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Chapter 1

Introduction

This is not yet an introduction,
we just give some pointers to related surveys and books

The concept of term rewriting system emerges already half a century ago in the study of computational
processes. The ambda-calculus played a crucial role in mathematical logic for formalizing the computability
notion and can be seen as a first term rewriting system.

Since then it has been used in simplification based theorem proving, constraint solving, study and im-
plementation of sequential or parallel computations, design of functional languages as well as to combine
and integrate logic programming with functional programming, definition of language semantics, as a logical
framework, etc...

The reader could also refer to the following main surveys: Gérard Huet and D. Oppen [HOS0|, Jan Willem
Klop [KI090a], Nachum Dershowitz and Jean-Pierre Jouannaud [D.190al [D.I97] David Plaisted [Pla93] Jirgen
Avenhaus and Klaus Madlener [AM90)].

Text books on term rewriting written in English are now available: one by Franz Baader and Tobias
Nipkow [BNO98] that makes a nice overview of the main rewrite based techniques, and more recently a very
complete one [FT02], written under the name Terese by Marc Bezem, Jan Willem Klop, Roel de Vrijer, Erik
Barendsen, Inge Bethke, Jan Heering, Richard Kennaway, Paul Klint, Vincent van Oostrom, Femke van
Raamsdonk, Fer-Jan de Vries, Hans Zantema.
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Part 1

Terms, Logics and Algebras
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Chapter 2

First order logic and equational logic

This chapter contains the main notions from logic and universal algebra which are useful in this book. Since
we are mainly concerned with the logic of equality, we define the relevant notions of formulas, models and
deduction systems.

For an extensive presentation of these notions, the reader can refer to [Bir35, [Gra79, [BMGT, [Coh&T
Hen77, Wec92), to [Orc90al, [Orc90b)] for a good survey of mathematics notions used in theoretical computer
science and [Del86)] for an introduction to deduction systems. We assume well known the usual notions of
elementary set theory.

2.1 Deduction systems

In order to define the logics and proof theories we are interested in, we shortly present the notion of deduction
systems that will be intensively used.

Definition 2.1 A Deduction system is a 4-tuple (X, ®, A, R) where:
e X is a countable alphabet,
e ® is a set of formulas {¢o, ¢1,...} that is a decidable language over X,
e Ais a set of azioms {ag,as,...} that is a decidable subset of P,
e R is a finite set of inference rules {rog,r1,...,r,} that are computable predicates over ®.

Infinite sets of axioms are allowed and specified by axiom schemes. An inference rule is written as:

Name ¢g ... o1 F on
if Condition

and means:
“Given ¢g ... ¢n_1 deduce ¢, if Condition holds.”

A derivation d of the conclusion ¢ € ® from the premises P = {po,...,pn—1} C @ is a finite nonempty
sequence (dy,...,dm) such that d; € ®, d,, = ¢ and either d; € A (d; is an axiom), or d; € P (d; is a
premise), or d; has been obtained by applying some inference rule in R to a set {d;, ..., d} of formulas such
that dj,...,dr € d and j,...,k <. This is written as:

Pos---3Pn—1 Fec.
A theorem th is a derivation from the empty set of premises, written:

Fth.

A derivation of a theorem is called a proof.

For a deduction system, the set of all proofs is decidable. If the set of all theorems is decidable, the
deduction system is said decidable. If the set of all theorems is undecidable but semi-decidable, the deduction
system is said semi-decidable. If the set of all theorems is not even semi-decidable, the deduction system is
said undecidable. An algorithm that computes a decidable set of theorems is called a decision procedure for
the deduction system.
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20 First order logic and equational logic

2.2 First-order terms

We give here various point of views of what terms and their basic operations are.

2.2.1 Terms as strings

First-order terms are built on a vocabulary of function symbols and variable symbols. Let us first consider
them as strings.

Definition 2.2 Let F = U,>0F, be a set of symbols called function symbols, each symbol f in F,, has an
arity which is the index of the set F,, it belongs to, it is denoted arity(f). Elements of arity zero are called
constants and often denoted by the letters a, b, c, . ... It is always assumed that there is at least one constant.
Occasionally, prefix or postfix notation for F; and infix notation for F, may be used. F is often called a
set of ranked function symbols or a (unsorted or mono-sorted) signature. Given a (denumerable) set X of
variable symbols, the set of (first-order) terms T (F, X) is the smallest set containing X and such that the
string f(t1,...,tn) is in T(F, X) whenever arity(f) =n and t; € T(F, X) for i € [1..n].

The set of variable-free terms, called ground terms, is denoted 7 (F). Terms that contain variables are
said open. A term is linear if each of its variable occurs only once in it.

Example 2.1 Assume that F = {f,a} with arity(f) = 2 and arity(a) = 0. The term f(a,a) is ground,
f(z, f(a,z)) is not linear but f(z, f(y, z)) is.

Notation: Variables are denoted by the letters z, y, z, terms by the letters I, r, g,d, p, q, s, t,u, v, w.

2.2.2 Terms as trees

A term t may be viewed also as a finite labeled tree, the leaves of which are labeled with variables or constants,
and the internal nodes of which are labeled with symbols of positive arity.

Definition 2.3 A position (also called occurrence ) within a term ¢ is represented as a sequence w of positive
integers describing the path from the root of ¢ to the root of the subterm at that position, denoted by ¢|,. A
term u has an occurrence in ¢ if u = t|,, for some position w in ¢.

The notation t[s], emphasizes that the term ¢ contains s as subterm at position w. In some cases, w may be
omitted.

We use A for the empty sequence (denoting the empty path to the root) and v,w for others. Positions
are ordered in the following way: w1 < ws if there exists w3 such that wiws = wy. If two positions wy and ws
are incomparable, this is denoted wy X wo.

2.2.3 Terms as mappings

A term can also be viewed as a partial mapping from the monoid of positive naturals (N*,.) with neutral
element A to the set of ranked function symbols F. Dom(t) the domain of such a mapping, is the set of
positions in ¢, also called domain of ¢; it should be non empty and closed under prefix, i.e. if w € Dom(t),
then all prefixes of w are belonging to Dom(t). The size [t| of the term ¢ is the cardinal of Dom(t). The
number of nodes in the term ¢ labeled with the symbol f is denoted |t|;. Var(t) denotes the set of variables
in t. Grd(t) is the set of non-variable positions in t. By extension, the mapping of empty domain is called
the empty term and denoted A.

Example 2.2 The term t = f(a + z, h(f(a,b))):
— is the following mapping: — and is represented under a tree
form as follow:

A — f

1 — + f

1.1 — a / \

;.2 — z n h
N

21 — f a/ \:1: ]|[

211 — a

212 — b / \

a b
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2.3 Substitutions 21

Exercice 1 — Define the notions of subterm and replacement on terms using their definition based on mapping.
Answer: a faire

In order to emphasize that t[s],, has been obtained by subterm replacement, the notation tjw <« s] is also
used sometimes to denote that in ¢ the subterm ¢, has been replaced by s.

Definition 2.4 The subterm relationship, denoted by <., is defined by s <t if s is a subterm of . The
term s is a proper subterm also called a strict subterm of t if s < ., t and s # t, which is denoted <*“?.

2.2.4 Terms as functions

To any term ¢ and to any subset V' = {z1,...,z,} of Var(t) we can associate a function denoted t(z1,...,x,)
from 7 (F, X)" to T(F,X) such that:

txr,...,zn): T(F,X)" — T(F,X)
ti, .oty =tz = iz, n
In particular, taking V' = Var(t) shows that any term ¢ can be considered as a function.

Two extensions of the concept of term are useful: infinite terms and sorted terms.

2.2.5 Infinite terms

Infinite terms are simply infinite labeled trees or can be defined, following Section as partial mappings
having an infinite domain [CR80), [ANS0, [Couf0l [CouR3]. Infinite labeled trees with finitely many different
subtrees are called rational trees.

2.2.6 Sorted terms

Sorted terms are obtained when function symbols, variables and terms are categorized into classes, called
sorts.

