(2-3):173–202, October 1989. 21.1

[BD89b] L. Bachmair and N. Dershowitz. Equational inference, canonical proofs and proof orderings.
Draft Notes, 1989. 15.3, 16.3, 16.3, 17.5, 19.3, 19.1, 19.2, 22.6.2

[BD94] Leo Bachmair and Nachum Dershowitz. Equational inference, canonical proofs, and proof or-
derings. Journal of Association for Computing Machinery, 41(2):236–276, 1994. 15.2

[BDJ78] D. Brand, J. A. Darringer, and W. H. Joyner. Completeness of conditional reductions. Technical
Report RC 07404, IBM USA Research Center, Yorktown Heights, NY, 1978. 2.6.3

[BDP89] L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure. In H. Aı̈t-Kaci
and M. Nivat, editors, Resolution of Equations in Algebraic Structures, Volume 2: Rewriting
Techniques, pages 1–30. Academic Press inc., 1989. 7.1, 7.1, 11.3, 17.1, 17.5, 23.3.9

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 337

[BES+90] W. Büttner, K. Estenfeld, R. Schmid, H.-A. Schneider, and E. Tiden. Symbolic constraint han-
dling through unification in finite algebras. Applicable Algebra in Engineering, Communication
and Computation, 1(2):97–118, 1990. 13.2.1, 13.2.5

[BG89] H. Bertling and H. Ganzinger. Compile-time optimization of rewrite-time goal solving. In N. Der-
showitz, editor, Proceedings 3rd Conference on Rewriting Techniques and Applications, Chapel
Hill (N.C., USA), volume 355 of Lecture Notes in Computer Science, pages 45–58. Springer-
Verlag, April 1989. 7.5

[BG91a] L. Bachmair and H. Ganzinger. Perfect model semantics for logic programs with equality. In
K. Furukawa, editor, Proc. 8th International Conference on Logic Programming, Logic Program-
ming Series, Research Reports and Notes, pages 645–659. The MIT press, July 1991. 20.5

[BG91b] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. Technical Report MPI-I-91-208, Max-Planck Institut für Informatik, Saarbrücken,
1991. 7.1, 7.5, 20.1, 20.3, 20.1, 20.2, 20.3, 20.3.4, 20.4, 20.4.2

[BG93] L. Bachmair and H. Ganzinger. Associative-Commutative superposition. Technical Report MPI-
I-93-250, Max-Planck-Institut für Informatik, Saarbrücken, 1993. 19.2.4

[BGLS92] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation and superposition.
In Proceedings 11th International Conference on Automated Deduction, Saratoga Springs (N.Y.,
USA), pages 462–476, 1992. 21.1, 21.3, 21.1, 21.4

[BGM87] P. G. Bosco, E. Giovannetti, and G. Moiso. Refined strategies for semantic unification. In
Proceedings of TAPSOFT’87, volume 150 of Lecture Notes in Computer Science, pages 276–290.
Springer-Verlag, 1987. 14.2.5

[BH91] M. P. Bonacina and J. Hsiang. On Fairness of Completion-Based Theorem Proving Strategies.
In Book [Boo91], pages 348–360. 15.3

[BH92] M. P. Bonacina and J. Hsiang. On rewrite programs: semantics and relationship with Prolog.
Journal of Logic Programming, ??(??):??, 1992. 7.5.4

[BHSS90] H.-J. Bürckert, A. Herold, and M. Schmidt-Schauß. On equational theories, unification and
(un)decidability. In Claude Kirchner, editor, Unification, pages 69–116. Academic Press inc.,
London, 1990. 2.4, 2.5, 2.4.8, 10.4, 11.2

[Bir35] G. Birkhoff. On the structure of abstract algebras. Proceedings Cambridge Phil. Soc., 31:433–454,
1935. 2, 2.2, 2.3, 2.5

[Bir67] G. Birkhoff. Lattice Theory, volume 25. American Mathematical Society, Providence R.I., third
edition, 1967. 3.1.3, 10.2.2

[BJSS88] A. Boudet, J.-P. Jouannaud, and M. Schmidt-Schauß. Unification in boolean rings and abelian
groups. In Proceedings 3rd IEEE Symposium on Logic in Computer Science, Edinburgh (UK),
1988. III

[BK86] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluency and termination. Journal
of Computer and System Sciences, 32(3):323–362, 1986. 2.6.3, 7.1, 7.5, 7.11, 20.1, 20.4, 20.2

[BK89] K. Bundgen and W. Küchlin. Computing ground reducibility and inductively complete positions.
In N. Dershowitz, editor, Proceedings 3rd Conference on Rewriting Techniques and Applications,
Chapel Hill (N.C., USA), Lecture Notes in Computer Science, pages 59–75. Springer-Verlag,
1989. 22.1

[BKR92] Adel Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induction. Technical
Report 1636, INRIA, 1992. 22.7

[BKW93a] A. Bockmayr, S. Krischer, and A. Werner. Narrowing strategies for arbitrary canonical rewriting
systems. Technical Report No. 2011, INRIA-Lorraine, 1993. Also published as MPI-I-93-233
of MPI Saarbrücken, and Interner Bericht 22/93 of Universität Karlsruhe, and submitted to
Fundamenta Informatica. 14.2.4

January 28, 2006 rewriting solving proving

338 BIBLIOGRAPHY

[BKW93b] A. Bockmayr, S. Krischer, and A. Werner. An optimal narrowing strategy for general canon-
ical systems. In M. Rusinowitch and J.-L. Rémy, editors, Proceedings of the 3rd International
Workshop on Conditional Term Rewriting Systems (CTRS-92), volume 656 of Lecture Notes in
Computer Science, pages 483–497. Springer-Verlag, 1993. 14.2.4

[BL80] G. Butler and D. S. Lankford. Experiments with computer implementations of procedures which
often derive decision algorithms for the word problem in abstract algebras. Technical Report
Memo MTP-7, Louisiana Tech. University, Mathematics Dept., Ruston LA, 1980. 5.5, 16.5

[BL81] A. Ballantyne and D. S. Lankford. New decision algorithms for finitely presented commutative
semigroups. Computers and Maths. with Appls., 7:159–165, 1981. 18.7

[BL86] M. Bellia and G. Levi. The relation between logic and functional languages. Journal of Logic
Programming, 3:276–290, 1986. 14.2.5

[BM67] G. Birkhoff and S. MacLane. Algebra. The Macmillan Company, 1967. Translated in French by
J. Weil [BM70]. 2, 10.2.2

[BM70] G. Birkhoff and S. MacLane. Algèbre, volume I et II of Cahiers Scientifiques. Gauthier–Villard,
Paris, 1970. Traduit de l’anglais par J. Weil. 24.7

[BM84] J. A. Bergstra and J.-Ch. Meyer. On specifying sets of integers. Elektronishe Informations-
verarbeitung und Kybernetics, 20(10 & 11):531–541, 1984. 2.6.5, 2.16

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and all That . Cambridge University Press,
1998. 1

[Boc87] A. Bockmayr. A note on a canonical theory with undecidable unification and matching problem.
Journal of Automated Reasoning, 3(1):379–381, 1987. 10.7

[Boc92] Alexander Bockmayr. Algebraic and logic aspects of unification. In Klaus U. Schulz, editor,
Word Equations and Related Topics, First International Workshop, IWWERT ’90, Tübingen,
Germany, October 1-3, 1990, Proceedings, volume 572 of Lecture Notes in Computer Science,
pages 171–180. Springer, 1992. 10.6

[Boc93] Alexander Bockmayr. Conditional narrowing modulo a set of equations. Applicable Algebra in
Engineering, Communication and Computation, xx(xxx):pp, January 1993. 14.2.4

[Boo47] G. Boole. The Mathematical Analysis of Logic. Macmillan, New York, 1847. Reprinted: B.
Blackwell, London, England, 1948. 13.2.1, 13.2.3, 13.2

[Boo91] Ronald V. Book, editor. Rewriting Techniques and Applications, 4th International Conference,
RTA-91, LNCS 488, Como, Italy, April 10–12, 1991. Springer-Verlag. 24.7

[Bou70] N. Bourbaki. Théorie des ensembles. Eléments de Mathématique. Hermann, Paris, 1970. 10.2.2

[Bou89] A. Boudet. A new combination technique for ac unification. Internal report 494, LRI, Orsay
(France), June 1989. III

[Bou90a] A. Boudet. Unification dans les mélanges de théories équationelles. Thèse de Doctorat
d’Université, Université de Paris-Sud, Orsay (France), February 1990. 11.2.3, 11.5, 11.3, 11.4

[Bou90b] A. Boudet. Unification in a combination of equational theories: An efficient algorithm. In M. E.
Stickel, editor, Proceedings 10th International Conference on Automated Deduction, Kaiser-
slautern (Germany), volume 449 of Lecture Notes in Computer Science. Springer-Verlag, July
1990. 11, 11.3, 11.4

[Bou90c] Wadoud Bousdira. Etude des Propriétés des Systèmes de Réécriture Conditionnelle. Mise en
Oeuvre d’un Algorithme de Complétion. PhD thesis, Institut National Polytechnique de Lorraine,
1990. 20.1

[Bou91] Adel Bouhoula. Preuve automatique par paramodulation, réécriture et induction. Rapport de
DEA, Université Henri Poincaré – Nancy 1, September 1991. 22.7.2

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 339

[Bou94] A. Bouhoula. Preuves automatiques par récurrence dans les théories conditionnelles. Thèse de
Doctorat d’Université, Université Henri Poincaré – Nancy 1, March 1994. 22.7, 22.7, 22.5, 22.7.2,
22.7.2, 22.7.2

[BPW89] T. B. Baird, G. E. Peterson, and Ralph W. Wilkerson. Complete sets of reductions modulo
associativity, commutativity and identity. In N. Dershowitz, editor, Proceedings 3rd Conference
on Rewriting Techniques and Applications, Chapel Hill (N.C., USA), volume 355 of Lecture Notes
in Computer Science, pages 29–44. Springer-Verlag, April 1989. 21.1, 21.13

[BR87] Wadoud Bousdira and Jean-Luc Rémy. Reveur4: A laboratory for conditional rewriting. In
F. J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors, Proceedings of 4th Symposium
on Theoretical Aspects of Computer Science, volume 247 of Lecture Notes in Computer Science,
pages 472–473. Springer-Verlag, 1987. 20.1

[BR93] Adel Bouhoula and Michaël Rusinowitch. Automatic case analysis in proof by induction. In
Ruzena Bajcsy, editor, Proceedings 13th International Joint Conference on Artificial Intelligence,
Chambéry (France), volume 1, pages 88–94. Morgan Kaufmann, August 1993. 22.7.1

[Bro75] T. Brown. A structured design-method for specialized proof procedures. PhD thesis, California
Institute of Technology, Pasadena, California, 1975. 17.7

[BS86] R. V. Book and J. Siekmann. On unification: Equational theories are not bounded. Journal of
Symbolic Computation, 2:317–324, 1986. 10.9

[BS87] W. Büttner and H. Simonis. Embedding boolean expressions into logic programming. Journal
of Symbolic Computation, 4(2):191–205, 1987. 13.2.1, 13.2.3

[BS92] Franz Baader and Klaus Schulz. Unification in the union of disjoint equational theories: Combin-
ing decision procedures. In Proceedings 11th International Conference on Automated Deduction,
Saratoga Springs (N.Y., USA), pages 50–65, 1992. 11, 11.3, 11.3.4, 11.3.4, 11.3.5

[Buc79] B. Buchberger. A criterion for detecting unnecessary reductions in the construction of gröbner
bases. In Proceedings of EUROSAM’79, volume 72 of Lecture Notes in Computer Science, pages
3–21. Springer-Verlag, 1979. 19.3

[Buc85] B. Buchberger. Multidimensional Systems Theory, chapter Gröbner bases: an algorithmic
method in polynomial ideal theory, pages 184–232. Reidel, Bose, N.K. Ed., 1985. 24.1, 24.4

[Bun87] R. Bundgen. Design, implementation and application of an extended ground reducibility test.
Technical Report 88-05, University of Delaware USA, December 1987. 22.4

[Bün91] R. Bündgen. Simulation Buchberger’s Algorithm by Knuth-Bendix Completion. In Book [Boo91],
pages 386–397. 24.6

[Bür86] H.-J. Bürckert. Some relationships between unification, restricted unification and matching. In
J. Siekmann, editor, Proceedings 8th International Conference on Automated Deduction, Oxford
(UK), volume 230 of Lecture Notes in Computer Science, pages 514–524. Springer-Verlag, 1986.
11

[Bür89] H.-J. Bürckert. Matching — A special case of unification? Journal of Symbolic Computation,
8(5):523–536, 1989. III, 10.3

[Bür90] H.-J. Bürckert. A resolution principle for clauses with constraints. In M. E. Stickel, editor,
Proceedings 10th International Conference on Automated Deduction, Kaiserslautern (Germany),
volume 449 of Lecture Notes in Computer Science, pages 178–192. Springer-Verlag, July 1990.
21.5

[Büt85] W. Büttner. Unification in the datastructure multiset. Memo SEKI 85-V-KL, Universität Kaiser-
slautern, 1985. 13.1.5, 13.1.5

[CB83] J. Corbin and M. Bidoit. A rehabilitation of Robinson’s unification algorithm. In R. Pavon,
editor, Proceedings of 1983 IFIP Congress, pages 909–914. Elsevier Science Publishers B. V.
(North-Holland), 1983. III, 10.1

January 28, 2006 rewriting solving proving

340 BIBLIOGRAPHY

[CD85] R. J. Cunningham and A. J. J. Dick. Rewrite systems on a lattice of types. Acta Informatica,
22(2):149–169, 1985. III

[CD89] E. Contejean and H. Devie. Solving systems of linear diophantine equations. In H.-J. Bürckert
and W. Nutt, editors, Proceedings 3rd International Workshop on Unification, Lambrecht (Ger-
many), June 1989. III

[CD91] E. Contejean and H. Devie. Résolution de systèmes linéaires d’équations diophantiennes. Compte-
rendus de l’Académie des Sciences de Paris, 1991. 13.1.5