Definition 2.5 A many-sorted signature denoted by X is given by a (denumerable) set of sorts S and a
(denumerable) set of ranked function symbols F. A function symbol f with arity w = s1,...,s, € S* and
co-arity (or value sort) s is written f : w > s.

Variables are also sorted and = : s means that variable x has sort s. The set X denotes a set of variables
of sort s generally supposed to be denumerable and X = J,.g & is the set of many-sorted variables.
Many-sorted terms are built on many-sorted signatures and classified according to their sorts.

Definition 2.6 The set of terms of sort s, denoted 7 (X, X)s is the smallest set containing X, and any
constant @ : s such that f(t1,...,t,) is in 7(3, X), whenever f : s1,...,8, +— s and ¢; € T(X,X),, for
i€ [l.n].

The set of many-sorted terms T (X, X) is the family {7 (3, X)s|s € S}.

2.3 Substitutions

2.3.1 Definitions and elementary properties

A substitution is an application on 7 (F, X) uniquely determined by its image of variables. It is thus written

out as {1 — t1,..., 2, — t,} when there are only finitely many variables not mapped to themselves. The
application of a substitution ¢ = {z1 +— t1,..., 2, — t,} to a term is recursively defined as follows:
1. if ¢ is a variable x; for some i = 1,...,n, then o(t) = t;,

2. if t is a variable x # z; for all i = 1,...,n, then o(t) =t,
3. if tis aterm f(uq,...,uk) with u1,...,ux € T(F,X) and f € F, then o(t) = f(o(u1),...,0(ux)).

Example 2.3 For example, applying o = {(z — f(a,2))} on the term t = g(a, g(z,z)) results in the term
o(t) = g(a,9(f(a,2), f(a,z))).

Notation: We are mainly denoting substitutions by the Greek letters «, 3,7, o.
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22 First order logic and equational logic

Definition 2.7 The domain of a substitution o is the set of variables that are not trivially mapped to

themselves:
Dom(o) = {z|z € X and o(z) # z}

and the set of variables introduced by o is called its range, defined by:

Ran(o) = U Var(o(zx))

When Ran(o) = 0, o is called a ground substitution. When p(s) is an instance of s that belongs to 7(F), p
is called a ground instantiation of s. The substitution whose domain is empty is denoted Id.
We denote by o)y the restriction of the substitution o to the subset W of X, defined as follows:

ow(x) = o(x) fxeW
== else.

Restrictions extend to sets: if S is a set of substitutions, then:
Sw = {oywlo € S}.

The composition of substitutions a and [ is denoted by o or . or simply by the juxtaposition Sa and
defined as usual for mapping as Ba(z) = B(a(z)). The set of all substitutions of 7 (F, X) is denoted Subst”*
or Subst when F and X are clear from the context.

The addition of two substitutions ¢ and p can also be defined when their domains are disjoint (Dom(o) N
Dom(p) = 0):

(o +p)(x) = o(zx)if x € Dom(o)
p(z) if z € Dom(p)

The following elementary properties of substitutions are both basic and useful.

Proposition 2.1
1. The composition of substitutions is associative.

2. For all subset of variables V' of X, for all term ¢ and for all substitution o:
Var(t) CV = o(t) = o (1)
3. For all substitutions o and ¢’ and for all term ¢,
a(t) = 0'(t) & Tvar(t) = T(var(r)-

Idempotent substitutions are quite important since they enjoy useful properties that make the definition
of concepts much simpler and proofs easier. In particular we will see that for unification one can restrict
without loss of generality to idempotent unifiers.

Definition 2.8 A substitution o is idempotent if 0.0 = o.
The idempotent substitutions can be characterized nicely from their domain.

Lemma 2.1 The following properties are equivalent:
1. o is idempotent,
2. Ran(c) N Dom(o) = 0.

Proof: If the range and the domain of a substitution are disjoint then clearly the substitution is idempotent.
Conversely, assume the o is idempotent. Then suppose that there exists © € Ran(o) N Dom(o). By
definition of the range, there exists y such that o(y) = t[z] for some context t[]. Then we have
oo(y) = o(t[z]) # t[z] since z € Dom(c), and this contradicts the hypothesis that o is idempotent. O

Definition 2.9 Let ¢ be the finite substitution {1 — y1,...,2, — yn} where yi,...,y, are distinct
variables. Then ¢ is called a permutation if Ran(§) = Dom(§) and a renaming if Ran(§) N Dom(§) = 0.

We can now prove that permutations are invertible substitutions i.e. satisfy £.£7! = Id = £71.€.
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2.3 Substitutions 23

Lemma 2.2 A substitution is invertible iff it is a permutation.

Proof: If £ = {1 — y1,...,Zn — Yn} is & permutation then u = {y; — z1,...,yn — x,} is clearly its
inverse, ie. £ = p.§ = Id.
Assume now that £ = {x1 — t1,...,2, — t,} is a bijective substitution. If there exists x € Dom(&)
such that &(x) = f(...) then z = £7(f(...)) which is impossible. Thus Ran(¢) C X and £ should be
of the form & = {1 — y1,..., 2, — yn}. Since £ is injective, all the y; are distinct. Finally note that

if 2 +— y € € then y — 2 belongs to £~ and thus Ran(§) € Dom(£~1) C Ran(€), which proves that &
is a permutation. O

Example 2.4 The substitution o = {(x — f(a,z))} is not a renaming, but £ = {(z — y1),(z — y2)}
is one. The substitution p = {(z — y),(y — )} is a permutation, but not a renaming. Note that
& ={(y1 — z), (y2 — 2)} is not the inverse of £ since £.§'(x) = £(¢'(x)) = &(x) = y1.

Lemma 2.3 If a finite substitution o is injective and maps variables to variables then it is bijective.

Exercice 2 — Show that the last result is false if the substitution is not finite (i.e. Dom(o) is not finite).
Answer: Take X = {xl}zeN and o(x;) = x2;. This substitution is injective but not surjective.
Representing term by trees leads to the following result of the application of a substitution.

A

When using a dag representation for terms, the substituted term may have a more compact form when
it is not linear. In the previous example we get:

i

2.3.2 Term subsumption

Definition 2.10 A term ¢ is an instance of a term s if t = p(s) for some substitution p; in that case we
write s < t and say that s is more general than ¢t or that s subsumes t. We call p a match from s to t.
The relation < is a quasi- orderlnéy on terms called subsumption, whose associated equivalence = and strict
ordering < are respectively called subsumption equivalence and strict subsumption.

Notice that the subsumption ordering is not stable by context: s < t # f(t1,...,8,...,tn) <
flt1, ..., t,...,ty), as shown by the following example: = < a but f(z,z) £ f(z,a). It is not stable by
substitution too: s <t # os < ot since < a but (x — b)z £ (x — b)a.

Example 2.5 One can check that f(z,y) < f(f(a,b), h(y)).

Another useful ordering on terms is obtained as the combination of the subterm and the subsumption
orderings.

Definition 2.11 The encompassment ordering denoted C is defined by s C t if a subterm of ¢ is an instance
of s i.e.
s £t < Jdo € Subst,Ip € Dom(t),o(s) = t,

The associated strict ordering is denoted by .

The main properties of the subsumption on terms are studied in Chapter Bl In particular, up to renaming,
the subsumption ordering is well founded as we will show in Chapter Bl

Isee definition on page
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2.3.3 Substitution subsumption

Subsumption extends to substitutions as follows:

Definition 2.12 A substitution 7 is an instance on V. C X of a substitution o, written o <V 7, read o is
more general over V' than 7, when:

o<V 71 eI,V eV,7(z) = plo(z)).

This is also denoted 7 =" po. The relation <" is a quasi-ordering on substitutions, also called subsumption.
V' is omitted when equal to X.

Exercice 3 — Compare the substitutions o = {(z — 2), (y — 2)} and a = {(x — y)} respectively on X the set of
all variables and on {z}.

Answer: We have o <% o as well as a <!*} ¢, since {y — z}a = {x — 2,y — 2z} either on X or {z}.

But o <{*} « since (z — y).0 = a only on {z} and not on X.