[CF90] M. Clausen and A. Fortenbacher. Efficient solution of linear diophantine equations. In Claude
Kirchner, editor, Unification, pages 377–392. Academic Press inc., London, 1990. 13.1.5

[CG91] P.-L. Curien and G. Ghelli. On Confluence for Weakly Normalizing Systems. In Book [Boo91],
pages 215–225. 4.6.3, 4.4, 4.6.3

[Cha94] Jacques Chabin. Unification Générale par Surréduction Ordonnée Contrainte et Surréduction
Dirigée. Thèse de Doctorat d’Université, Université d’Orléans, January 1994. 14.2.1, 14.2.4

[CHK90] H. Chen, J. Hsiang, and H. C. Kong. On finite representations of infinite sequences of terms.
In S. Kaplan and M. Okada, editors, Proceedings 2nd International Workshop on Conditional
and Typed Rewriting Systems, Montreal (Canada), volume 516 of Lecture Notes in Computer
Science, pages 100–114. Springer-Verlag, June 1990. 16.6

[Chr92] J. Christian. Some termination criteria for narrowing and E-narrowing. In D. Kapur, editor,
Proceedings 11th International Conference on Automated Deduction, Saratoga Springs (N.Y.,
USA), volume 607 of Lecture Notes in Artificial Intelligence, pages 582–588. Springer-Verlag,
June 1992. 14.2

[CL87] J. Christian and P. Lincoln. Adventures in associative-commutative unification. Technical Report
ACA-ST-272-87, MCC, 1987. 13.1.1, 13.1.5

[CL91] E. A. Cichon and P. Lescanne. Polynomial Interpretations and the Complexity of Algorithms.
Rapport interne 91-R-151, Centre de Recherche en Informatique de Nancy, Vandœuvre-lès-Nan-
cy, December 1991. to be presented at CADE’92. 6.3.2

[Coh81] Paul M. Cohn. Universal Algebra. Reidel, D., Dordrecht, Holland, second edition, 1981. 2

[Col84] A. Colmerauer. Equations and inequations on finite and infinite trees. In Proceedings of FGCS’84,
pages 85–99, November 1984. 3.3, 3.4, III

[Col89] A. Colmerauer. Une introduction à Prolog III. In J.-P. Haton, editor, Actes des onzièmes
journées francophones sur l’informatique : Architectures Avancées pour l’Intelligence Artificielle,
pages 195–218, Nancy (France), January 1989. EC2. III

[Com88a] H. Comon. An effective method for handling initial algebras. In J. Grabowski, P. Lescanne,
and W. Wechler, editors, Proceedings 1st International Workshop on Algebraic and Logic Pro-
gramming, pages 108–118. Akademie Verlag, 1988. Also in Springer-Verlag, Lecture Notes in
Computer Science, volume 343. 22.4

[Com88b] H. Comon. Unification et disunification. Théories et applications. Thèse de Doctorat
d’Université, Institut Polytechnique de Grenoble (France), 1988. 10.1, 10.1

[Com91a] H. Comon. Completion of rewrite systems with membership constraints. Research report, CNRS-
LRI, August 1991. 21.1

[Com91b] H. Comon. Disunification: a survey. In Jean-Louis Lassez and G. Plotkin, editors, Computational
Logic. Essays in honor of Alan Robinson, chapter 9, pages 322–359. The MIT press, Cambridge
(MA, USA), 1991. III

[Com92] H. Comon. Completion of rewrite systems with membership constraints. In W. Kuich, editor,
Proceedings of ICALP 92, volume 623 of Lecture Notes in Computer Science. Springer-Verlag,
1992. 21.1, 21.5

[Cou80] B. Courcelle. Infinite trees in normal form and recursive equations having a unique solution.
Math. Syst. Theory, 1980. 2.2.5

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 341

[Cou83] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25(2):95–
169, March 1983. 2.2.5

[CP61] A. H. Clifford and G. B. Preston. The algebraic theory of semigroups. Number 7 in Mathematical
surveys. American Mathematical Society, 1961. Il y a deux tomes. Le second a ete publie en 67.
13.1.4

[CR80] B. Courcelle and J.-C. Raoult. Completions of ordered magmas. Fundamenta Informaticae,
3(1):105–116, 1980. 2.2.5

[CR91] J. Chabin and P. Réty. Narrowing Directed by a Graph of Terms. In Book [Boo91], pages
112–123. 14.2.4

[CSY89] S. C. Chou, W. F. Schelter, and J. G. Yang. Characteristics sets and Gröbner bases in geometry
theorem proving. In H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic
Structures, volume 2, pages 33–91. Academic Press inc., New York, 1989. 24.5

[Cur86] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming.
Pitman, 1986. 16.11

[CZ90] R. Caferra and N. Zabel. A method for simultaneous search for refutations and models using
equational problems. submitted, 1990. 21.5

[Dau89] M. Dauchet. Simulation of Turing machines by a left-linear rewrite rule. In N. Dershowitz, editor,
Proceedings 3rd Conference on Rewriting Techniques and Applications, Chapel Hill (N.C., USA),
volume 355 of Lecture Notes in Computer Science, pages 109–120. Springer-Verlag, April 1989.
6.2

[dC84] D. de Champeaux. About the paterson-wegman linear unification algorithm. Technical report,
Tulane University, New Orleans, April 1984. 3.2.5

[Del86] J.-P. Delahaye. Outils logiques pour l’intelligence artificielle. Eyrolles, Paris (France), 1986. 2

[Der82] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17:279–301,
1982. 6.3, 6.3

[Der83a] P. Deransart. An operational algebraic semantics of prolog programs. Technical report, INRIA,
Le Chesnay (France), 1983. 14.2.5

[Der83b] N. Dershowitz. Applications of the Knuth-Bendix completion procedure. Technical Report
ATR-83(8478)-2, The Aerospace Corporation, El Segundo, Calif. 90245, May 1983. 22.1

[Der85a] N. Dershowitz. Computing with rewrite systems. Information and Control, 65(2/3):122–157,
1985. 22.4

[Der85b] N. Dershowitz. Termination. In Proceedings 1st Conference on Rewriting Techniques and Ap-
plications, Dijon (France), volume 202 of Lecture Notes in Computer Science, pages 180–224,
Dijon (France), May 1985. Springer-Verlag. 6.2

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1 & 2):69–116,
1987. 6.5, 7.2.2, 24.7

[Der89] N. Dershowitz. Completion and its applications. In H. Aı̈t-Kaci and M. Nivat, editors, Resolution
of Equations in Algebraic Structures, Volume 2: Rewriting Techniques, pages 31–86. Academic
Press inc., 1989. 16.9

[Der90] N. Dershowitz. A maximal-literal unit strategy for Horn clauses. In S. Kaplan and M. Okada,
editors, Proceedings of the 2nd International Workshop on Conditional and Typed Rewriting
Systems, volume 516 of Lecture Notes in Computer Science, pages 14–25. Springer-Verlag, 1990.
20.1, 20.5

[Dev91] H. Devie. Procédures de complétion équationnelle. PhD thesis, Université de Paris-Sud, 1991.
15.2

January 28, 2006 rewriting solving proving

342 BIBLIOGRAPHY

[DG89] J. Darlington and Y. Guo. Narrowing and unification in functional programming — an evaluation
mechanism for absolute set abstractions. In N. Dershowitz, editor, Proceedings 3rd Conference on
Rewriting Techniques and Applications, Chapel Hill (N.C., USA), volume 355 of Lecture Notes
in Computer Science, pages 92–108. Springer-Verlag, April 1989. 14.2.5

[DHLT87] M. Dauchet, T. Heuillard, P. Lescanne, and S. Tison. Decidability of the confluence of ground
term rewriting systems. In Proceedings 2nd IEEE Symposium on Logic in Computer Science,
Ithaca (N.Y., USA), pages 353–359, 1987. 5.7

[Dic13] L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Am. J. Math., 35:413–426, 1913. 24.2

[DJ90a] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 6, pages 244–320. Elsevier Science Publishers B. V.
(North-Holland), 1990. 1, 3.1.4, 5.1, 8.2, III, 21.2

[DJ90b] D. Dougherty and P. Johann. An improved generalE-unification method. In M. E. Stickel, editor,
Proceedings 10th International Conference on Automated Deduction, Kaiserslautern (Germany),
volume 449 of Lecture Notes in Computer Science, pages 261–275. Springer-Verlag, July 1990.
14.1.1

[DJ91] N. Dershowitz and J.-P. Jouannaud. Notations for rewriting. Bulletin of European Association
for Theoretical Computer Science, 43:162–172, February 1991. 1, 5.1

[DJvP89] L. Duponcheel, L. Jadoul, and W. van Puymbroeck. Generic proofs by consistency. Technical
report, Bell telephone Mfg. Co., Francis Wellesplein 1, B-2018 Antwerp, Belgium, 1989. 23.3.6,
2

[DK91] N. Doggaz and Claude Kirchner. Completion for unification. Theoretical Computer Science,
85(1):231–251, 1991. 12.8, 12.4.3

[DKM84] C. Dwork, P. Kanellakis, and J. C. Mitchell. On the sequential nature of unification. Journal of
Logic Programming, 1(1):35–50, 1984. 3.2.5

[DKR93] E. Domenjoud, F. Klay, and C. Ringeissen. Combination of Unification Algorithms for Non-
disjoint Equational Theories. In Presented at UNIF’93, Boston (MA, USA), 1993. 11.4

[DM79] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communications of
the ACM, 22(8):465–476, 1979. 4.4

[DMR76] M. Davis, Y. Matijasevič, and J. A. Robinson. Hilbert’s tenth problem: Positive aspects of a
negative solution. In F. E. Browder, Editor, Mathematical Developments Arising from Hilbert
Problems, American Mathematical Society, pages 323–378, 1976. III, 10.1, 10.3

[DMT88] N. Dershowitz, L. Marcus, and A. Tarlecki. Existence, uniqueness and construction of rewrite
systems. SIAM Journal of Computing, 17(4):629–639, August 1988. 17.1

[DO88] N. Dershowitz and M. Okada. Conditional equational programming and the theory of conditional
term rewriting. In Proceedings of the International Conference on Fifth Generation Computer
Systems, pages 337–346. Institute for New Generation Computer Technology, 1988. 7.5.1

[DO90] N. Dershowitz and M. Okada. A rationale for conditional equational programming. Theoretical
Computer Science, 75:111–138, 1990. 7.5, 7.5.1, 7.5.1, 7.5, 7.5.2, 7.5.4, 20.1, 20.2

[Dom91a] E. Domenjoud. Outils pour la déduction automatique dans les théories associatives-commutatives.
Thèse de Doctorat d’Université, Université Henri Poincaré – Nancy 1, September 1991. 21.1

[Dom91b] E. Domenjoud. Solving systems of linear diophantine equations: An algebraic approach. In
A. Tarlecki, editor, Proceedings 16th International Symposium on Mathematical Foundations of
Computer Science, Kazimierz Dolny (Poland), volume 520 of Lecture Notes in Computer Science,
pages 141–150. Springer-Verlag, September 1991. 13.1.5

[Dom92] E. Domenjoud. A technical note on AC-unification. the number of minimal unifiers of the
equation αx1 + · · ·+αxp

.
=AC βy1 + · · ·+βyq. Journal of Automated Reasoning, 8:39–44, 1992.

Also as research report CRIN 89-R-2. 21.1

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 343

[DOS87] N. Dershowitz, M. Okada, and G. Sivakumar. Confluence of conditional rewrite systems. In
J.-P. Jouannaud and S. Kaplan, editors, Proceedings 1st International Workshop on Conditional
Term Rewriting Systems, Orsay (France), volume 308 of Lecture Notes in Computer Science,
pages 31–44. Springer-Verlag, July 1987. 7.1, 7.5, 20.1, 20.4, 20.3

[Dou90] D. Dougherty. Higher-order unification via combinators. Technical report, Wesleyan University,
May 1990. Presented at UNIF’90, Leeds (UK). III

[DP88] N. Dershowitz and D. A. Plaisted. Equational programming. In J. E. Hayes, D. Michie, and
J. Richards, editors, Machine Intelligence 11: The logic and acquisition of knowledge, chapter 2,
pages 21–56. Oxford Press, Oxford, 1988. 7.1, 20.1, 20.1

[Dro83] K. Drosten. Towards executable specifications using conditional axioms. Technical report, uni-
versität Braunschwig, 1983. 7.1, 7.5

[Dro92] N. Drost. Unification in the algebra of sets with union and empty set. Technical Report P9213,
University of Amsterdam, jul, 1992. 10.1

[DS88] N. Dershowitz and G. Sivakumar. Goal-directed equation solving. In Proceedings of the Seventh
National Conference on Artificial Intelligence, pages 166–170, St. Paul, (MN, USA), August
1988. 14.2, 14.2.4

[DSvH87] M. Dincbas, H. Simonis, and P. van Hentenryck. Extending equation solving and constraint
handling in logic programming. In Proceedings of the Colloquium on Resolution of Equations in
Algebraic Structures, Austin (Texas), May 1987. 13.2.5

[dV91] R. C. de Vrijer. Unique normal forms for combinatory logic with parallel conditional, a case
study in conditional rewriting, 1991. Submitted. 4.4

[Ede85] E. Eder. Properties of substitutions and unifications. Journal of Symbolic Computation, 1(1):31–
46, 1985. 2.3.3

[Eke93] Steven Eker. Improving the efficiency of AC matching and unification. Research report 2104,
INRIA, Inria Lorraine & Crin, November 1993. 13.1.5

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations and initial seman-
tics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1985.
23.3.2, 23.3, 23.3.3, 23.13, 23.3, 23.4, 23.9

[Eva51] T. Evans. On multiplicative systems defined by generators and relations. In Proceedings of the
Cambridge Philosophical Society, pages 637–649, 1951. 16.1

[Fag83] F. Fages. Formes Canoniques dans les Algèbres Booléennes et Application à la Démonstration
Automatique en Logique du Premier Ordre. Thèse de Doctorat de Troisième Cycle, Université
de Paris 7 (France), 1983. 3.4, 10.1

[Fag84] F. Fages. Associative-commutative unification. In R. Shostak, editor, Proceedings 7th Interna-
tional Conference on Automated Deduction, Napa Valley (Calif., USA), volume 170 of Lecture
Notes in Computer Science, pages 194–208. Springer-Verlag, 1984. III, 10.1, 13.1.1

[Far88] W. Farmer. A unification algorithm for second order monadic terms. Annals of Pure and Applied
Logic, 39:131–174, 1988. III

[Fay79] M. Fay. First order unification in equational theories. In Proceedings 4th Workshop on Automated
Deduction, Austin (Tex., USA), pages 161–167, 1979. III, 14.2

[Fer92] M. Fernández. Narrowing based procedures for equational disunification. Applicable Algebra in
Engineering, Communication and Computation, 3:1–26, 1992. 14.2.5

[FH83] F. Fages and G. Huet. Unification and matching in equational theories. In Proceedings Fifth
Colloquium on Automata, Algebra and Programming, L’Aquila (Italy), volume 159 of Lecture
Notes in Computer Science, pages 205–220. Springer-Verlag, 1983. 10.2.3

[FH86] F. Fages and G. Huet. Complete sets of unifiers and matchers in equational theories. Theoretical
Computer Science, 43(1):189–200, 1986. III, 10.2.2, 10.3

January 28, 2006 rewriting solving proving

344 BIBLIOGRAPHY

[Fil78] R. Filman. Personal communication in [Der87], 1978. 6.5

[FJN93] F. Freese, J. Jezek, and J.B. Nation. Term rewrite systems for lattice theory. Journal of Symbolic
Computation, 16(3):279–288, 1993. 18.8

[For83] A. Fortenbacher. Algebraische unifikation. Diplomarbeit, Institut für Informatik, Universität
Karlsruhe, 1983. III, 13.1.5

[Fos53] A. L. Foster. Generalized ”boolean” theory of universal algebras. Math. Zeitschr., Bd. 59:191–
199, 1953. 13.2.5

[Fri85a] L. Fribourg. SLOG: A logic programming language intepreter based on clausal superposition
and rewriting. In Proceedings of the IEEE Symposium on Logic Programming, pages 172–184,
Boston, MA, July 1985. 7.1

[Fri85b] L. Fribourg. SLOG: A logic programming language interpreter based on clausal superposition
and rewriting. In IEEE Symposium on Logic Programming, Boston (MA), 1985. 14.2, 14.2.5

[Fri86] L. Fribourg. A strong restriction of the inductive completion procedure. In Proceedings 13th
International Colloquium on Automata, Languages and Programming, volume 226 of Lecture
Notes in Computer Science, pages 105–115. Springer-Verlag, 1986. 22.1, 22.6, 22.6.1

[Gal86] Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving,
volume 5 of Computer Science and Technology Series. Harper & Row, New York, 1986. 10.1

[Gan83] H. Ganzinger. Parameterized specifications: parameter passing and implementation with respect
to observability. ACM Transactions on Programming Languages and Systems, 5(3):318–354,
1983. 23.3.2, 23.7, 23.4

[Gan87] H. Ganzinger. Ground term confluence in parametric conditional equational specifications. In
F. J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors, Proceedings STACS 87, volume
247 of Lecture Notes in Computer Science, pages 286–298. Springer-Verlag, 1987. 23.3.2, 23.4

[Gan91] H. Ganzinger. A completion procedure for conditional equations. Journal of Symbolic Compu-
tation, 11:51–81, 1991. 20.1, 20.10

[GBT89] J. Gallier and V. Breazu-Tannen. Polymorphic rewriting conserves algebraic strong normalization
and confluence. In 16th Colloquium Automata, Languages and Programming, volume 372 of
Lecture Notes in Computer Science, pages 137–150. Springer-Verlag, 1989. 8.6

[Ges90] A. Geser. Relative Termination. PhD thesis, Universität Passau (Germany), 1990. 8.6

[GL86] I. Gnaedig and P. Lescanne. Proving termination of associative rewriting systems by rewriting. In
J. Siekmann, editor, Proceedings 8th International Conference on Automated Deduction, Oxford
(UK), volume 230 of Lecture Notes in Computer Science, pages 52–61. Springer-Verlag, 1986.
7.3.3

[GM86] J. A. Goguen and J. Meseguer. EQLOG: Equality, types, and generic modules for logic program-
ming. In Douglas De Groot and Gary Lindstrom, editors, Functional and Logic Programming,
pages 295–363. Prentice Hall, Inc., 1986. An earlier version appears in Journal of Logic Pro-
gramming, Volume 1, Number 2, pages 179–210, September 1984. 7.1, III, 14.2, 14.2.5

[GM87] E. Giovannetti and C. Moiso. A completeness result for conditional narrowing. In Proceedings
1st International Workshop on Conditional Term Rewriting Systems, Orsay (France), volume
308 of Lecture Notes in Computer Science. Springer-Verlag, July 1987. 7.5.1

[GMP83] J. A. Goguen, J. Meseguer, and D. Plaisted. Programming with parameterized abstract objects
in OBJ. In Domenico Ferrari, Mario Bolognani, and J. A. Goguen, editors, Theory and Practice
of Software Technology, pages 163–193. Elsevier Science Publishers B. V. (North-Holland), 1983.
23.3.2

[GNP+88] J. Gallier, P. Narendran, D. Plaisted, S. Raatz, and W. Snyder. Finding canonical rewriting sys-
tems equivalent to a finite set of ground equations in polynomial time. In E. Lusk and R. Over-
beek, editors, Proceedings 9th International Conference on Automated Deduction, Argonne (Ill.,
USA), volume 310 of Lecture Notes in Computer Science, pages 182–196. Springer-Verlag, 1988.
16.5

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 345

[Gog80] Joseph Goguen. How to prove algebraic inductive hypotheses without induction, with appli-
cations to the correctness of data type implementation. In W. Bibel and R. Kowalski, editors,
Proceedings 5th International Conference on Automated Deduction, Les Arcs (France), volume 87
of Lecture Notes in Computer Science, pages 356–373. Springer-Verlag, 1980. 22.1

[Gog84] J. A. Goguen. Parameterized programming. Transactions on Software Engineering, SE-
10(5):528–543, September 1984. 23.3.2

[Gog89] J. A. Goguen. What is unification? In H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations
in Algebraic Structures, volume 1, pages 217–262. Academic Press inc., New York, 1989. 10.1

[Gol81] D. Goldfarb. The undecidability of the second order unification problem. Theoretical Computer
Science, 13:225–230, 1981. III

[Grä79] G. Grätzer. Universal Algebra. Springer-Verlag, second edition, 1979. 2, 2.4.7, 24.7

[Gra88] B. Gramlich. Unification of term schemes - theory and applications. Technical Report SR-88.18,
SEKI, University of Kaiserslautern, Germany, 1988. 16.6

[Gra89] B. Gramlich. Inductive theorem proving using refined unfailing completion techniques. Technical
Report SR-89-14, SEKI, Universität Kaiserslautern, Germany, 1989. 22.1, 22.6.1

[Gra92] Bernhard Gramlich. Generalized sufficient conditions for modular termination of rewriting. In
Levi and Kirchner [LK92], pages 53–68. 8.5, 8.3.3

[GRS89] J. Gallier, S. Raatz, and W. Snyder. Rigid E-unification and its applications to equational
matings. In H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures,
volume 1, pages 151–216. Academic Press inc., New York, 1989. III

[GS87] J. Gallier and W. Snyder. A general complete E-unification procedure. In P. Lescanne, edi-
tor, Proceedings 2nd Conference on Rewriting Techniques and Applications, Bordeaux (France),
volume 256 of Lecture Notes in Computer Science, pages 216–227, Bordeaux (France), 1987.
Springer-Verlag. 14.1.1

[GS89] J. Gallier and W. Snyder. Complete sets of transformations for general E-unification. Theoretical
Computer Science, 67(2-3):203–260, October 1989. III, 14.1.1

[GS90] J. Gallier and W. Snyder. Designing unification procesures using transformations: A survey.
Technical report, Boston University, 1990. III

[GTW78] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the specification,
correctness and implementation of abstract data types. In R. Yeh, editor, Current Trends in
Programming methodology IV: Data structuring, pages 80–144. Prentice Hall, Inc., 1978. 2.6.3

[Gut78] John V. Guttag. Abstract data types and software validation. Communications of the ACM,
21:1048–1064, 1978. 23.2.1

[Han90] M. Hanus. Compiling logic programs with equality. In Proceedings of PLILP’90, volume 456 of
Lecture Notes in Computer Science, pages 387–401. Springer-Verlag, 1990. 14.2.5

[Han94] Michael Hanus. The integration of functions into logic programming: From theory to practice.
Journal of Logic Programming, 19&20:583–628, 1994. 14.2.5

[HD83] J. Hsiang and N. Dershowitz. Rewrite methods for clausal and non-clausal theorem proving.
In Proceedings of 10th International Colloquium on Automata, Languages and Programming,
volume 154 of Lecture Notes in Computer Science, pages 331–346, Barcelona (Spain), 1983.
Springer-Verlag. 13.2.2, 17.8

[Hee86] J. Heering. Partial evaluation and ω-completeness of algebraic specifications. Theoretical Com-
puter Science, 43:149–167, 1986. 22.3

[Hen77] L. Henkin. The logic of equality. The American Mathematical Monthly, 84:597–612, October
1977. 2, 22.3

[Hen89] F. Henglein. Polymorphic Type Inference and Semi-Unification. PhD thesis, Courant Institute
of Mathematical Sciences, New York University, May 1989. Appears as Technical report 443. III

January 28, 2006 rewriting solving proving

346 BIBLIOGRAPHY

[Her30] J. Herbrand. Recherches sur la théorie de la démonstration. Travaux de la Soc. des Sciences et
des Lettres de Varsovie, Classe III, 33(128), 1930. III, 10.1, 10.5.1

[Her86] A. Herold. Combination of unification algorithms. In J. Siekmann, editor, Proceedings 8th
International Conference on Automated Deduction, Oxford (UK), volume 230 of Lecture Notes
in Computer Science, pages 450–469. Springer-Verlag, 1986. 11

[Her87] A. Herold. Combination of Unification Algorithms in Equational Theories. PhD thesis, Univer-
sität Kaiserslautern (Germany), 1987. 10.1, 13.1.7

[Her88] M. Hermann. Vademecum of divergent term rewriting systems. Research report 88–R–082,
Centre de Recherche en Informatique de Nancy, 1988. Presented at Term Rewriting Workshop,
Bristol (UK). 16.6

[Her89] M. Hermann. Crossed term rewriting systems. Research report 89-R-003, Centre de Recherche
en Informatique de Nancy, 1989. 16.6

[Her91] M. Hermann. On proving properties of completion strategies. In R. V. Book, editor, Proceedings
4th Conference on Rewriting Techniques and Applications, Como (Italy), volume 488 of Lecture
Notes in Computer Science, pages 398–410. Springer-Verlag, April 1991. 15.3

[HH82] G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors. Jour-
nal of Computer and System Sciences, 25(2):239–266, October 1982. Preliminary version in
Proceedings 21st Symposium on Foundations of Computer Science, IEEE, 1980. 22.1

[Hig52] G. Higman. Ordering by divisibility in abstract algebra. Proceedings of the London Mathematical
Society, 2(7):326–336, September 1952. 4.5, 6.4.1

[Hin64] J. R. Hindley. The Church-Rosser property and a result in combinatory logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964. 8.5.1, 8.1, 8.5.1

[Hin94] C. Hintermeier. A transformation of canonical conditional trs’s into equivalent canonical trs’s.
In Proceedings of the 4th International Workshop on Conditional Rewriting Systems, Jerusalem
(Israel), June 1994. 7.5.4

[HK88] D. Hofbauer and R. D. Kutsche. Proving inductive theorems based on term rewriting systems.
In J. Grabowski, P. Lescanne, and W. Wechler, editors, Proceedings 1st International Workshop
on Algebraic and Logic Programming, pages 180–190. Akademie Verlag, 1988. 22.1

[HKK89] M. Hermann, Claude Kirchner, and Hélène Kirchner. Implementations of term rewriting systems.
Technical Report 89-R-218, Centre de Recherche en Informatique de Nancy, 1989. To appear in
the Computer Journal , British Computer Society. 16.1

[HL78a] G. Huet and B. Lang. Proving and applying program transformations expressed with second-
order patterns. Acta Informatica, 11:31–55, 1978. III

[HL78b] G. Huet and D. S. Lankford. On the uniform halting problem for term rewriting systems.
Technical Report 283, Laboria, France, 1978. 5.7, 6.2

[HL89] D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In N. Der-
showitz, editor, Proceedings 3rd Conference on Rewriting Techniques and Applications, Chapel
Hill (N.C., USA), volume 355 of Lecture Notes in Computer Science, pages 167–177. Springer-
Verlag, April 1989. 6.1

[HM88] J. Hannan and D. Miller. Uses of higher-order unification for implementing program transformers.
In R. Kowalski and K. Bowen, editors, Proceedings of the Logic Programming Conference, Seattle
(USA), 1988. The MIT press. III

[HO80] G. Huet and D. Oppen. Equations and rewrite rules: A survey. In R. V. Book, editor, Formal
Language Theory: Perspectives and Open Problems, pages 349–405. Academic Press inc., 1980.
1, 5.1, 6.3.2

[Höl88] S. Hölldobler. From paramodulation to narrowing. In 5th International Conference/Symposium
on Logic Programming, 1988. 14.2.5

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 347

[Höl89] S. Hölldobler. Foundations of Equational Logic Programming, volume 353 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1989. 14.1.1

[HR86] J. Hsiang and M. Rusinowitch. A new method for establishing refutational completeness in
theorem proving. In J. Siekmann, editor, Proceedings 8th International Conference on Automated
Deduction, Oxford (UK), volume 230 of Lecture Notes in Computer Science, pages 141–152.
Springer-Verlag, 1986. 17.7