Exercice 4 — Compare the substitutions {(z — f(y,a))} and {(z — f(a,a))} on X and {z}.

Answer: On X they are not comparable. On {z} we have {(z — f(y,a))} <"} {(z — f(a,a))}.

In comparing substitutions, the restriction to the right set of variables is a quite important condition which
has been sometime forgotten. The previous exercises show its importance. It is also emphasized in [SLI0]
and [Baad1].

Exercice 5 — Prove that when there is at least a symbol of arity two, the above definition of the subsumption
ordering on substitutions is equivalent to the following one:

o< revVreV oz) < 7(z).

Answer: See [Hue76).

Similarly to terms, the equivalence =" and the strict ordering <" on substitutions are respectively called
subsumption equivalence and strict subsumption. It is easily seen that ¢ and 7 are subsumption equivalent
on V iff p is a one to one mapping from Ran(oyy) to Ran(7y).

Example 2.6 Note that {z — z,y — succ(z)} and {y — succ(x)} are subsumption equivalent on {z,y}
under the renaming {x — z}.

The following main property is a consequence of the well-foundedness of the subsumption ordering on
terms. It does not hold in general for equational theories.

Theorem 2.1 Up to renaming, the subsumption ordering on substitutions is well-founded.
Proof: [Ede85| O

Extensive studies of substitutions can be found in [Hue76] and [EdeS7].

2.4 Equational logic

2.4.1 Syntax

In the logic of equality, formulas are built from first-order terms and the equality predicate.

Definition 2.13 A pair of two terms {l, r} is called an equational aziom or equality and denoted (I = r), or
an equation in which case it is denoted by I =’ r. The variables of an equational axiom are assumed to be
universally quantified. When quantification must be explicit, it is written (VX, I = r) where Var(l)UVar(r) C
X.

2.4.2 Deduction system

From a set of axioms, new equalities can be deduced via inference rules. A deduction system for equational
deduction is given in Figure 211

Definition 2.14 Given a set of equational axioms E and a set of terms 7 (F, X), the equational theory of
E, denoted TH(E), is the set of equalities that can be obtained, starting from E, by applying the inference
rules given in Figure E1
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1. Reflexivity F o(t=1t)

2. Symmetry t=t) F =1

3. Transitivity  (t=1t), (¢ =t") o=t

4. Congruence {t;=t)li=1,....,n} F (flt1,. . tn) = f{],...,t)))
if feF,

5. Substitutivity (tl = tg) + (O'(tl) = O'(tg))
if o € Subst

Figure 2.1: The rules of equational deduction

Notation: We write
Ers=tif (s=t) € TH(E).
Exercice 6 — With the signature F = {a, b, f, h} where the arity are respectively 0, 0, 2, 1, describe the equational
theory of E = {a = b}.
Answer: {a =a, b=Db, a=Db, h(a) = h(a), h(b) = h(b), h(a) = h(b), ...}
A more compact inference system is the so-called replacement of equals by equals:

Definition 2.15 Given a set F of axioms, we write s «——p t if s|, = o(l) and t = s[o(r)],, for some position
w in Dom(s), substitution ¢ and equality [ = r (or r =1) in E.

Example 2.7 If E = {a = b} then h(a) «——g h(b).
For E = {f(x,x) = a} then f(a,b) «—g f(f(a,a),b).

The provability relation of E is the reflexive transitive closure of the above symmetric relation, and is
denoted «——g. It is a congruence relation.
Notation: The quotient of the set of terms 7 (F, X) by «— g is denoted by T (F,X)/E.

The following theorem states the equivalence between the two inference systems for equality deduction.

Theorem 2.2 (Birkhoff) [Bir35]
Ebrs=tiff s gt

2.4.3 Models

The models we are interested in are non-empty sets with operations, called algebras. In this section, and in
most of this work, we only consider mono-sorted algebras which consist in only one sort: they are also called
unsorted algebras.

Definition 2.16 For a given unsorted signature F, for a set A and for a function symbol f of arity n > 0, an
interpretation ¢ of f in A is a function ¢(f) from A™ to A. For a set of function symbols F, an interpretation
¢ of F in the set A is a mapping associating to each function symbol in F an interpretation in A.

For example if A = N and taking F = {+,*,0} with arity(+) = arity(x) = 2 and arity(0) = 0 the
following mappings are two interpretations:

+ = 4N + = *N
L1 = * = XN Ly = * = +N
0 — On 0 — In

Definition 2.17 For a set F of function symbols, an F-algebra A is given by a non-empty set A (called the
carrier of the algebra) together with an interpretation ¢ of F. It is denoted A = (A, «(F)) and +(F) is often
written F 4 and the interpretation of a function symbol f written f4.

Example 2.8 A set may be regarded as an algebra with no operation.

Example 2.9 Let F = {0, s, +} with arities 0, 1, 2 respectively. Let us choose as carrier the set of natural
numbers N and for interpretation of the functions: On which is the natural 0, sy which is the successor
function in the naturals and +n which is the usual addition on naturals. Then (N, {On,sN,+N}) is an
{0, s, +}-algebra.
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26 First order logic and equational logic

For a set of function symbols F and a set a variable X, take as carrier 7 (F,X) and for interpretation
of each symbol in F the symbol itself i.e. fr(z x)(t1,...,tn) = f(t1,...,tn). Then (T(F,X),F) is clearly a
F-algebra.

Definition 2.18 Given two F-algebras A = (A, F4) and B = (B, Fg), a mapping 6 from A to B such that:
VfeF,Var,...,an € A, 0(fa(ar,...,a,)) = f8(0(a1),...,0(a,))
is called an homomorphism (an endomorphism if A = B). A bijective endomorphism is an isomorphism.

Example 2.10 A trivial algebra is an algebra (A, F4) whose carrier has only one element. Then there is
only one mapping from A™ to A for arbitrary n. Therefore all trivial F-algebras are isomorphic.

Substitution on 7 (F, X) are endomorphisms of 7 (F, X), which justifies their fundamental property: for
any terms t1,...,t, € 7(F,X) and symbol f € F:

o(f(t,...,tn)) = fo(tr),...,0(tn))-

Definition 2.19 Let A be an algebra with carrier A and X a set whose elements are called variables. An
assignment from X to A is a mapping v from X to A.

An assignment v from X to A extends to a morphism also denoted v from 7 (F, X) to A by inductively
defining the image by v of a non-variable term ¢ by: v(f(t1,...,tn)) = fa(W(t1),...,v(tn)).

A non-empty class C of F-algebras is called a variety when it is closed under the operations of sub-algebra,
homomorphic image, and direct product. A variety has the nice property of have a canonical representant
called the free algebra.

Definition 2.20 Let C be a non-empty class of F-algebras and X a set of variables. A C-free F-algebra
(also simply called free algebra) over X is any F-algebra £ = (L, F.) such that:

o L,
e YCIL,

e for any F-algebra A in C and any assignment v : X — A, there exists a unique homomorphism
¢ : L — Asuch that ¢ and v agree on X, i.e. are such that Vz € X, ¢(z) = v(z).

This can be pictured as follows:

x =~
l e
A

It is easy to see that, when it exists, a free algebra over a set X’ is unique up to an isomorphism.

Definition 2.21 An algebra 7 in a class C of F-algebras is C-initial (also simply called initial algebra) if for
any algebra A in C, there exists a unique homomorphism ¢ : 7 — A.

Note that by definition, the initial algebra can also be seen as the free algebra over the empty set of
variables. When it exists, it is of course unique up to an isomorphism.

The first well known result of G. Birkhoff on this topics is that the free (and thus also initial) algebra of
a variety always exists:

Theorem 2.3 [Bir3] For any set of variable X, the free algebra of any variety C always exists.
Proposition 2.2 The F-algebra 7 (F, X) is the free algebra over X of the class of all the F-algebras.

Varieties can also be characterized by a set of axioms. Let us now introduce the notion of model and
validity in the particular case of equality axioms i.e. universaly quantified equalities of the form YVar(l,r),l =
r and existentially quantified axioms i.e. V(Var(l,r) \ V),3V,l = r where V- C Var(l,r). Notice that by
skolemization, the latter can always be reduced to the former. The universal quantifier is often not explicitly
mentioned.
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Definition 2.22 An algebra A is a model of an axiom s = ¢, if for any assignment v of the variables in s
and t, v(s) = v(t).

An algebra A is a model of an axiom V| s = ¢, if for any assignment v of the variables in s and ¢ except
those in V, there exists an assignment p such that pv(s) = pv(t).

Let E be a set of equality axioms. An algebra A is a model of E if it is a model of all the axioms in E.
We also say that the equality s =t is valid in A, and this is denoted by A | s = t.

Mod(E) denotes the set of models of E. The class of models of a set of equalities E is characterized by
the notion of variety, as follow:

Theorem 2.4 A class C of algebras is the class of models of a set of equalities E iff it is a variety, i.e. when
it 1s closed under direct product, homomorphic image and sub-algebra.

It can be proved that 7 (F,X)/E is a model of E. Moreover,
Theorem 2.5 (Birkhoff) [Bir33l] For any set of azioms E, for any terms s,t € T(F,X),
Mod(E) =s=t it T(F,X)/EE=s=tiff EFs=t

Notation:

We write s =g t iff Mod(E) |= s = t. Thanks to Theorems and ZH the notations s =g ¢ and
s «—p t may be used interchangeably.

In the class of algebras that are models of E, the free algebra over X is (isomorphic to) the algebra
T(F,X)/E. In the class of algebras that are models of E, the initial algebra is (isomorphic to) the algebra
T(F)/E.

Example 2.11 Let (G,+) be a commutative semi-group (see ZZZ1) and define for g € G-
g9 =y
gttt = g+g™
Then for arbitrary, but fixed, natural number n,
fnig—g"

is an endomorphism of G.

Term algebras are specially interesting because of their large representativity, but this is still limited to
the class of term generated algebras:

Definition 2.23 A F-algebra A = (4, (F)) is term generated when for all elements a in A there exists a
term ¢ in 7 (F) such that t(t) = a.

All algebras are not term generated, for example if we consider F = {+, *, succe, 0}, then the F-algebra
of the reals R where +, %, succe,0 are interpreted with their usual meaning and which domain is the set
of all reals R is not term generated since e.g. /2 can not be finitely expressed using only the operators
+, *, succe, 0.

2.4.4 The subsumption ordering modulo

Definition 2.24 For a set of equational axioms A, the subsumption ordering modulo A on terms, denoted
<4, is defined as:
t <at' & dne Subst,n(t)=at.

Exercice 7 — Prove, as asserted in the last definition, that <4 is a preorder for any set of equational axioms A.
Answer: It is enough to check that <4 is a transitive and reflexive relation.
As a particular case of this definition we get:

t <pt' < In € Subst,n(t) =1t

When there is no ambiguity, <y is also denoted < since in this case we get the same definition as previously

(Definition ZZT0).
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This preorder <4 is not compatible with the term structure: namely it is false in general that if ¢ <4 t/
and f € F, then f(t1,...,t, ..., tn) <a f(t1,...,t ..., t,) for any terms t1, ..., t,.
We should also notice that substitutions are not monotonic mapping for the subsumption ordering:

t<at & o(t)<aot).

Exercice 8 — Illustrate with some examples the two remarks above.
Answer:

e z<pabut f(z,z) £o f(z,a)
e z<pabutz.(x—b) £Lya(x—b).

This preorder can be extended to substitutions in the following way; suppose that V' is a subset of the
set of variables A’ then:

o<Yo e Iuvr eV po(x) =d(z)

In this case the substitution o is said more general modulo A than ¢’ on the set of variables V.
Exercice 9 — For the empty theory we have seen that o(t) = 0'(t) < O|var(t) = O(par(r)- (see Proposition ELTI).
Give an example of an equational theory A such that this property is not satisfied when = is replaced by = 4.
Answer: Assume that A = {f(y) = 0} then the substitutions ¢ = {(z — a)}ando’ = Id makes the term f(z)

A-equal: o(f(2)) = f(a) =a f(z) = o'(f(2)).
Proposition 2.3
1. For all equational theory A, for all term ¢ and for all substitution o:
Dom(o) N Var(t) =0 = o(t) =4 t.
The converse is true if A = (.
2. For all substitutions «, 3 and for all set of variables V; and V5, if « SXI B and if Vo C Vj then « §X2 I)
And idempotent substitutions have a simple interesting duplication property:
Lemma 2.4 If ¢ is an idempotent substitution then for all substitution «,
0<AQ& Q.0 =4 .
Proof: The implication < is clear. Conversely, if o <4 « then there exists p such that p.c =4 « and thus:
Q.0 =4 p.0.0 =4 p.0 =4 Q.

d

Exercice 10 — Give an example of an infinite strictly decreasing sequence of substitutions in an equational theory.
Answer: A faire
One should not confuse the subsumption equivalence modulo and equality modulo as shown as follows:

Example 2.12 Let f be an idempotent symbol, A = {x = f(x,2)} then we have: x <4 f(y,z) (using
substitution n = {(z — f(y,2)}) and f(y,z) <a x (using substitution n’ = {(y — z),(z — z)}), so that
x =4 f(y,z) but of course x #4 f(y, 2).

2.4.5 Satisfiability

Following the mathematical usage, we use the words “equational axiom” or “equality” when the formula is
supposed true. In this case, we are in particular interested in either:

1. specifying the properties that an algebra or class of algebras should satisfy, or
2. solving the problem of the validity of an equality formula in an algebra or class of algebras.

We use the word “equation” instead when we are interested in the problem of finding values to be given
to the free variables appearing in the terms of the equation in such a way that the substituted equation
becomes a valid equality.
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Short name | Name Definition
A7) Assochativity T, 0),2) = T 7 0,2))
c(f) Commutativity flz,y) = f(y,x)
Dr(f,9) Right Distributivity | f(g(z,v), 2) = g(f(z, 2), f(y, 2))
Di(f,qg) Left Distributivity f(z,9(x,y) = g(f(z,2), f(z,y))
D(f,9) Distributivity DI(f,g)UDr(f,9)
E(h, %) Endomorphism h(z *y) = h(z) * h(y)
UE(h,e) Unit Endomorphism | h(e) =e
AE(h, ) Anti-endomorphism h(z xy) = h(y) = h(z)
H(h,*,+) | Homomorphism h(z*y) = h(z) + h(y)
I(f) Idempotency flz,z) ==z
Iv(h) Involution h(h(x)) =«
InvR(x,e) | Right Inverse xxi(z)=e
InvL(x,e) | Left Inverse i(z)xx=e
Sr(f,g,h) | Right Simplification | f(g(z,y),h(y)) ==
Si(f,g,h) Left Simplification f(h(y),g9(y,z)) =z
Ur(x,e) Right Unit THe=uzx
Ul(x,e) Left Unit exTr==x
Ar(*,e) Absorb Right THe=e
Al(x,e) Absorb Left exxr=e
Cr(f) Right Commutativity | f(f(z,v),2) = f(f(z,2),y)
Cl(f) Left Commutativity | f(z, f(y, 2)) = f(y, f(z,2))
F(f.g) | Factorize P F2 ) = Flala ), 2)
L(x) Lie brackets (xxy)xz=2z%(y*x)
T(f,9) Transitivity flg(z,y), 9, 2)) = fl9(@,y),9(x, 2))

Figure 2.2: Table of usual equational axioms

Definition 2.25 An equation s =’ t is satisfiable in an algebra A if there exists an assignment v of values
to the variables of s and ¢ for which v(s) = v(¢).

This definition is a particular case of the more general definition of an equational problem.

Definition 2.26 Let F be a set of function symbols, X be a set of variables, and A be an F-algebra. An
(< F,X, A >-)equational problem is any set P = {s; =% t;}ies of equations, such that s; and ¢; are terms
in T(F,X). A solution of P is any homomorphism h from 7 (F, X) to A such that Vi € I, h(s;) = h(t;), i.e.
s; and t; are mapped to the same value in 4 by the homomorphism h.