[HR87] J. Hsiang and M. Rusinowitch. On word problem in equational theories. In Th. Ottmann,
editor, Proceedings of 14th International Colloquium on Automata, Languages and Programming,
Karlsruhe (Germany), volume 267 of Lecture Notes in Computer Science, pages 54–71. Springer-
Verlag, 1987. 17.2, 17.7

[HRS87] J. Hsiang, M. Rusinowitch, and K. Sakai. Complete inference rules for the cancellation laws. In
Int. Joint Conf. on Artificial Intelligence, 1987. 19.2.4

[HS85] A. Herold and J. Siekmann. Unification in abelian semigroups. Memo SEKI 85-III-KL, Univer-
sität Kaiserslautern, 1985. 10.1, 13.1.1, 13.1.7

[Hue72] G. Huet. Constrained Resolution: A Complete Method for Higher Order Logic. PhD thesis, Case
Western Reserve University, 1972. 7.6, III

[Hue73a] G. Huet. A mechanization of type theory. In Proceeding of the third international joint conference
on artificial intelligence, pages 139–146, 1973. III

[Hue73b] G. Huet. The undecidability of unification in third order logic. Information and Control, 22:257–
267, 1973. III

[Hue75] G. Huet. A unification algorithm for typed lambda calculus. Theoretical Computer Science,
1(1):27–57, 1975. III

[Hue76] G. Huet. Résolution d’equations dans les langages d’ordre 1,2, ...,ω. Thèse de Doctorat d’Etat,
Université de Paris 7 (France), 1976. 2.3.3, 2.3.3, 3.2, 3.1.2, 3.1.3, 3.1.4, 3.1.5, 3.2.5, 3.3, 3.4, III,
10.1, 10.1, 10.2.1, 10.1

[Hue78] G. Huet. An algorithm to generate the basis of solutions to homogenous linear diophantine
equations. Information Processing Letters, 7(3):144–147, 1978. III, 13.1.5, 1

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. Journal of the ACM, 27(4):797–821, October 1980. 4.6.1, 5.6, 7.1, 7.3, 7.3.1, 7.3.2, 8.7,
16.1, 16.1, 16.1, 18.1, 18.1, 18.2.3, 18.1

[Hue81] G. Huet. A complete proof of correctness of the Knuth and Bendix completion algorithm. Journal
of Computer and System Sciences, 23:11–21, 1981. 12.4.3, 15.3, 16.6, 16.6

[Hul79] J.-M. Hullot. Associative-commutative pattern matching. In Proceedings 9th International Joint
Conference on Artificial Intelligence, 1979. 12.3

[Hul80a] J.-M. Hullot. Canonical forms and unification. In W. Bibel and R. Kowalski, editors, Proceedings
5th International Conference on Automated Deduction, Les Arcs (France), volume 87 of Lecture
Notes in Computer Science, pages 318–334. Springer-Verlag, July 1980. III, 10.1, 14.2, 14.2.1,
14.2.1, 14.2.2, 18.1

[Hul80b] J.-M. Hullot. A catalog of canonical term rewriting systems. Technical report, Stanford Research
Institute, 1980. 7.9, 16.4

[Hul80c] J.-M. Hullot. Compilation de Formes Canoniques dans les Théories équationelles. Thèse de
Doctorat de Troisième Cycle, Université de Paris Sud, Orsay (France), 1980. 7.9, 10.1, 10.2.1,
10.1, 13.1.1, 13.1.5, 13.1.5, 14.2.1, 14.2.2, 16.4

[Hus85] H. Hussmann. Unification in conditional equational theories. In B. Buchberger, editor, Proceed-
ings of the EUROCAL Conference, Linz (Austria), volume 204 of Lecture Notes in Computer
Science, pages 543–553. Springer-Verlag, 1985. 14.2.4

[Hus88] H. Hussmann. Nondeterministic Algebraic Specifications. PhD thesis, Universität Passau (Ger-
many), September 1988. English literal translation, Nov. 1990. 5.3

January 28, 2006 rewriting solving proving

348 BIBLIOGRAPHY

[Jaf84] J. Jaffar. Efficient unification over infinite terms. New Generation Computing, 2:207–219, 1984.
3.4

[Jaf90] J. Jaffar. Minimal and complete word unification. Journal of the ACM, April 1990. 10.1

[JD86] N. Alan Josephson and Nachum Dershowitz. An implementation of narrowing: The rite way.
In Proceedings of the Symposium on Logic Programming, pages 187–197, Salt Lake City, UT,
September 1986. 14.2.5

[Jea80] J. Jeanrond. Deciding unique termination of permutative rewrite systems: Choose your term
algebra carefully. In W. Bibel and R. Kowalski, editors, Proceedings 5th International Conference
on Automated Deduction, Les Arcs (France), volume 87 of Lecture Notes in Computer Science.
Springer-Verlag, 1980. 10.1

[JK84] J.-P. Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of equations.
In Proceedings 11th ACM Symposium on Principles of Programming Languages, Salt Lake City,
1984. 12.4.3

[JK86a] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without construc-
tors. Technical Report 295, Université de Paris-Sud, Centre d’Orsay (France), September 1986.
22.4, 22.4

[JK86b] J.-P. Jouannaud and E. Kounalis. Proof by induction in equational theories without constructors.
In Proceedings 1st IEEE Symposium on Logic in Computer Science, Cambridge (Mass., USA),
pages 358–366, 1986. 22.1, 22.4, 22.1, 22.5.2, 23.3.7

[JK86c] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of
equations. SIAM Journal of Computing, 15(4):1155–1194, 1986. 7.3, 7.3.1, 7.4, 16.6, 18.1,
18.4.3, 18.5, 18.5, 18.6, 21.1

[JK89] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without construc-
tors. Information and Computation, 82:1–33, 1989. 22.4, 23.3.7

[JK91] J.-P. Jouannaud and Claude Kirchner. Solving equations in abstract algebras: a rule-based
survey of unification. In Jean-Louis Lassez and G. Plotkin, editors, Computational Logic. Essays
in honor of Alan Robinson, chapter 8, pages 257–321. The MIT press, Cambridge (MA, USA),
1991. 3.4, III, 10.5.1

[JKK83] J.-P. Jouannaud, Claude Kirchner, and Hélène Kirchner. Incremental construction of unification
algorithms in equational theories. In Proceedings International Colloquium on Automata, Lan-
guages and Programming, Barcelona (Spain), volume 154 of Lecture Notes in Computer Science,
pages 361–373. Springer-Verlag, 1983. 10.1, 14.2

[JL87] J. Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the 14th
Annual ACM Symposium on Principles Of Programming Languages, Munich (Germany), pages
111–119, 1987. 7.6, III

[JM84] J.-P. Jouannaud and M. Muñoz. Termination of a set of rules modulo a set of equations. In
Proceedings 7th International Conference on Automated Deduction, Napa Valley (Calif., USA),
volume 170 of Lecture Notes in Computer Science. Springer-Verlag, 1984. 7.3.3

[JM90] J.-P. Jouannaud and C. Marché. Completion modulo associativity, commutativity and identity
(AC1). In A. Miola, editor, Proceedings of DISCO’90, volume 429 of Lecture Notes in Computer
Science, pages 111–120. Springer-Verlag, April 1990. 21.1

[Jou83] J.-P. Jouannaud. Confluent and coherent equational term rewriting systems. Applications to
proofs in abstract data types. In G. Ausiello and M. Protasi, editors, Proceedings of the 8th
Colloquium on Trees in Algebra and Programming, L’Aquila (Italy), volume 159 of Lecture Notes
in Computer Science, pages 269–283. Springer-Verlag, 1983. 7.3, 18.1, 18.3.1, 18.4.1

[Jou87] J.-P. Jouannaud. Proof algebras. Invited lecture at the second Rewriting Techniques and Appli-
cations Conference, Bordeaux (France), 1987. 16.3

[JP76] D. Jensen and T. Pietrzykowski. Mechanizing ω-order type theory through unification. Theo-
retical Computer Science, 3(1):123–171, 1976. III

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 349

[JW86] J.-P. Jouannaud and B. Waldmann. Reductive conditional term rewriting systems. In M. Wirs-
ing, editor, 3rd IFIP Conf. on Formal Description of Programming Concepts, Ebberup, (Den-
mark), 1986. Elsevier Science Publishers B. V. (North-Holland). 7.1, 7.5, 7.5.2, 7.27, 20.1, 20.5

[Kap83] S. Kaplan. Un langage de spécification de types abstraits algébriques. Thèse de Doctorat de
Troisième Cycle, Université d’Orsay, France, 1983. 2.6.3, 2.7, 7.5.2

[Kap84] S. Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33:175–193, 1984. 7.1, 7.5,
7.13, 7.5.2, 20.1

[Kap87] S. Kaplan. Simplifying conditional term rewriting systems: Unification, termination and con-
fluence. Journal of Symbolic Computation, 4(3):295–334, December 1987. 7.1, 7.5, 7.5.2, 7.5.2,
20.1, 20.2, 20.3, 20.2

[KB70] Donald E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, Oxford,
1970. 5.1, 12.4.3, 16.1, 16.1, 16.1, 16.2

[KB91] S. Krischer and A. Bockmayr. Detecting Redundant Narrowing Derivations by the LSE-SL
Reducability Test. In Book [Boo91], pages 74–85. 14.2, 14.2.4

[KdV90] J. W. Klop and R. de Vrijer. Extended term rewriting systems. In S. Kaplan and M. Okada,
editors, Proceedings of the 2nd International Workshop on Conditional and Typed Rewriting
Systems, volume 516 of Lecture Notes in Computer Science, pages 26–50. Springer-Verlag, 1990.
20.6, 20.1, 20.5

[Ken89] J. R. Kennaway. Sequential evaluation strategies for parallel-or and related reduction systems.
Annals of Pure and Applied Logic, 43:31–56, 1989. 5.3

[KH90] Hélène Kirchner and M. Hermann. Meta-rule synthesis from crossed rewrite systems. In S. Ka-
plan and M. Okada, editors, Proceedings 2nd International Workshop on Conditional and Typed
Rewriting Systems, Montreal (Canada), volume 516 of Lecture Notes in Computer Science, pages
143–154. Springer-Verlag, June 1990. 16.6

[Kir84a] Claude Kirchner. A new equational unification method: A generalization of Martelli-Montanari
algorithm. In R. Shostak, editor, Proceedings 7th International Conference on Automated De-
duction, Napa Valley (Calif., USA), volume 170 of Lecture Notes in Computer Science. Springer-
Verlag, 1984. 10.1, 14.1.1

[Kir84b] Hélène Kirchner. A general inductive completion algorithm and application to abstract data
types. In R. Shostak, editor, Proceedings 7th International Conference on Automated Deduction,
Napa Valley (Calif., USA), volume 170 of Lecture Notes in Computer Science, pages 282–302.
Springer-Verlag, 1984. 22.5.2

[Kir85a] Claude Kirchner. Méthodes et outils de conception systématique d’algorithmes d’unification dans
les théories équationnelles. Thèse de Doctorat d’Etat, Université Henri Poincaré – Nancy 1,
1985. 10.1, 10.1, 11, 11.2, 12.1.1, 12.4, 12.8

[Kir85b] Hélène Kirchner. Preuves par complétion dans les variétés d’algèbres. Thèse de Doctorat d’Etat,
Université Henri Poincaré – Nancy 1, 1985. 18.1

[Kir86] C. Kirchner. Computing unification algorithms. In Proceedings 1st IEEE Symposium on Logic
in Computer Science, Cambridge (Mass., USA), pages 206–216, 1986. III, 10.1, 12.4

[Kir88] Claude Kirchner. Order-sorted equational unification. Presented at the fifth International Con-
ference on Logic Programming (Seattle, USA), August 1988. Also as rapport de recherche INRIA
954, Dec. 88. III

[Kir89a] Claude Kirchner. From unification in combination of equational theories to a new AC-unification
algorithm. In H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures,
Volume 2: Rewriting Techniques, pages 171–210. Academic Press inc., New York, 1989. III, 10.1

[Kir89b] Hélène Kirchner. Schematization of infinite sets of rewrite rules generated by divergent comple-
tion processes. Theoretical Computer Science, 67(2-3):303–332, October 1989. 16.6

January 28, 2006 rewriting solving proving

350 BIBLIOGRAPHY

[Kir90] Claude Kirchner, editor. Unification. Academic Press inc., London, 1990. III

[KK82] Claude Kirchner and Hélène Kirchner. Résolution d’équations dans les algèbres libres et les
variétés équationnelles d’algèbres. Thèse de Doctorat de Troisième Cycle, Université Henri
Poincaré – Nancy 1, 1982. 10.1

[KK86] Claude Kirchner and Hélène Kirchner. Reveur-3: Implementation of a general completion pro-
cedure parametrized by built-in theories and strategies. Science of Computer Programming,
20(8):69–86, 1986. 18.1, 18.6

[KK89] Claude Kirchner and Hélène Kirchner. Constrained equational reasoning. In Proceedings of the
ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, Port-
land (Oregon), pages 382–389. ACM Press, July 1989. Report CRIN 89-R-220. III, 14.2.1,
21.1

[KK90] C. Kirchner and F. Klay. Syntactic theories and unification. In Proceedings 5th IEEE Symposium
on Logic in Computer Science, Philadelphia (Pa., USA), pages 270–277, June 1990. 12.3.3, 12.3.4

[KKM88] Claude Kirchner, Hélène Kirchner, and J. Meseguer. Operational semantics of OBJ-3. In Pro-
ceedings of 15th International Colloquium on Automata, Languages and Programming, volume
317 of Lecture Notes in Computer Science, pages 287–301. Springer-Verlag, 1988. 7.7

[KKR90] Claude Kirchner, Hélène Kirchner, and M. Rusinowitch. Deduction with symbolic constraints.
Revue d’Intelligence Artificielle, 4(3):9–52, 1990. Special issue on Automatic Deduction. 7.6.1,
14.2.1, 21.1, 21.3, 21.5

[KL80] S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path ordering. Unpublished
manuscript, 1980. 6.4

[KL87] Claude Kirchner and P. Lescanne. Solving disequations. In D. Gries, editor, Proceedings 2nd
IEEE Symposium on Logic in Computer Science, Ithaca (N.Y., USA), pages 347–352. IEEE,
1987. 10.1

[Kla92] F. Klay. Unification dans les Théories Syntaxiques. Thèse de Doctorat d’Université, Université
Henri Poincaré – Nancy 1, 1992. 12.1.2, 12.1, 12.2, 12.5, 12.6, 12.3.3, 12.4, 12.7

[KLMR90] H. Kuchen, R. Loogen, J. J. Moreno, and M. Rodriguez. Graph-based implementation of a
functional language. In Proceedings of ESOP’90, volume 432 of Lecture Notes in Computer
Science, pages 279–290. Springer-Verlag, 1990. 14.2.5

[Klo80] J. W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, 1980. 5.6, 20.6

[Klo90a] J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume 1, chapter 6. Oxford University Press, 1990. 1

[Klo90b] J. W. Klop. Term rewriting systems. Technical Report CS-R9073, Centre for Mathematics and
Computer Science, 1990. 20.2

[KM87] D. Kapur and D. R. Musser. Proof by consistency. Artificial Intelligence, 31(2):125–157, February
1987. 22.1

[KMN85] D. Kapur, D. R. Musser, and P. Narendran. Only prime superpositions need be considered in
the Knuth-Bendix procedure, 1985. Computer Science Branch, Corporate Research and Devel-
opment, General Electric, Schenectady, New York. 19.3

[KMN88] D. Kapur, D. R. Musser, and P. Narendran. Only prime superpositions need to be considered in
the Knuth-Bendix completion procedure. Journal of Symbolic Computation, 6(2):19–36, 1988.
19.4

[KN85] D. Kapur and P. Narendran. A finite Thue system with decidable word problem and without
equivalent finite canonical system. Theoretical Computer Science, 35:337–344, 1985. 5.4

[KN86] D. Kapur and P. Narendran. NP-completeness of the set unification and matching problems. In
J. Siekmann, editor, Proceedings 8th International Conference on Automated Deduction, Oxford
(UK), volume 230 of Lecture Notes in Computer Science. Springer-Verlag, 1986. 13.1.1

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 351

[Kni89] K. Knight. Unification: A multidisciplinary survey. ACM Computing Surveys, 21(1):93–124,
March 1989. 3.4, 1, III

[KNO90] D. Kapur, P. Narendan, and F. Otto. On ground confluence of term rewriting systems. Infor-
mation and Computation, May 1990. 5.7

[KNZ87] D. Kapur, P. Narendran, and H. Zhang. On sufficient completeness and related properties of
term rewriting systems. Acta Informatica, 24:395–415, 1987. 22.3, 22.4, 23.2.2, 23.3.8, 23.3.8

[KO90] M. Kurihara and A. Ohuchi. Modularity of simple termination of term rewriting systems. Journal
of IPS Japan, 31(5):633–642, 1990. 8.5, 8.3.3

[KO92] M. Kurihara and A. Ohuchi. Modularity of simple termination of term rewriting systems with
shared constructors. Theoretical Computer Science, 103(2):273–282, 1992. 8.9, 8.4, 8.10, 11.3

[Kou85] E. Kounalis. Completeness in data type specifications. In B. Buchberger, editor, Proceedings
EUROCAL Conference, Linz (Austria), volume 204 of Lecture Notes in Computer Science, pages
348–362. Springer-Verlag, 1985. 22.4

[Kou90] E. Kounalis. Testing for inductive (co)-reducibility. In A. Arnold, editor, Proceedings 15th
CAAP, Copenhagen (Denmark), volume 431 of Lecture Notes in Computer Science, pages 221–
238. Springer-Verlag, May 1990. 22.4, 22.7.1

[KR87] E. Kounalis and M. Rusinowitch. On word problem in Horn logic. In J.-P. Jouannaud and S. Ka-
plan, editors, Proceedings 1st International Workshop on Conditional Term Rewriting Systems,
Orsay (France), volume 308 of Lecture Notes in Computer Science, pages 144–160. Springer-
Verlag, July 1987. See also the extended version published in Journal of Symbolic Computation,
11(1 & 2), 1991. 20.1, 20.4

[KR89a] P. Kanellakis and P. Revesz. On the relationship of congruence closure and unification. Journal
of Symbolic Computation, 7(3 & 4):427–444, 1989. Special issue on unification. Part one. 3.4

[KR89b] S. Kaplan and Jean-Luc Rémy. Completion algorithms for conditional rewriting systems. In
H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, Volume 2:
Rewriting Techniques, pages 141–170. Academic Press inc., 1989. 7.6.4, 20.1, 20.5

[KR90] E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning. In Proceedings of the Amer-
ican Association for Artificial Intelligence Conference, Boston, pages 240–245. AAAI Press and
MIT Press, July 1990. 22.1, 22.7, 22.7.1, 23.4

[KR92] Hélène Kirchner and Ch. Ringeissen. A constraint solver in finite algebras and its combina-
tion with unification algorithms. In K. Apt, editor, Proc. Joint International Conference and
Symposium on Logic Programming, pages 225–239. The MIT press, 1992. 7.6.1, 11.4

[KR93] H. Kirchner and Ch. Ringeissen. Constraint solving by narrowing in combined algebraic domains
(extended version). research report, CRIN-CNRS and INRIA-Lorraine, 1993. 7.6.3, 14.2.4, 21.3

[KR94a] H. Kirchner and C. Ringeissen. Combining symbolic constraint solvers on algebraic domains.
Journal of Symbolic Computation, 18(2):113–155, 1994. 11.4, 13.4, 13.5

[KR94b] H. Kirchner and C. Ringeissen. Constraint solving by narrowing in combined algebraic domains.
In P. Van Hentenryck, editor, Proc. 11th International Conference on Logic Programming, pages
617–631. The MIT press, 1994. 14.2.5

[Kru54] J. B. Kruskal. The theory of well-partially-ordered sets. PhD thesis, Princeton University, Prince-
ton, N.J., 1954. 4.2.3

[Kru60] J. B. Kruskal. Well-quasi ordering, the tree theorem and Vazsonyi’s conjecture. Trans. Amer.
Math. Soc., 95:210–225, 1960. 4.9, 4.2.3, 6.4.1

[Kru72] J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. J. Combina-
torial Theory Ser. A, 13(3):297–305, November 1972. 4.2.3

[Küc85] W. Küchlin. A confluence criterion based on the generalised Knuth-Bendix algorithm. In B. Buch-
berger, editor, Proceedings of the EUROCAL Conference, Linz (Austria), volume 204 of Lecture
Notes in Computer Science, pages 390–399. Springer-Verlag, 1985. 19.3

January 28, 2006 rewriting solving proving

352 BIBLIOGRAPHY

[Kuc88] G. A. Kucherov. A new quasi-reducibility testing algorithm and its application to proofs by
induction. In J. Grabowski, P. Lescanne, and W. Wechler, editors, Proceedings 1st International
Workshop on Algebraic and Logic Programming, pages 204–213. Akademie Verlag, 1988. Also in
Springer-Verlag, Lecture Notes in Computer Science, volume 343. 22.4

[Küc89] W. Küchlin. Inductive completion by ground proof transformation. In H. Aı̈t-Kaci and M. Nivat,
editors, Colloquium on the Resolution of Equations in Algebraic Structures, Volume 2: Rewriting
Techniques, pages 211–244. Academic Press inc., 1989. 22.1, 22.6.2

[KZ91] D. Kapur and H. Zhang. A case study of the completion procedure: ring commutativity problems.
In Jean-Louis Lassez and G. Plotkin, editors, Computational Logic. Essays in honor of Alan
Robinson, chapter 10, pages 360–394. The MIT press, Cambridge (MA, USA), 1991. 19.2, 19.3,
19.3

[Lam87a] J.-L. Lambert. Une borne pour les générateurs des solutions entières positives d’une équation
diophantienne linéaire. Compte-rendus de l’Académie des Sciences de Paris, 305(1):39–40, 1987.
III

[Lam87b] J.-L. Lambert. Une borne pour les générateurs des solutions entières positives d’une équation
diophantienne linéaire. Technical Report 334, Université de Paris-Sud, Centre d’Orsay (France),
February 1987. 13.1.5, 1

[Lan75a] D. S. Lankford. Canonical algebraic simplifications. Technical report, Louisiana Tech. University,
1975. 6.3.2

[Lan75b] Dallas Lankford. Canonical inference. Technical report, Louisiana Tech. University, 1975. 7.2.2,
16.5, 17.7

[Lan77] D. S. Lankford. Some approaches to equality for computational logic: A survey and assessment.
Memo ATP-36, Automatic Theorem Proving Project, University of Texas, Austin (Texas, USA),
1977. 6.1

[Lan79a] D. S. Lankford. On proving term rewriting systems are noetherian. Technical report, Louisiana
Tech. University, Mathematics Dept., Ruston LA, 1979. 7.2.2

[Lan79b] D. S. Lankford. A unification algorithm for abelian group theory. Technical report, Louisiana
Tech. University, 1979. 6.3.2, 10.1

[Lan87] D. S. Lankford. Non-negative integer basis algorithms for linear equations with integer coeffi-
cients. Technical report, Louisiana Tech University (USA), Ruston, LA 71272, 1987. 13.1.5

[Lau88] C. Lautemann. A note on polynomial interpretation. Bulletin of European Association for
Theoretical Computer Science, 1(36):129–131, October 1988. 6.1

[LB77a] D. S. Lankford and A. Ballantyne. Decision procedures for simple equational theories with
associative commutative axioms: complete sets of associative commutative reductions. Technical
report, Univ. of Texas at Austin, Dept. of Mathematics and Computer Science, 1977. 7.1, 18.1,
19.3

[LB77b] D. S. Lankford and A. Ballantyne. Decision procedures for simple equational theories with
commutative axioms: complete sets of commutative reductions. Technical report, University of
Texas at Austin, Dept. of Mathematics and Computer Science, 1977. 7.1, 18.1

[LB77c] D. S. Lankford and A. Ballantyne. Decision procedures for simple equational theories with
permutative axioms: complete sets of permutative reductions. Technical report, Univ. of Texas
at Austin, Dept. of Mathematics and Computer Science, 1977. 7.1, 18.1

[LBB84] D. S. Lankford, G. Butler, and B. Brady. Abelian group unification algorithms for elementary
terms. In W. Bledsoe and W. Loveland, editors, Automated Theorem Proving: After 25 Years.
AMS, 1984. 10.1

[LC89] P. Le Chenadec. On the logic of unification. Journal of Symbolic Computation, 8(1 & 2):141–200,
1989. Special issue on unification. Part two. 3.4, III

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 353

[Les84] P. Lescanne. Uniform termination of term rewriting systems. Recursive decomposition ordering
with status. In B. Courcelle, editor, Proceedings 9th Colloque sur les Arbres en Algèbre et en
Programmation, pages 182–194, Bordeaux (France), 1984. Cambridge University Press. 6.4.3

[Les86] P. Lescanne. Divergence of the Knuth-Bendix completion procedure and termination orderings.
Bulletin of European Association for Theoretical Computer Science, 30:80–83, October 1986.
16.6

[Les89] P. Lescanne. Well quasi-orderings in a paper by Maurice Janet. Bulletin of European Association
for Theoretical Computer Science, 39:185–188, October 1989. 4.2.3

[Lin89] N. Lindenstrauss. A parallel implementation of rewriting and narrowing. In Proceedings 3rd
Conference on Rewriting Techniques and Applications, Chapel Hill (N.C., USA), volume 35 of
Lecture Notes in Computer Science, pages 569–573. Springer-Verlag, April 1989. 14.2.5

[LK92] Giorgio Levi and Hélène Kirchner, editors. Algebraic and Logic Programming, Third International
Conference, LNCS 632, Volterra, Italy, September 2–4, 1992. Springer-Verlag. 24.7

[LLT90] A. Lazrek, P. Lescanne, and J.-J. Thiel. Tools for proving inductive equalities, relative complete-
ness and ω-completeness. Information and Computation, 84(1):47–70, January 1990. 22.3

[LMM88] Jean-Louis Lassez, M. J. Maher, and K. Marriot. Unification revisited. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming. Morgan-Kaufman, 1988. 3.2.2,
3.2.2, 3.4, III

[Löw08] L. Löwenheim. Uber das auflösungsproblem im logischen klassenkalkül. Sitzungsberg. Berl. Math.
Gesell, 7:89–94, 1908. 13.2.1, 13.2.3

[LPB+87] G. Levi, C. Palamidessi, P. G. Bosco, E. Giovannetti, and C. Moiso. A complete semantic
characterization of k-leaf, a logic language with partial functions. In Proc. IEEE Symposium on
Logic Programming, pages 318–327, 1987. 14.2.5

[LS75] M. Livesey and J. Siekmann. Termination and decidability results for string unification. Technical
report memo CSM-12, University of Essex, 1975. 10.1

[LS76] M. Livesey and J. Siekmann. Unification of bags and sets. Technical report, Institut für Infor-
matik I, Universität Karlsruhe, 1976. 10.1, 13.1.1

[LS93] C. Lynch and W. Snyder. Redundancy criteria for constrained completion. In C. Kirchner, edi-
tor, Proceedings 5th Conference on Rewriting Techniques and Applications, Montreal (Canada),
volume 690 of Lecture Notes in Computer Science, pages 2–16. Springer-Verlag, 1993. 21.4.1

[Mak77] G. S. Makanin. The problem of solvability of equations in a free semigroup. Math. USSR Sbornik,
32(2):129–198, 1977. III, 10.1

[Mar91] Marché. On ground AC-completion. In R. V. Book, editor, Proceedings 4th Conference on
Rewriting Techniques and Applications, Como (Italy), volume 488 of Lecture Notes in Computer
Science, pages 411–422. Springer-Verlag, April 1991. 18.7, 1