Two equational problems P and P’ are said to be equivalent if they have the same set of solutions.

We will investigate two cases, when A is the term algebra T (F, X) (syntactic unification) and when A is
the quotient algebra 7 (F, X)/E (semantic unification), for some a priori given set E of equational axioms.
As usual, we reserve the word “unification” for these two cases, and speak of “equations solving” otherwise.

2.4.6 Word problem

One of the simplest problem concerning equational logic is to decide, for a given equational theory 7H(E),
if two terms are E-equal or not.

Definition 2.27 Let 7H(E) be an equational theory built on the term algebra 7 (F, X)) and t,t' be two
terms. The word problem consists to decide if the equality ¢ = ¢’ holds in TH(E), that isif E =t =+¢'.

If the equational theory is recursive, i.e. if one can decide if a given pair of terms is an axiom or not, then
the word problem is semi-decidable.

2.4.7 A theory directory

Let us first give in Table the usual definition of commonly used equational axioms. Combination of these
axioms give well known theories described in Table
Here are some others well-known equational theories:
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Name Definition
AG Abelian Group A(x),C(x), InvR(x,e), Ul(*, e)
QG Quasi group SU(.,\,h),SU(,\,h),Sr(.,/,h),Sr(.,/, h) with
h(z) = x.
BR Boolean Ring A(+),C(+),Ur(+,0), InvR(+,0),
A(x),C(x),Ur(*,1), I(x), Dr(x,+)
PA Primal Algebras Algebras such that every finitary function on the
algebra can be expressed as a term [Gra79, [Nip8§]
Minus AE(—,+), Iv(—)
BST | Binary signed trees AE(—,+),Iv(=), Sr(+,+,—), Sl(+,+, —)
FH Fages & Huet Ul(x,e), flxxy) = f(y)
DIAU | Arnborg & Tiden DIi(f,q),Alg),Ur(f,e),Ul(f,e)
CCC | Cartesian Closed Category | A(x),C(%),Ur(x,1),Ul(=,1), Ar(=,1), F(=
, %), DI(=, %)

Figure 2.3: Table of some theories

Semi-groups: A semi-group is an algebra (S, +) with a binary operation + which is associative, i.e. satisfies:
(@+y)+z=w+y+2)
A semi-group is Abelian or commutative if it satisfies in addition

rt+y=y+zx

Monoids: A monoid is an algebra (M,+,0) with a binary operation + and a nullary operation 0 that
satisfies

(z+y)+z = z+(y+2)
x+0
04+ =

where x,y, z are universally quantified variables.

Groups: A group (G,+,1,0) is an algebra with a binary operation +, a unary operation ¢ and a nullary
operation 0 that satisfies

(T+y)+z =
r+0 =
O+=x

x+i(z) =
i(x)+z =

+ W+ 2)

|
o o 8 8 8

where x,y, z are universally quantified variables. A group is Abelian or commutative if it satisfies in
addition

rt+y=y+zx.

Rings: A ring is an algebra with binary operations + and *, a unary operation ¢ and nullary operations 0
and 1, such that (R, +,4,0) is an Abelian group, (R, *,1) is a semi-group, and

zx(y+z) = (zxy)+(xx2)
(x+y)xz = (xx2)+ (yx*2)

where z,y, z are universally quantified variables. A ring is Abelian or commutative if it satisfies in
addition

THY=1Y*T.

January 28, 2006 REWRITING SOLVING PROVING



2.4 Equational logic 31

Lattices: A lattice is an algebra (L, A, V), with binary operations A and V, such that

xVy = yVvVzo
TNy = yAzx
xV(yVvz) = (zVy)Vz
cAYAz) = (TAy) Az
rVr = T
TNANx = T
x = zV(@Ay)
x = zA(xVy)

where x, y, z are universally quantified variables. The lattice is said distributive if it satisfies in addition

xV(yAz) = (Vy A(zVz)
zA(yvz) = (zAy)

<

(x A 2).

Boolean Algebras: A boolean algebra is an algebra (B, A,V,—,0,1), with binary operations A and V, a
unary operation — and two nullary operations 0 and 1, such that (B, A, V) is a distribute lattice and
in addition

V1l = 1
A0 = 0
xV (—x) 1
xA(—x) = 0.

Boolean Rings: A boolean ring (B, A, ®,,0,1) is a commutative ring with identity such that

rdoxr =

TN = %

where z is a universally quantified variable.

2.4.8 A morphological classification of theories

As one may have remarked in the section above, many theories share common properties based on the form
of their axioms. We will now review the most commonly used classes of equational theories.
Let s = ¢ be an axiom of 7 (F, X). It is:

e collapsing if s € Var(t) and t is a proper term,

regular if Var(s) = Var(t),

subterm collapsing if s is a proper subterm of ¢,

Permutative if for all symbol f in X UF: |s|; = |t|;,

variable permutative if it is a permutative axiom such that Vm € Dom(s) s(m) € X = s(m) = t(m),
i.e. only variables are permuted.

Example 2.13 Idempotency (f(x,x) = z) is a classical example of collapse and regular axiom. The right
inverse axiom (z *i(x) = e) is not regular and not collapse.

Now, an equational theory TH(E) is:

e finitely presented (also called finitely generated) if it admits a finite axiomatization,

e finite if all classes of terms under «— p are finite,

e permutative if every valid equality is permutative,
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e variable permutative if all valid equality is variable permutative,
e regular if any presentation of 7H(E) contains only regular axioms,
e collapse-free if no presentation of 7H(F) contains a collapsing axiom,

e Noetherian (relatively to a quasi-ordering >) if all strictly decreasing chain of substitution o1 > o2 > ...
is finite,

e almost-free (P. Szabo [Sza82| call them Q-free) if

[ty . tn) =g f(t,...,t) =Vie[l.n] t; =g t},

e simple if no valid equality in 7H(E) is subterm collapsing,
e monadic if all the symbols involved in the theory are of arity one.

The equational theory of a finite number of associative and commutative symbols is collapse-free, regular,
permutative and finite but not variable permutative. Commutativity alone is variable permutative. Of course
there exists theories that are finite but not permutative, take for example Fy1 = {f(a) = g(b)}.

Let us give now the main characterizations of these theory classes.

Proposition 2.4 [BHSS90] An equational theory TH(FE) is:
e permutative iff there exists a presentation of 7H(FE) consisting only of permutative axioms,
e regular iff there exists a presentation of 7H(FE) consisting only of regular axioms,
e collapse-free iff there exists a presentation of 7H(F) without collapse axioms.
The main relations between the above theory classes are the following.

Proposition 2.5 [BHSSI0)]

1. Every permutative theory is finite.
2. Every finite theory is simple.

Every simple theory is regular and collapse-free.

-~ W

Every almost-free theory is regular.
5. Every finite theory is Noetherian.

6. The converse of the above properties are false.

Given a class of equational theories C, the class problem is to determine if a theory belongs to this class
or not. The next results summarize the status of the class problems for the classes that we just have defined.

Theorem 2.6

1. The class problem for permutative theories is decidable.
The class problem for regular theories is decidable.

The class problem for collapse free theories is decidable.
The class problem for finite theories is not decidable.

The class problem for almost-free theories is not decidable.

S v

The class problem for simple theories is not decidable.

Proof: The properties[ll Bl and Bl are an immediate consequence of Proposition 224
Point Bl has been proved in [RaofT]. It is also a consequence of the fact, proved in [NORSKH], that it is
undecidable if a theory TH(E), such that E is a finite Church-Rosser semi-Thue system, admits any
infinite congruence class.
The points [ and [ are proved in [BHSS90]. O
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Exercice 11 — [BHSS90] Let F be the theory defined by the following monadic term rewriting system:
91(f1(k(g3(2)))) — fi(h(z))  g2(k(x)) — K(gs(2))
h(fa(x)) = f(fo(@))  hlgs(x)) — g2(h(z))

Show that this term rewriting system is convergent (see chapteilll). Then prove successively that F is simple, almost-
free and Noetherian but not finite.
Answer: This is fully described in [citeBurckertHS-LU90] page 27, lemma 3.3.8

2.5 Sorted equational logic

2.5.1 Syntax

In sorted equational logic, equalities are built from many-sorted terms and universally quantified. Sorted
presentations specify the sorted signature and the axioms of a given theory.

Definition 2.28 A presentation, also called specification, and denoted SP = (X, F), is given by a many-
sorted signature ¥, and a set E of universally quantified equalities (VX,¢ = t') where Var(t) UVar(t') C X.
(The quantification may be omitted when X = Var(t) U Var(t')).

Example 2.14 Consider a presentation of lists with two sorts List for lists and Elt for elements. Lists are
built with two constructors nil for the empty list and push that concatenate an element to a list. Moreover
let us define an operation alter on lists that shuffles two lists and produces a third one. The list structure
and the alter operation are described by the following presentation, where the two-sorted signature X gives
sorts and ranges of operations:

sorts : Elt, List
nil: +— List
push : Elt List +— List
alter : List List +— List

and equalities define the alter operation:

Vz : List alter(nil, z) = z
Vo : Elt,y: List,z : List alter(push(z,y),z) = push(x,alter(z,y))

Substitutions are defined as mappings ¢ from sorted variables to sorted terms such that if z : s then
o(x) € T(E,X)s.

2.5.2 Deduction system

The deduction rules for equational deduction, given in Figure 2T of Section BZ4 generalize to the many-
sorted framework provided there is no empty sort. A precise analysis of the possible problems that may arise
when this hypothesis is not satisfied can be found in [MGS&5].

2.5.3 Models

Many-sorted algebras have carriers corresponding to each sort and operations with sorted arguments.

Definition 2.29 Given a many-sorted signature 3, a X-algebra A consists of a family {A;|s € S} of subsets
of A, called the carriers of A, and a family of operations fa : As, X ... x Ag, +— As, associated to each
function f € ¥ such that f:s1,...,5, — s.

Substitutions, defined as mappings o from sorted variables to sorted terms such that if x : s then
o(x) € T(X,X)s, induce X-homomorphisms on the ¥-algebra of many-sorted terms.

In the following, only models with non-empty sorts are considered. This means that for any model A
and any s € S, A; is a non-empty set.

A presentation SP = (X, F) actually describes a class of algebras, namely the class of X-algebras satisfying
the equalities E, denoted Mod(F) or ALG(SP). ALG(SP) with SP-homomorphisms is a category also
denoted by ALG(SP).
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Let « g denote the replacement of equals by equals on T (3, X) which is correct and complete for
deduction in ALG(SP):

tespt iff VA€ ALG(SP), A= (VX,t=1).

The class ALG(SP) has an initial algebra denoted by 7 (X)/E or by Tgp. T(X)/E is built as the quotient
algebra of the ground term algebra 7 (3) by the congruence 5 generated by E.

2.6 Conditional logic

2.6.1 Syntax

The formulas being considered are conditional equalities, written “l = r if I, where I' is a conjunction
of equalities. The meaning of such a formula is that [ and r are equal if the condition I' is satisfied. A
conditional equality is nothing but an equational Horn clause.

Definition 2.30 An equational clause is a clause built with the only equality predicate, and denoted I' = A
where I' is the antecedent and A the succedent.

An equational Horn clause is an equational clause whose succedent is reduced to one equality. A condi-
tional equality is an equational Horn clause s =t if I, also denoted

l=rif(si=t1 A ANsp,=1t,).

when conditions need to be explicite. ' = (s1 =t A--- As, = t,,) and | = r are respectively called the
condition and the conclusion of the conditional equality.
A conditional system is a set of conditional equalities.

In the following, we most often omit the word ”equational” but restrict our approach to this kind of
clauses. This is actually not a real restriction, since up to an encoding of predicates with boolean functions,
any general clause can be translated to an equational clause.

2.6.2 Deduction system

For any set of conditional axioms FE, conditional equalities s =t if I", can be deduced via inference rules.
A deduction system for conditional equational deduction is given in Figure Z4l In this system, when
I'= Az:ln u; = v; withn >0, o(I') = A,y 0(u;) = o(vy).

.....

Definition 2.31 Given a set of conditional axioms F and a set of terms 7 (F, X), the conditional theory of
E, denoted TH(E), is the set of conditional equalities that can be obtained, starting from E, by applying
the inference rules given in Figure Z41

2.6.3 Algebraic semantics and models

From the algebraic point of view, conditional systems and equational systems have very similar kinds of
results.

Definition 2.32 Let F be a set of conditional axioms. An algebra A is a model of E if for any axiom
l=rif(sy =t A---As, =t,) in E, for any assignment v of variables in A,

it Vie[l,...,n],v(s;) = v(t;) then v(l) = v(r).

We also say that the axiom I = r if (s1 =61 A---As,=1,) is valid in A, or that A satisfies | =
rif (s =t1 A+ A s, =t,), and this is denoted by A = s =1.

Given a set of conditional axioms E, A is a model of E if A satisfies all the conditional axioms in E.
Definition 2.33 A set of conditional axioms F is called consistent if it has a model, and inconsistent or
unsatisfiable otherwise.

E implies C (written as E = C) if every model of E satisfies C.
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1. Reflexivity
(
2. Symmetry (

3. Transitivity (¢t =t),(t' =t")

',
(t =)
4. Congruence {t;i=t)li=1,...,n}
'_
(f(tla . atn) = f(tlla 7t;))
if feF,
5. Substitutivity ¢, =t if [’
'_
o(t1) = o(te) if o(T)
if o € Subst
6. XXX t1 =t if (DAL, =1t)), t) =thif IV
',

t1 =t if (FAF/)

Figure 2.4: The rules of equational conditional deduction

Let Mod(E) denote the set of models of E. It can be proved that there exists a smallest congruence on
T(F,X) generated by E. This congruence is obtained as the least fixpoint of a continuous function defined
on the complete lattice of congruences built on 7 (F, X). For more details, see [GTWTR| [Kap83| [REmK2].

The quotient algebra 7 (F, X)/E of T (F, X) by the congruence generated by F is a model of E. Moreover
the initial model is the quotient algebra 7 (F)/E of ground terms by the congruence generated by F.

Following earlier work, a Birkhoff-like theorem establishes the completeness of conditional replacement
of equals by equals [Sel72] (see also [BD.I7R, [BK86]).

The deduction system for conditional equational deduction given in Figure is sound and complete
with respect to this notion of models.

Theorem 2.7 [Kap83] For any set of conditional axioms E, for any conditional equality s =t if T,

Mod(E) les=tifT iff EFs=tifl.

2.6.4 Herbrand interpretations

Considering a conditional axiom as an equational Horn clause leads to the consideration of another kind of
semantics, through Herbrand interpretations.

Definition 2.34 An equality Herbrand interpretation = is a congruence on ground terms.

Definition 2.35 An interpretation = is said to satisfy a ground equational axiom C' = (I = r if I) if either
I'¢=or (I =r) C=. Then C is said true in =, otherwise C' is false

An interpretation = is said to satisfy a non-ground equational axiom C = (I = r if ') if it satisfies all its
ground instances.

Of course, the congruence generated by a set of conditional axioms E on 7 (F) is an equality Herbrand
interpretation. The relation between the two proposed semantics is summarized in the following proposition.

Proposition 2.6 A ground equational axiom C' = (I = r if I') holds in the initial model 7 (F)/E iff the
equality Herbrand interpretation generated by F satisfies C.

Proof: Let C be l =rif \,_; , si =t;. The result is due to the equivalence of the two propositions:

.....

e Vo ground substitution on TF/E, it Vi=1,...,n,0(s;) =g o(t;) then o(l) =g o(r).
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e Vo ground substitution on TF/E, either o(I") =g, or (¢(I) = o(r)) C=g.

O

Definition 2.36 A conditional axiom satisfied by any interpretation is called a tautology.
A conditional axiom satisfied by no interpretation is said unsatisfiable and is called a contradiction. A
contradiction is denoted by the empty clause = .