[Mar93] C. Marché. Réécriture modulo une théorie présentée par un système convergent et décidabilité
du problème du mot dans certaines classes de théories équationnelles. Thèse de Doctorat
d’Université, Université de Paris-Sud, Orsay (France), October 1993. 18.8

[Mat70] Y. Matijasevič. Diophantine representation of recursively enumerable predicates. In Actes du
Congrès International des Mathématiciens, volume 1, pages 235–238, Nice (France), 1970. III,
10.1, 10.3

[Mes92] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Com-
puter Science, 96(1):73–155, 1992. 5.3, 7.6.5

[Met83] Y. Metivier. About the rewriting systems produced by the Knuth-Bendix completion algorithm.
Information Processing Letters, 16(1):31–34, January 1983. 5.5, 16.4, 16.5

[MG85] J. Meseguer and J. A. Goguen. Initiality, induction and computability. In M. Nivat and J. C.
Reynolds, editors, Algebraic Methods in Semantics. Cambridge University Press, 1985. 2.5.2,
22.2

January 28, 2006 rewriting solving proving

354 BIBLIOGRAPHY

[MGS87] J. Meseguer, J. A. Goguen, and G. Smolka. Order-sorted unification. In Proceedings of the
Colloquium on Resolution of Equations in Algebraic Structures, Austin (Texas), May 1987. III

[MH92] Aart Middeldorp and Erik Hamoen. Counterexamples to completeness results for basic narrowing
(extended abstract). In Levi and Kirchner [LK92], pages 244–258. 14.2, 14.2.3

[Mid89a] A. Middeldorp. Confluence of the disjoint union of conditional term rewriting systems. Technical
Report CS-R8944, CWI, Amsterdam, October 1989. 8.1

[Mid89b] A. Middeldorp. Modular aspects of properties of term rewriting systems related to normal forms.
In N. Dershowitz, editor, Proceedings 3rd Conference on Rewriting Techniques and Applications,
Chapel Hill (N.C., USA), volume 355 of Lecture Notes in Computer Science, pages 263–277.
Springer-Verlag, April 1989. 8.6

[Mid89c] A. Middeldorp. A sufficient condition for the termination of the direct sum of term rewriting
systems. In Proceedings 4th IEEE Symposium on Logic in Computer Science, Pacific Grove,
pages 396–401, 1989. 8.1, 8.3.2

[Mid89d] A. Middeldorp. Termination of disjoint unions of conditional term rewriting systems. Technical
Report CS-R8959, CWI, Amsterdam, December 1989. 8.1

[Mid90] A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije Universiteit,
Amsterdam, 1990. 8.1, 8.2, 8.3, 8.3.1, 8.6

[Mid91] A. Middeldorp. Completeness of combinations of constructor systems, 1991. Submitted. 8.4,
8.8, 8.4, 8.5

[ML92] U. Martin and M. Lai. Some experiments with a completion theorem prover. Journal of Symbolic
Computation, 13(1):81–100, January 1992. 18.2

[MM76] A. Martelli and U. Montanari. Unification in linear time and space: A structured presentation.
Technical Report B76-16, University of Pisa, July 1976. 3.2.5

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on Pro-
gramming Languages and Systems, 4(2):258–282, 1982. 2, 3.2.5, III, 10.1, 10.5.1

[MN70] Z. Manna and S. Ness. On the termination of Markov algorithms. In Proceedings of the Third
Hawaii International Conference on System Science, pages 789–792, Honolulu, Hawaii, 1970. 4.7

[MN86] D. A. Miller and G. Nadathur. Higher-order logic programming. In E. Shapiro, editor, Proceed-
ings of the Third International Logic Programming Conference, volume 225 of Lecture Notes in
Computer Science, pages 448–462. Springer-Verlag, 1986. III

[MN89] U. Martin and T. Nipkow. Boolean unification — the story so far. Journal of Symbolic Compu-
tation, 7(3 & 4):275–294, 1989. Special issue on unification. Part one. 10.4, 10.1, 13.2.1, 13.2.3,
13.2.3

[MN90] U. Martin and T. Nipkow. Ordered rewriting and confluence. In M. E. Stickel, editor, Proceedings
10th International Conference on Automated Deduction, Kaiserslautern (Germany), volume 449
of Lecture Notes in Computer Science, pages 366–380. Springer-Verlag, 1990. 7.2, 7.3, 7.15, 17.6,
21.1

[MNRA92] J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic programming with functions and pred-
icates: the language BABEL. Journal of Logic Programming, 12(3):191–223, February 1992.
14.2

[Moh89] C. K. Mohan. Priority rewriting: Semantics, confluence, and conditionals. In N. Dershowitz,
editor, Proceedings 3rd Conference on Rewriting Techniques and Applications, Chapel Hill (N.C.,
USA), volume 355 of Lecture Notes in Computer Science, pages 278–291. Springer-Verlag, April
1989. 7.7

[MP88] Chao-Tai Mong and Paul W. Purdom. Divergence in the completion of rewriting systems.
Internal report, Indiana University, Bloomington, IN 47405, 1988. 16.6

[MS92] A. Middeldorp and M. Starčević. A rewrite approach to polynomial ideal theory. Internal report,
Vrieje Universiteit, Amsterdam, 1992. 24.3, 24.3, 24.4, 24.4, 24.4, 24.6

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 355

[MT91] A. Middeldorp and Y. Toyama. Completeness of combinations of constructor systems. In Pro-
ceedings 4th Conference on Rewriting Techniques and Applications, Como (Italy), 1991. also
Report CS-R9058, CWI, 1990. 8.1

[Mus80] D. R. Musser. On proving inductive properties of abstract data types. In Proceedings 7th ACM
Symp. on Principles of Programming Languages, pages 154–162. ACM, 1980. 22.1

[Mza85] J. Mzali. Filtrage associatif, commutatif ou idempotent. In Matériels et logiciels pour la 5ième
génération, pages 243–258, Paris, 1985. AFCET. 14.1.1

[Mza86] J. Mzali. Méthodes de filtrage équationnel et de preuve automatique de théorèmes. Thèse de
Doctorat d’Université, Université Henri Poincaré – Nancy 1, 1986. 14.1.1

[Nar96] Paliath Narendran. Solving linear equations over semirings. In Edmund Clarke, editor, Proceed-
ings of LICS’96. IEEE Computer Society Press, 1996. 10.1

[New42] M. H. A. Newman. On theories with a combinatorial definition of equivalence. In Annals of
Math, volume 43, pages 223–243, 1942. 4.1, 4.6.2

[Nip88] T. Nipkow. Unification in primal algebras. In M. Dauchet and M. Nivat, editors, Proceedings
of the 13th Colloquium on Trees in Algebra and Programming, volume 299 of Lecture Notes in
Computer Science, pages 117–131, Nancy (France), 1988. Springer-Verlag. 2.4.7

[Nip90a] T. Nipkow. Proof transformations for equational theories. In Proceedings 5th IEEE Symposium
on Logic in Computer Science, Philadelphia (Pa., USA), pages 278–288, June 1990. 12.3.4, 12.5

[Nip90b] T. Nipkow. Unification in primal algebras, their powers and their varieties. Journal of the ACM,
37(1):742–776, October 1990. 13.2.1, 13.6, 13.2.5, 13.2.5

[NO87] M. Navarro and F. Orejas. Parameterized Horn clause specifications: proof theory and correct-
ness. In Proceedings TAPSOFT Conference, volume 249 of Lecture Notes in Computer Science.
Springer-Verlag, 1987. 20.1, 23.3.2, 23.4

[NO90] P. Narendran and F. Otto. Some results on equational unification. In M. E. Stickel, editor,
Proceedings 10th International Conference on Automated Deduction, Kaiserslautern (Germany),
volume 449 of Lecture Notes in Computer Science, pages 276–291, July 1990. 10.3

[NOR85] P. Narendran, C. O’Dúlaing, and H. Rolletschek. Complexity of certain decision problems about
congruential languages. Journal of Computer and System Sciences, 30:343–358, 1985. 2.4.8

[NR91a] P. Narendran and M. Rusinowitch. Any Gound Associative-Commutative Theory Has a Finite
Canonical System. In Book [Boo91], pages 423–434. 18.7

[NR91b] P. Narendran and M. Rusinowitch. Any ground associative-commutative theory has a finite
canonical system. In R. V. Book, editor, Proceedings 4th Conference on Rewriting Techniques
and Applications, Como (Italy). Springer-Verlag, 1991. 7.3.3, 19.2

[NR92a] R. Nieuwenhuis and A. Rubio. Basic superposition is complete. In B. Krieg-Brückner, editor,
Proceedings of ESOP’92, volume 582 of Lecture Notes in Computer Science, pages 371–389.
Springer-Verlag, 1992. 21.1, 21.1

[NR92b] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering constrained clauses. In D. Kapur,
editor, Proceedings 11th International Conference on Automated Deduction, Saratoga Springs
(N.Y., USA), volume 607 of Lecture Notes in Computer Science, pages 477–491. Springer-Verlag,
1992. 21.1, 21.3, 21.1

[NR94] R. Nieuwenhuis and A. Rubio. AC-superposition with constraints: no AC-unifiers needed. In
A. Bundy, editor, Proceedings 12th International Conference on Automated Deduction, Nancy
(France), volume 814 of Lecture Notes in Artificial Intelligence, pages 545–559. Springer-Verlag,
June 1994. 21.4, 21.5

[NRS89] W. Nutt, P. Réty, and G. Smolka. Basic narrowing revisited. Journal of Symbolic Computation,
7(3 & 4):295–318, 1989. Special issue on unification. Part one. III, 14.2

[Nut89] W. Nutt. The unification hierarchy is undecidable. In H.-J. Bürckert and W. Nutt, editors,
Proceedings 3rd International Workshop on Unification, Lambrecht (Germany), June 1989. 10.4

January 28, 2006 rewriting solving proving

356 BIBLIOGRAPHY

[NW63] C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proc. Cambridge Phil. Soc.,
59(4):833–835, 1963. 6.4.1

[NW83] T. Nipkow and G. Weikum. A decidability result about sufficient completeness of axiomatically
specified abstract data types. In 6th GI Conference, volume 145 of Lecture Notes in Computer
Science, pages 257–268. Springer-Verlag, 1983. 22.4

[O’D77] M. J. O’Donnell. Computing in Systems Described by Equations, volume 58 of Lecture Notes in
Computer Science. Springer-Verlag, 1977. 5.2

[O’D85] M. J. O’Donnell. Equational Logic as a Programming Language. Foundation of Computing. The
MIT press, 1985. 5.6

[Oka89] M. Okada. Strong normalizability for the combined system of the typed Lambda-calculus and an
arbitrary convergent term rewrite system. In Proceedings of the ACM-SIGSAM 1989 Interna-
tional Symposium on Symbolic and Algebraic Computation, Portland (Oregon), pages 357–363.
ACM Press, July 1989. Report CRIN 89-R-220. 8.6

[Orc90a] I. Orci. A mathematics sampler. Technical Report UMINF-176.90, ISSN-0348-0542, University
of Umea, Institute of Information Processing, S-901 87 Umea, Sweden, 1990. 2

[Orc90b] I. Orci. Universal algebra. Technical Report UMINF-180.90, ISSN-0348-0542, University of
Umea, Institute of Information Processing, S-901 87 Umea, Sweden, 1990. 2

[Ore87] F. Orejas. A characterization of passing compatibility for parameterized specifications. Theoret-
ical Computer Science, pages 205–214, 1987. 23.3.6, 23.3.6

[OS88] A. Ohsuga and K. Sakai. An efficient implementation method of reduction and narrowing in
METIS. Technical report, ICOT Research Center Japan, June 1988. 14.2.5

[Pad88] P. Padawitz. The equational theory of parameterized specifications. Information and Computa-
tion, 76:121–137, 1988. 23.3.2, 23.3.6, 23.5

[Péc81] J.-P. Pécuchet. Equations avec constantes et algorithme de Makanin. Thèse de doctorat, Uni-
versité de Rouen (France), 1981. III, 10.1

[Ped84] J. Pedersen. Confluence methods and the word problem in universal algebra. PhD thesis, Emory
University, 1984. 7.3.1

[PEE81] U. Pletat, G. Engels, and H. D. Ehrich. Operational semantics of algebraic specifications with
conditional axioms. Technical report, universität Dortmund, 1981. 7.1, 7.5

[Pet83] G. Peterson. A technique for establishing completeness results in theorem proving with equality.
SIAM Journal of Computing, 12(1):82–100, 1983. 17.7

[Pet90] G. E. Peterson. Complete sets of reductions with constraints. In M. E. Stickel, editor, Proceedings
10th International Conference on Automated Deduction, Kaiserslautern (Germany), volume 449
of Lecture Notes in Computer Science, pages 381–395. Springer-Verlag, 1990. 21.1, 21.4.1, 21.3,
21.12

[Pfe88] F. Pfenning. Partial polymorphic type inference and higher-order unification. In Proceeding of
the 1988 ACM Conference on Lisp and Functional Programming. ACM, July 1988. III

[Pie71] T. Pietrzykowski. A complete mechanization of second-order logic. Research report CSSR 2038,
Dept. of Appl. Anal. and Comp. Sci., University of Waterloo, 1971. III

[Pla85] D. Plaisted. Semantic confluence and completion method. Information and Control, 65:182–215,
1985. 22.3

[Pla93] D. Plaisted. Equational reasoning and term rewriting systems. In D. Gabbay, C. Hogger,
J. A. Robinson, and J. Siekmann, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 1, pages 273–364. Oxford University Press, 1993. 1, 10.1

[Plo72] G. Plotkin. Building-in equational theories. Machine Intelligence, 7:73–90, 1972. III, 10.1, 10.2.1,
10.2.3, 10.4, 10.1

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 357

[Poi86] A. Poigné. Parameterisation for order-sorted algebraic specifications. Technical report, Dept. of
Computing, Imperial College, London, 1986. 23.3.2

[Pot81] G. Pottinger. The church-rosser theorem for the typed lambda-calculus with surjective pairing.
Notre Dame Journal of Formal Logic, 22(3):264–268, 1981. 4.6.3