Example 2.15 A conditional axiom of the form I'As =t = s =1t or I' = ¢t = ¢ are tautologies.

2.6.5 An example

The interest on conditional equalities can by justified by an example due to Bergstra and Meyer [BM8&4]
of a conditional specification whose initial algebra cannot be specified (in the same signature) by means of
equations.

Example 2.16 [BMR&4] The following specification describes finite sets of natural numbers, with a counting
function card yielding the number of elements in a set. There are two sorts, natural numbers and sets of
natural numbers. e denotes the insertion operation of a natural number in a set.

sort Nat, SetOfNat
0: — Nat
succ: Nat +— Nat
0: — SetOfNat
e : Nat,SetOf Nat +— SetOfNat
card : SetOf Nat +— Nat

Vx: Nat,s: SetOf Nat,ze (res) = xes
Va,y: Nat,s: SetOfNat,ze (yes) = ye(res)
card(@) = 0
Vz : Nat,card(z () = succ(0)
YV : Nat,card(0 o (succ(z) o)) = suce(suce(0))
Y,y : Nat,card(succ(z) o (succ(y) @ 0)) = card(z e (yeol))
Vz,y: Nat,Vs: SetOfNat,
(card(z e (y o () = succ(0)A
card(x o 8) = succ(card(s))A
card(y e s) = succ(card(s))) if
card(z e (yes)) = succ(succ(card(s)))

In [BMS84], it is proved that the corresponding initial algebra cannot be specified with finitely many equations
in the given signature. Of course a finite equational specification can be obtained if auxiliary functions are
allowed.
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Chapter 3

Computations in the term algebra

This chapter deals with specific computations in the term algebra: matching, generalisation and unification.
It enlights the lattice structure of the free algebra.

3.1 The lattice of terms

The set of terms can be seen as a lattice for the subsumption ordering. We now describe this structure.

3.1.1 Renaming

The relation < is a quasi-ordering on terms whose associated equivalence = and strict ordering < are
respectively called subsumption equivalence and strict subsumption.

In case s and t are subsumption equivalent, the following result shows that ¢ is a one to one mapping
from Var(s) to Var(t), called a conversion or more often a renaming.

Lemma 3.1 For all terms ¢ and ¢/,
t=t' < 3¢ € Perm, t =&(t)

Proof: It relies on the classical lemma stating that for two mappings f: E — F and g : F' — G, if g.f is
injective then f is injective too and, if g.f is surjective then ¢ is surjective too.

If t = £(t'), since £ is a permutation, it has an inverse, which prove that ¢ = ¢'.
Conversely, there exist ¢ and ¢’ such that

ot) =1t and o'(t') =t
and it is not restrictive to assume their domains such that:
Dom(o) C Var(t) and Dom(c’) C Var(t').
We then have o(o’(t')) =t and ¢’(o(t)) = t. By the proposition Bl we can write
Dom(o.c") N Var(t') = Dom(c’.a) N Var(t) =0

This implies that Vo € Var(t), o'o(z) = x and thus ¢’c is injective. The same symmetrically hold for
oc’. Thus o and ¢’ are both injective because of the result recalled above.

Now let us prove that o’c is bijective. Assume that there exists x such that |o’c(z)| > 1. This will
contradict the fact that ¢’c is the identity on ¢ and thus ¢’c is a finite substitution that maps variables
to variables and thus which is bijective by application of lemma The same holds symmetrically
for oo’ and thus both ¢ and ¢’ are permutations.

O
It should be emphasized that this result is not true anymore in an arbitrary equational theory:
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Example 3.1 If we assume the operator + idempotent and thus satisfying x4z = x, there exist substitutions
o and ¢’ such that:

ol(x+y)+z2)=pu+tv

du+v)=(x+y) +2

(take for example 0 = {(z — u)(y — u)(z — v)} and o/ = {(u — x + y), (v +— z)}) where o should identify
x and y and thus can not be a permutation.

The previous lemma extends easily to substitutions:
Lemma 3.2 For all substitutions o and o’,
oc=0 &3 € Permé.o=0o.

This last result is no more true if substitutions with infinite domains are considered as shown by the
following example.

Example 3.2 [Hue76] Let 01 = {x; — x2; }ien and o9 = {x2; — x;}ien. Then 0g.01 = Id and 01.Id = o1
thus Id = o1 but obviously there does not exist any permutation £ such that £.Id = o;.

We are denoting (f, <) the ordered set obtained as the quotient of the pre-ordered set 7 (F, X) by the
subsumption equivalence =. Since the subsumption equivalence is not a congruence 7 is not an algebra.

3.1.2 Matching

The matching substitution from ¢ to ¢/, when it exists, is unique and can be computed by a simple recursive
algorithm given for example by G. Huet [Hue76] and that we are describing now.

Definition 3.1 A match-equation is any formula of the form t <’ ¢/, where t and ' are terms. A substitution
o is solution of the match-equation t <” ' if ot = #'. A matching system is a conjunction of match-equations.
A substitution is solution of a matching system P if it is solution of all the match-equations in P. We denote
by F a matching system without solution.

We are now ready to describe the computation of matches by the following set of transformation rules
Match where the symbol A is assumed to be associative, commutative and idempotent.

Delete t<’t AP

W= P
Decomposition fltr, .. tn) <" f(th, ..., th) AP

> Ny ot < t) AP
SymbolClash fltr, .o tn) < g(th, ... t,) AP

e if f#g
MergingClash r<t ANzt NP

> F if t £t
SymbolVariableClash  f(t,...,t,) <z A P

= F ifreX

Match: Rules for syntactic matching

Theorem 3.1 The normal form by the rules in Match, of any matching problem t <* t' such that Var(t)N
Var(t') = 0, exists and is unique.

1. If it is ¥, then there is no match from t to t'.

2. If it is of the form N\
from t to t'.

ser Ti <"ty with T # 0, the substitution o = {x; ~— t;}ieq is the unique match

3. If it is empty then t and t' are identical: t =t'.
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Proof: Termination of the set of rules is clear since each application of a rule strictly decreases the size of
a term in the system.
Let us now prove that each of the above rule preserves the set of solutions.
Delete: Since the property that Var(t) N Var(t') = () is preserved by rule application, ¢t <’ t =
Var(t) = 0. Tt is thus clear that Delete preserves the solutions.
Decomposition: If o(f(t1,...,t,)) = f(t],...,t,), then f(o(t1),...,0(tn)) = f(t},....t),) and since
f is a free symbol, o is a solution of all match-equations ¢; < t,.
For the remaining rules, the proof is clear. O

Exercice 12 — Write a program, in the language of your choice, implementing a matching algorithm derived from
the Match set of rules.
Answer:

Exercice 13 — Compute the match from the term f(g(z), f(y, 2)) to the term f(g(f(a,z)), f(g(c), f(a,x))).
Answer: {z — f(a,z),y+— g(c)}

It should be noted that the rule Delete in the previous set of rule is not correct when the two members
of the match equation ¢t <’ ¢’ share variables. This can be seen on the following example. The matching
problem f(z,z) <’ f(z,a) has no solution but we have the following set of transformations: f(z,z) <’
f(z,a) Fbecomposition 17 < 7,7 <’ a} Fpelete {7 <’ a} which has an obvious solution.

3.1.3 Lower semi-lattice

Definition 3.2 Let F be a set, < be a binary relation on E and A be a binary operation on E. The
structure (F, <,A) is a well-founded lower semi-lattice if:

1. the relation < is an ordering

2. all elements (t1,t2) of E admit a greatest lower bound denoted t; A t2 and defined by:
ti1 ANtg <t;fori=1,2
Vte B t<tiandt <t =t <t At

3. the ordering < is well-founded.

The next property is a well-known result of lattice theory [Bir67, [HueZ6]:

Proposition 3.1 If (E, <, A) is a well-founded lower semi-lattice then:
1. every non-empty subset F' of F admits a greatest lower bound denoted AF or glb(F),

2. every subset F' of E, bounded from above, admits a least upper bound denoted VF ou lub(F).