[Pot91] L. Pottier. Minimal solutions of linear diophantine systems: Bounds and algorithms. In R. V.
Book, editor, Proceedings 4th Conference on Rewriting Techniques and Applications, Como
(Italy), volume 488 of Lecture Notes in Computer Science, pages 162–173. Springer-Verlag, April
1991. 13.1.5

[PS81] Gerald Peterson and Mark Stickel. Complete sets of reductions for some equational theories.
Journal of the ACM, 28:233–264, 1981. 7.1, 7.3.1, 7.9, 18.1, 18.2.3, 18.3, 18.3.3, 18.7

[PW78] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer and System
Sciences, 16:158–167, 1978. 3.2.5, 2, 3.2.5, III, 10.1

[Qui52] W. V. Quine. The problem of simplifying truth functions. American Math. Monthly, 59:521–531,
1952. 7.9

[Qui59] W. V. Quine. On cores and prime implicants of truth functions. American Math. Monthly,
66:755–760, 1959. 7.9

[Rao81] J.-C. Raoult. Finiteness results in term rewriting systems. RAIRO Informatique Théorique et
applications, 4:373–391, 1981. 2.4.8

[Rau90] A. Rauzy. Boolean unification: an efficient algorithm. Technical report, LABRI, University of
Bordeaux 1, 1990. 13.2.1

[RB85] D. E. Rydeheard and R. M. Burstall. The unification of terms: A category-theoretic algorithm.
Technical report, Department of Computer Science University of Manchester, 1985. 10.1

[RB86] D. E. Rydeheard and R. M. Burstall. A categorical unification algorithm. In Proceedings of
the Workshop on Category Theory and Computer Programming, volume 240 of Lecture Notes in
Computer Science. Springer-Verlag, 1986. 10.1

[Red85] U. S. Reddy. Narrowing as the operational semantics of functional languages. In Proceedings of
the IEEE Symposium on Logic Programming, pages 138–151, Salt Lake City (Utah), July 1985.
14.2.5

[Red90] U. S. Reddy. Term rewriting induction. In M. E. Stickel, editor, Proceedings 10th International
Conference on Automated Deduction, Kaiserslautern (Germany), volume 449 of Lecture Notes
in Computer Science, pages 162–177. Springer-Verlag, 1990. 22.1, 22.7, 22.7.1, 22.7.2, 23.4

[Rém82] Jean-Luc Rémy. Etude des systèmes de Réécriture Conditionnels et Applications aux Types
Abstraits Algébriques. Thèse de Doctorat d’Etat, Institut National Polytechnique de Lorraine,
Nancy (France), 1982. 2.6.3, 7.1, 7.5, 22.1

[Rét87] P. Réty. Improving basic narrowing. In P. Lescanne, editor, Proceedings 2nd Conference on
Rewriting Techniques and Applications, Bordeaux (France), volume 256 of Lecture Notes in Com-
puter Science, pages 228–241, Bordeaux (France), May 1987. Springer-Verlag. 14.2

[Rin90] Ch. Ringeissen. Etude et implantation d’un algorithme d’unification dans les algèbres finies.
Rapport de DEA, Université Henri Poincaré – Nancy 1, 1990. 13.2.1

[Rin92] Ch. Ringeissen. Unification in a combination of equational theories with shared constants and
its application to primal algebras. In Proceedings of the 1st International Conference on Logic
Programming and Automated Reasoning, St. Petersburg (Russia), volume 624 of Lecture Notes
in Artificial Intelligence, pages 261–272. Springer-Verlag, 1992. 11.3, 11.4

[Rin93] Ch. Ringeissen. Combinaison de Résolutions de Contraintes. Thèse de Doctorat d’Université,
Université Henri Poincaré – Nancy 1, December 1993. 11.3, 11.4

January 28, 2006 rewriting solving proving

358 BIBLIOGRAPHY

[RKKL85] P. Réty, Claude Kirchner, Hélène Kirchner, and P. Lescanne. Narrower: A new algorithm for
unification and its application to logic programming. In J.-P. Jouannaud, editor, Proceedings 1st
Conference on Rewriting Techniques and Applications, Dijon (France), volume 202 of Lecture
Notes in Computer Science, pages 141–157. Springer-Verlag, 1985. 14.2, 14.2.5

[RN93] A. Rubio and R. Nieuwenhuis. A precedence-based total ac-compatible ordering. In C. Kirch-
ner, editor, Proceedings 5th Conference on Rewriting Techniques and Applications, Montreal
(Canada), volume 690 of Lecture Notes in Computer Science, pages 374–388. Springer-Verlag,
1993. 7.3.3, 7.3.3, 19.2

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,
12:23–41, 1965. III, 10.1, 17.7

[Rob71] J. A. Robinson. Computational logic: The unification computation. Machine Intelligence, 6:63–
72, 1971. 10.1

[Rom88] J.-F. Romeuf. Solutions of a linear diophantine system, November 1988. LIR & Université de
Rouen. 13.1.5

[Ros73] B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20(1):160–187, 1973. 8.5.1, 8.1

[RP89] P. Ružička and I Privara. An almost linear robinson unification algorithm. Acta Informatica,
27:61–71, 1989. 3.2.5

[RS78] P. Raulefs and J. Siekmann. Unification of idempotent functions. Technical report, Institut für
Informatik I, Universität Karlsruhe, 1978. 10.1

[RS86] D. E. Rydeheard and J. Stell. A categorical approach to solving equations. Draft Notes, 1986.
10.1

[RT90] O. Ridoux and H. Tonneau. Une mise en œuvre de l’unification d’expressions booléennes. In
Actes de SPLT’90, Trégastel. CNET, 1990. 13.2.1

[Rus87a] M. Rusinowitch. Démonstration automatique par des techniques de réécriture. Thèse de Doctorat
d’Etat, Université Henri Poincaré – Nancy 1, 1987. Also published by InterEditions, Collection
Science Informatique, directed by G. Huet, 1989. 17.2, 17.3, 17.7, 17.7

[Rus87b] M. Rusinowitch. On termination of the direct sum of term rewriting systems. Information
Processing Letters, 26(2):65–70, 1987. 8.1, 8.3.2

[Rus88] M. Rusinowitch. Theorem-proving with resolution and superposition: an extension of Knuth
and Bendix procedure to a complete set of inference rules. In Proceedings of the International
Conference on Fifth Generation Computer Systems, 1988. See also the extended version published
in Journal of Symbolic Computation, number 1&2, 1991. 17.7

[RV80] J.-C. Raoult and J. Vuillemin. Operational and semantic equivalence between recursive programs.
Journal of the ACM, 27(4):772–796, 1980. 8.6, 1

[RW69] G. A. Robinson and L. T. Wos. Paramodulation and first-order theorem proving. In B. Meltzer
and D. Mitchie, editors, Machine Intelligence 4, pages 135–150. Edinburgh University Press,
1969. 17.7

[RZ84] Jean-Luc Rémy and H. Zhang. Reveur4 : a system for validating conditional algebraic specifica-
tions of abstract data types. In T. O’Shea, editor, Proceedings of the 5th European Conference on
Artificial Intelligence, Pisa, Italy, 1984. ECAI, Elsevier Science Publishers B. V. (North-Holland).
23.4

[SA91] R. Socher-Ambrosius. Boolean Algebra Admits No Convergent Term Rewriting System. In Book
[Boo91], pages 264–274. 7.9

[SAK89] G. Smolka and H. Aı̈t-Kaci. Inheritance hierarchies: Semantics and unification. Journal of
Symbolic Computation, 7(3 & 4):343–370, 1989. Special issue on unification. Part one. III

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 359

[Sal92] G. Salzer. The unification of infinite sets of terms and its applications. In A. Voronkov, editor,
Proceedings of the 1st International Conference on Logic Programming and Automated Rea-
soning, St. Petersburg (Russia), volume 624 of Lecture Notes in Artificial Intelligence, pages
409–420. Springer-Verlag, July 1992. 16.6

[SCL70] J. R. Slagle, C. L. Chang, and R. C. T. Lee. A new algorithm for generating prime implicants.
IEEE Transactions on Computing, 19(4):304–310, 1970. 7.9

[Sel72] A. Selman. Completeness of calculii for axiomatically defined classes of algebras. Algebra Uni-
versalis, 2:20–32, 1972. 2.6.3

[SG89] W. Snyder and J. Gallier. Higher order unification revisited: Complete sets of tranformations.
Journal of Symbolic Computation, 8(1 & 2):101–140, 1989. Special issue on unification. Part
two. III

[Sie75] J. Siekmann. String-unification. Internal report memo CSM-7, University of Essex, 1975. 10.1

[Sie79] J. Siekmann. Unification of commutative terms. In Proceedings of the Conference on Symbolic
and Algebraic Manipulation, volume 72 of Lecture Notes in Computer Science, pages 531–545,
Marseille (France), June 1979. Springer-Verlag. Also internal report SEKI, 1976. 10.1, 10.5.5,
12.7

[Sie89] J. Siekmann. Unification theory. Journal of Symbolic Computation, 7(3 & 4):207–274, 1989.
Special issue on unification. Part one. III

[SK92] A. Sattler-Klein. Infinite, canonical string rewriting systems generated by completion. In
A. Voronkov, editor, Proceedings of the 1st International Conference on Logic Programming
and Automated Reasoning, St. Petersburg (Russia), volume 624 of Lecture Notes in Artificial
Intelligence, pages 433–444. Springer-Verlag, July 1992. 16.6

[SL90] W. Snyder and C. Lynch. A note on the completeness of sld-resolution. submitted, 1990. 2.3.3

[Smo89] G. Smolka. Logic Programming over Polymorphically Order-Sorted Types. PhD thesis, FB
Informatik, Universität Kaiserslautern, Germany, 1989. 7.6.1

[Sny88] W. Snyder. Complete sets of transformations for general unification. PhD thesis, University of
Pennsylvania, 1988. 14.1.1

[Sny89] W. Snyder. Efficient ground completion: An O(n log n) algorithm for generating reduced sets
of ground rewrite rules equivalent to a set of ground equations E. In N. Dershowitz, editor,
Proceedings 3rd Conference on Rewriting Techniques and Applications, Chapel Hill (N.C., USA),
volume 355 of Lecture Notes in Computer Science, pages 419–433. Springer-Verlag, April 1989.
16.5

[SS82a] J. Siekmann and P. Szabó. A noetherian and confluent rewrite system for idempotent semigroups.
Semigroup Forum, 25:83–110, 1982. 7.6.4

[SS82b] J. Siekmann and P. Szabó. Universal unification and classification of equational theories. In
Proceedings 6th International Conference on Automated Deduction, New York (N.Y., USA),
volume 138 of Lecture Notes in Computer Science. Springer-Verlag, 1982. III, 10.4, 10.1

[SS84] J. Siekmann and P. Szabó. Universal unification. In R. Shostak, editor, Proceedings 7th Interna-
tional Conference on Automated Deduction, Napa Valley (Calif., USA), volume 170 of Lecture
Notes in Computer Science, pages 1–42, Napa Valley (California, USA), 1984. Springer-Verlag.
10.4

[SS86a] M. Schmidt-Schauß. Unification in many sorted equational theories. In J. Siekmann, editor,
Proceedings 8th International Conference on Automated Deduction, Oxford (UK), volume 230 of
Lecture Notes in Computer Science. Springer-Verlag, 1986. III

[SS86b] M. Schmidt-Schauß. Unification under associativity and idempotence is of type nullary. Journal
of Automated Reasoning, 2(3):277–282, 1986. 10.2.3, 10.1

[SS88] K. Sakai and Y. Sato. Boolean gröbner bases. Technical report, ICOT Research Center Japan,
June 1988. 24.7

January 28, 2006 rewriting solving proving

360 BIBLIOGRAPHY

[SS89] M. Schmidt-Schauß. Unification in a Combination of Arbitrary Disjoint Equational Theories.
Journal of Symbolic Computation, 8(1 & 2):51–99, 1989. III, 11

[SS90a] K. Sakai and Y. Sato. Application of the ideal theory to boolean constraint solving. In Proc.
Pacific Rim International Conference on Artificial Intelligence, pages 490–495, 1990. 24.7

[SS90b] M. Schmidt-Schauß. Unification in permutative equational theories is undecidable. In Claude
Kirchner, editor, Unification, pages 117–124. Academic Press inc., London, 1990. 10.3

[SS98] Manfred Schmidt-Schauss. A decision algorithm for distributive unification. Theoretical Com-
puter Science, 208(xxx):xxx, 1998. III

[SSS90] K. Sakai, Y. Sato, and Menju S. Solving constraints over sets by boolean Gröbner bases. Internal
report, ICOT Research center, 1990. 24.7

[Sta75] J. Staples. Church-Rosser theorems for replacement systems. Algebra and Logic, Lectures Notes
in Mathematics, 450:291–307, 1975. 8.5.1

[Sti75] M. E. Stickel. A complete unification algorithm for associative-commutative functions. In Pro-
ceedings 4th International Joint Conference on Artificial Intelligence, Tbilissi (USSR), pages
71–76, 1975. 10.1

[Sti76] M. E. Stickel. Unification Algorithms for Artificial Intelligence Languages. PhD thesis, Carnegie-
Mellon University, 1976. 10.1, 13.1.1

[Sti81] M. E. Stickel. A unification algorithm for associative-commutative functions. Journal of the
ACM, 28:423–434, 1981. III, 10.1, 13.1.1

[Sti84] M. E. Stickel. A case study of theorem proving by the Knuth-Bendix method: Discovering
that x3 = x implies ring commutativity. In R. Shostak, editor, Proceedings 7th International
Conference on Automated Deduction, Napa Valley (Calif., USA), volume 170 of Lecture Notes
in Computer Science, pages 248–258. Springer-Verlag, 1984. 19.2

[Sza82] P. Szabó. Unifikationstheorie erster Ordnung. PhD thesis, Universität Karlsruhe, 1982. 2.4.8,
III, 10.3, 10.4, 10.1

[“T02] “Terese” (M. Bezem, J. W. Klop and R. de Vrijer, eds.). Term Rewriting Systems. Cambridge
University Press, 2002. 1, 6.4.3

[TA87] E. Tiden and S. Arnborg. Unification problems with one-sided distributivity. Journal of Symbolic
Computation, 3(1 & 2):183–202, April 1987. III, 10.3, 10.3, 10.1

[Tar68] A. Tarski. Equational logic and equational theories of algebras. In K. Schütte, editor, Contribu-
tions to Mathematical Logic, pages 275–288. Elsevier Science Publishers B. V. (North-Holland),
Amsterdam, 1968. 22.3

[Tay79] W. Taylor. Equational logic. Houston Journal of Mathematics, 1979. Appears also in [Grä79],
Appendix 4. 22.3, 2

[Tid86] E. Tidén. Unification in combinations of collapse-free theories with disjoint sets of functions sym-
bols. In J. Siekmann, editor, Proceedings 8th International Conference on Automated Deduction,
Oxford (UK), volume 230 of Lecture Notes in Computer Science, pages 431–449. Springer-Verlag,
1986. 11

[Tis89] S. Tison. Fair termination is decidable for ground systems. In N. Dershowitz, editor, Proceedings
3rd Conference on Rewriting Techniques and Applications, Chapel Hill (N.C., USA), volume 355
of Lecture Notes in Computer Science, pages 462–476. Springer-Verlag, April 1989. 6.2

[TKB89] Y. Toyama, J. W. Klop, and H. P. Barendregt. Termination for the direct sum of left-linear term
rewriting systems. In N. Dershowitz, editor, Proceedings 3rd Conference on Rewriting Techniques
and Applications, Chapel Hill (N.C., USA), volume 355 of Lecture Notes in Computer Science,
pages 477–491. Springer-Verlag, April 1989. 8.7

[Toy86] Y. Toyama. Counterexamples to termination for the direct sum of term rewriting systems.
Information Processing Letters, 25(3):141–143, May 1986. 6.1, 8.1, 8.1

January 28, 2006 rewriting solving proving

BIBLIOGRAPHY 361

[Toy87] Y. Toyama. On the church-rosser property for the direct sum of term rewritig systens. Journal
of the ACM, 34(1):128–143, January 1987. 8.1, 8.1

[Toy88] Y. Toyama. Commutativity of term rewriting systems. In K. Fuchi and L. Kott, editors, Pro-
gramming of Future Generation Computers II, pages 393–407. Elsevier Science Publishers B. V.
(North-Holland), 1988. 8.6

[Ver81] R. L. Veroff. Canonicalization and demodulation. Internal Report ANL-81-6, Argonne National
Laboratory, Argonne,IL, 1981. 19.2

[Vig93] L. Vigneron. Associative-commutative deduction with constraints. Technical Report 93-R-196,
CRIN, 1993. 21.4, 21.5

[Vog78] E. Vogel. Morphismenunifikation. Technical report, Universität Karlsruhe, 1978. Diplomarbeit.
10.1

[Wal84] C. Walther. Unification in many sorted theories. In T. O’Shea, editor, Proceedings of the
European Conference on Artificial Intelligence, Pisa, Italy, pages 593–602. ECAI, 1984. III

[WB83] F. Winkler and B. Buchberger. A criterion for eliminating unnecessary reductions in the Knuth-
Bendix algorithm. In Processing of the Colloquium on Algebra, Combinatorics and Logic in
Computer Science, Györ, Hungary, 1983. 4.2

[Wec92] Wolfgang Wechler. Universal Algebra for Computer Scientists, volume 25 of EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 1992. 2

[Wer94] Andreas Werner. Normalizing narrowing for weakly terminating and confluent systems. Technical
report, Karlruhe University, October 1994. 14.2.4

[Whi41] Ph.M. Whitman. Free lattices. Annals of Mathematics, 42(2):325–330, 1941. 18.8

[Whi42] Ph.M. Whitman. Free lattices II. Annals of Mathematics, 43(2):104–115, 1942. 18.8

[Win83] F. Winkler. A criterion for eliminating unnecessary reductions in the Knuth-Bendix algorithm.
Technical report, Universität Linz, Austria, 1983. 19.3

[Win89] Franz Winkler. Knuth-Bendix procedure and Buchberger algorithm - A synthesis. In Proceedings
of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation,
pages 55–67, Portland (Oregon, USA), 1989. ACM Press. 18.8, 24.6

[Wos88] L. Wos. Automated Reasoning: 33 basic research problems. Prentice Hall, Inc., Englewood Cliffs,
NJ, 1988. 19.2

[Yel87] K. Yelick. Unification in combinations of collapse-free regular theories. Journal of Symbolic
Computation, 3(1 & 2):153–182, April 1987. III, 11, 11.2.2

[You89] J.-H. You. Enumerating outer narrowing derivations for constructor-based term rewriting sys-
tems. Journal of Symbolic Computation, 7(3 & 4):319–342, 1989. Special issue on unification.
Part one. 14.2, 14.2.5

[Zan92] H[ans] Zantema. Termination of term rewriting by interpretation. In Michaël Rusinowitch and
Jean-Luc Rémy, editors, Conditional Term Rewriting Systems, Third International Workshop,
LNCS 656, pages 155–167, Pont-à-Mousson, France, July 8–10, 1992. Springer-Verlag. Published
in 1993. 6.3

[Zha92] H. Zhang. A linear robinson unification algorithm. Technical report, The University of IOWA,
Iowa City, July 1992. 3.2.5

[ZK89] H. Zhang and D. Kapur. Consider only general superpositions in completion procedures. In
N. Dershowitz, editor, Proceedings 3rd Conference on Rewriting Techniques and Applications,
Chapel Hill (N.C., USA), volume 355 of Lecture Notes in Computer Science, pages 513–527.
Springer-Verlag, April 1989. 19.3, 19.3

[ZKK88] H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction principle for equa-
tional specifications. In E. Lusk and R. Overbeek, editors, Proceedings 9th International Confer-
ence on Automated Deduction, Argonne (Ill., USA), volume 310 of Lecture Notes in Computer
Science, pages 162–181. Springer-Verlag, 1988. 22.7.1

January 28, 2006 rewriting solving proving

362 BIBLIOGRAPHY

[ZR85] H. T. Zhang and Jean-Luc Rémy. Contextual rewriting. In J.-P. Jouannaud, editor, Proceedings
1st Conference on Rewriting Techniques and Applications, Dijon (France), volume 202 of Lecture
Notes in Computer Science, pages 46–62, Dijon (France), 1985. Springer-Verlag. 7.1, 7.5

January 28, 2006 rewriting solving proving

	Introduction
	I Terms, Logics and Algebras
	First order logic and equational logic
	Deduction systems
	First-order terms
	Terms as strings
	Terms as trees
	Terms as mappings
	Terms as functions
	Infinite terms
	Sorted terms

	Substitutions
	Definitions and elementary properties
	Term subsumption
	Substitution subsumption

	Equational logic
	Syntax
	Deduction system
	Models
	The subsumption ordering modulo
	Satisfiability
	Word problem
	A theory directory
	A morphological classification of theories

	Sorted equational logic
	Syntax
	Deduction system
	Models

	Conditional logic
	Syntax
	Deduction system
	Algebraic semantics and models
	Herbrand interpretations
	An example

	Computations in the term algebra
	The lattice of terms
	Renaming
	Matching
	Lower semi-lattice
	Least generalization
	Syntactic unification and least upper bound

	Syntactic unification
	Definitions
	Tree solved forms
	Dag solved form
	Complete sets of rules for syntactic unification
	Complexity of Syntactic Unification

	Unification in infinite rational terms
	Further Readings

	II Rewriting
	Abstract reduction systems
	Introduction
	Quasi orderings
	Basic definitions
	Well-founded orderings
	Well-quasi orderings

	Abstract reduction systems
	Normalizing abstract reduction systems
	Well-founded ordering and termination
	Abstract Church-Rosser property and confluence
	Local confluence
	Confluence without termination
	Confluence for weakly normalizing systems

	Definition and properties of rewrite systems
	Introduction
	Rewrite systems
	A rewriting logic
	Church-Rosser property
	Reduced systems
	Orthogonal systems
	Decidability results

	Termination of rewrite systems
	Introduction
	Termination
	Reduction orderings
	Definition
	Building reduction orderings using interpretations

	Simplification orderings
	Well-quasi-ordering and general embedding
	Basic definitions and properties
	Path orderings

	Conclusion

	Generalizations of rewriting
	Introduction
	Ordered rewriting
	Ordered rewrite systems
	Church-Rosser property for ordered rewriting

	Class rewriting
	Class rewrite systems
	Church-Rosser results
	Termination

	Ordered class rewriting
	Conditional rewriting
	Conditional rewrite systems
	Decidability results
	Ordered conditional systems
	Horn clauses versus conditional rewrite rules

	Constrained rewriting
	Constraints
	Constrained equalities and rewrite rules
	Rewriting with constraints
	Comparison with conditional rewriting
	A constrained rewriting logic

	Conclusion

	Modular properties of rewrite systems
	Introduction
	Modularity
	Disjoint systems
	Confluence and local confluence
	Termination
	Simple termination
	Normal form and convergence

	Constructor systems
	Non-disjoint systems with commutation properties
	Confluence
	Termination

	Conclusion

	Implementing rewriting
	Compiling rewriting
	Sequentiality
	Compilation into a functional language

	Concurrent rewriting

	III Solving
	Unification of equational problems
	Solutions and unifiers
	Generating sets
	Complete sets of unifiers
	Abstract properties of generating sets
	Application to minimal complete sets of unifiers

	(Un)-Decidability of unification
	A Classification of Theories with Respect to Unification
	Transforming equational problems
	A Rule-Based Approach to Unification
	Solved forms for Unification Problems
	Equivalence
	The commutativity example
	Complexity of Commutative Unification

	Modular semantic unification
	Combination problem for unification
	Combination of simple theories
	Abstraction
	Solving in one component
	Combination of solutions
	Unification algorithm for the union of two regular and collapse-free theories

	General combination of unification with disjoint signatures
	Properties of the ordered rewrite system
	Abstraction
	Solving in one component
	Combination of solutions
	Rules for unification in the combined theory

	Conclusion

	Syntactic theories
	Syntacticness
	Definitions and basic properties
	Undecidability results

	Unification in syntactic theories
	General Equations
	Definition
	Unifiers of general equations
	General equations and syntacticness
	Applications

	-confluence
	Definitions
	Localization of -confluence
	A unification completion procedure

	Extended presentations
	Applications
	Transitivity
	Shallow theories
	AC matching
	Acyclic theories
	Touffues theories

	Restricted semantic unification
	Associative-Commutative unification
	Introduction
	Preparation and simplification of the problem
	Solving strategies for AC problems
	Associative-commutative unification
	Solving systems of Diophantine equations
	Conclusion
	Improvements

	Boolean unification
	Introduction
	Boolean rings
	Unification in boolean rings
	Boolean algebras
	Primal algebras

	Procedures for semantic unification
	A Semidecision procedure
	General E-unification

	Narrowing
	Narrowing relations
	Narrowing versus rewriting
	Narrowing for unification
	Constraint narrowing for unification
	Applications

	IV Proving
	Proof reduction
	Introduction
	Proof transformation
	Completion procedures

	Completion of rewrite systems
	Introduction
	Critical pairs
	Transition rules for completion
	A completion procedure
	Issues of completion
	Conclusion

	Ordered completion
	Introduction
	Ordered critical pairs
	Transition rules for ordered completion
	An unfailing completion procedure
	Construction of canonical systems
	Proofs by refutation
	Conclusion

	Completion modulo a set of equalities
	Introduction
	Completion modulo A for left-linear rules
	Critical pairs of rules and axioms
	Transition rules for completion modulo A with left-linearity
	Completion procedure for left-linear rules

	Completion modulo A with extensions
	A-Critical pairs of rules
	Transition rules for completion modulo A with extensions
	Completion procedure with extensions

	An alternative to extensions
	A-critical pairs of rules on axioms
	Transition rules for completion without extensions
	Completion modulo A without extensions

	General completion modulo A
	Transition rules for completion modulo A
	General completion procedure modulo A
	Reduced systems

	Comparison between different completion methods
	Ground associative commutative theories
	Conclusion

	Ordered completion modulo a set of equalities
	Introduction
	Ordered completion modulo A
	Ordered critical pairs modulo A
	Transition rules for ordered completion modulo A
	The special case of associativity and commutativity
	Refutational proofs
	Experiments

	Critical pairs criteria
	Conclusion

	Conditional completion
	Introduction
	Conditional critical pairs and local confluence
	Saturated sets of conditional equalities
	Superposition, narrowing and reflection
	Ordering on conditional equalities
	Critical pairs, narrowing and resolvent
	Saturated sets

	Completion
	Transition rules
	Refutational completeness proof

	Conclusion

	Completion with constraints
	Introduction
	Constrained rewriting
	Constrained superposition
	Constrained superposition modulo A
	Constrained simplification

	Conclusions

	Proofs by induction
	Introduction
	Many-sorted specifications
	Inductive theorems and consistency
	Ground reducibility
	Inductive completion
	Transition rules for inductive completion
	An inductive completion procedure

	Inductive proof by consistency
	Transition rules for proof by consistency
	A proof by consistency procedure

	Inductive proofs by rewriting and implicit induction
	Selection of induction schemes
	Transition rules for rewrite induction

	Conclusion

	Enrichment proofs
	Introduction
	Enrichments
	Properties of enrichments
	Sufficient completeness
	Consistent enrichments
	Completion process for consistency proof
	An unfailing completion process for consistency proof

	Parameterization
	Parameterized specifications
	Semantics
	Parameter passing
	Persistency
	Generic algebra
	Generic theory of a parameterized specification
	Generic ground reducibility
	Proof of generic sufficient completeness
	Proof of generic consistency
	Proof of a generic theorem

	Conclusion

	Gröbner bases
	Introduction
	Polynomial ideal theory
	Polynomial reduction
	Gröbner bases
	Application to geometrical problems
	Comparison with completion modulo AC
	Conclusion