3.1.4 Least generalization

The next result, despite of its elementary appearance, requires a technical proof [Hue76] based on the size
of the terms and on the number of their variables.

Lemma 3.3 For any finite term ¢, the set {t € 7|t/ <t} is finite.

If the ordering considered on the set of terms 7 (F, X) is <, then a set of terms is bounded from above
if these terms have a common instance (may be using different substitutions), and bounded from below if
there exists a term that can be instanciated in every term of the set.

In order to show that two terms t and ¢’ always have a greatest lower bound for <, we adopt the
presentation of [D.J90al.

We consider the following transformation rules, taking a pair of the form (w, F) where w is a greatest
lower bound of the initial set of terms and E is the set of pairs to be generalized.

GeneDecompose (w; f(t1,...,tn) =z f(51,...,8,) N E)

H—»>
((x = f(z1,.. . zn))w; {t1 =2, S1 A «oo Aty =4, $Sn} A E)
if x1,...,x, are new variables
GeneMerging (wy;s=zt N s=yt AN E)
H—>»>

(= y)w;s =4t AN E)

Generalization: Rules computing the least generalization
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Lemma 3.4 For all terms ¢ and ¢’ and any variable x not appearing in ¢ and ¢, the normal form of
(x;{s =5 t}) for the set of rules Generalization exists and is called the least generalization of ¢ and t'.

Exercice 14 — Compute the least generalization of f(g(a), f(a,z)) and f(y, f(h(2),v)). Same question for
fla,g(a,z)) and f(z,g(z,c)).

Answer: The least generalization are respectively: f(z1, f(x2,x3)) and f(z1,z2).

Lemma 3.5 The least generalization of any two terms ¢ and t' is the greatest lower bound of these two
terms for <.

Theorem 3.2 (7(F,X)/ =,<,A) is a well-founded lower semi-lattice.
Proof: This is an immediate consequence of the previous lemmas. O

A consequence of the last result and of the Proposition Bl is the following:
Corollary 3.1 Any subset of terms bounded from above have a least upper bound.

This last result can be depicted as follow:

lub

N

™~ 2

Exercice 15 — Let F{f,g,a} where f,g,a are respectively of arity 2, 1, 0. Build the graph of the relation < on
T(F, X) for the terms of size less than 4.

Answer:

Exercice 16 — Compute the least upper bound of f(a,b) and f(c,d). Same question for f(g(z),a) and f(z,y).
Answer: f(a,b) and f(c,d) are not bounded from above (i.e. there is no term which is a common instance of this
two terms) thus they do not have a least upper bound. The least upper bound of f(g(z),a) and f(z,y) is f(g(z),a).

3.1.5 Syntactic unification and least upper bound

Obviously there is a relationship between unification and the notion of least upper bound, but both notions
do not coincide in general. In this section, inspired from [Hue76], we study the relationship between these
two concepts.

Lemma 3.6 If two term t; and t; are unifiable then ¢; and ¢9 are bounded from above.

The converse is true only for terms that do not share variables. This can be examplified with the two
terms f(a,z) and f(z,b), whose least upper bound is f(a,b) but that are clearly not unifiable.

Indeed the computation of the unified term is equivalent to the computation of the least upper bound.
This is because every common instance o (t1) = 02(t2) determines a unifier o1y 4,1,y + (026 _1)|Var(t2) of t;
and &(t2). One can thus compute the common instances of ¢; and ¢ using unification of ¢; and £(t2).

Conversely, let us show how to compute unifiers from majorant. Let ¢,# be two terms to be unified and
V =Var(t) UVar(t'). Let us call x1,...,x, the variables of V and consider the terms

t1 = f(z1, f(w2, ..., f(zn, 1)) and t] = f(z1, f(z2, ..., f(an, 1))
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If u is a common instance of ¢; and #}, then necessarily we have u = o1(t1) = 02(t2) with o1y = o)y =
{z; — u;|]l < i < n}. o1 and o9 coincide on the common variables of ¢ and ¢, and we can define the
substitution 17 = 1|y ar(t) + O2jvarw) for which n(t) = n(t’). Thus ¢ and ' are unifiable. This allows us to
state the following result:

Lemma 3.7 When there exists at least one symbol f of arity at least two in F, then two terms
t and ¢ sharing the variables {z1,...,z,} are bounded from above iff f(z1, f(z2,..., f(zn,t))) and
flxy, f(x2, ..., f(zn,t'))) are unifiable.

Exercice 17 — Use the previous study to prove that the terms f(a,z) and f(z,b) are not unifiable.
Answer: One has only to build the terms f(z, f(a,z)) and f(z, f(z,b)) and to check that they have no common
instance.

3.2 Syntactic unification

Syntactic unification is the process of solving equations in the free algebra 7 (F, X). In this section, unifica-
tion problems are assumed to be unquantified conjunctions of equations. This is so because there is no need
for new variables to express the (unique) most general unifier.

3.2.1 Definitions

Let us first precise the definition of unification in the term algebra. The following definitions are in fact
instances of the general definitions given before.

Definition 3.3 An equation is an unquantified formula of the form s =’ ¢t where s and t are terms. We
also consider unification problems that are conjunction of equations and that are denoted either P = (s ="
A NSy =T tn) or P = {s; ="t s, =" tn}. Syntactic unification is the problem of solving unification
problems in the free algebra 7 (F, X). A solution or unifier of an equation s =’ t is a substitution o such
that o(s) = o(t). A substitution is solution of a unification problem P if it is solution of every equation
in P. Thus if P is empty, any substitution unifies it. The set of all unifiers of a unification problem P is
denoted U(P). A most general unifier of a unification problem P, denoted mgu(s,t), is a minimal element o
of U(P) with respect to the subsumption strict ordering i.e. for any solution « of the system P, o <Var(P) g
A variable x in Var(P) is a solved variable for the system P when P = (Q A z ='t) and x ¢ Var(Q) and
x ¢ Vart.

7

Example 3.3 The equation f(z,a) =" f(b,y) has the unifier 0 = {z — b,y — a} in the term algebra
T{f,a,b},{z,y}). It is a most general unifier, since it is the unique solution.

Example 3.4 Let us now consider the equation e = (x +y =’ u + h(z)). It has an infinite number of
unifiers, for example:

wm = {r—au—ay— ha)}

i = oo mue 2y (2,7 o )
ws = {r ey h(w)

e = {x— z,u— z,y— h(z)}

We can notice that 1 = {z — a}.u2, and thus po is more general than py. But we also have pus = {u —
z,z — ul.ug and pz = {u — 2,z — u}.uz and thus pe < ps and ps < pe. What looks curious is that
g = {u— z}.us but pg is not smaller than pg. Similarly po is smaller than py but the converse is false!
But if one considers the ordering restricted to the variable of interest (in this case W = V' (e) = {z, y,u}) we
get g <V po and o <W p4. Note finally that us is idempotent.

The previous example illustrates two points:

e First, equivalent unifiers (for example ps and p3) can have in general an arbitrary large size, since they
differ by a permutation which can be chosen arbitrary large. Thus in most applications, one would like
to find “the best most general unifier”, for example the idempotent one.

e Second, unifiers can involve variables that are in some sense unnecessary to consider, since they are
not in the set of variables of the terms to be unified.

Thus we will see in this section that all most general unifiers are equivalent up to permutation and that the
subsumption pre-order < can be usefully restricted to consider only the variables of the terms to be unified.
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3.2.2 Tree solved forms

For our purpose, we use variations of two different kinds of solved forms:

Definition 3.4 A tree solved form for a unification problem P is any conjunction of equations:

T :?tl A A xn:?tn

equivalent to P such that Vi, z; € & and:

(1) V1<i<n,x; € Var(P),
(13) V1<4i,j<n,i#j=z #zj,
(i19) V1 <1i,j<n,x; ¢ Var(t;).

Notice that the variables z; (i = 1..n) are solved. The other variables in P are called parameters.

We may speak of a tree solved form without any reference to P, in case P is the tree solved form itself.
We may also require that all variables in the solved form are variables of P.
Example 3.5 The unification problem {x =’ f(y,a),z =’ g(w)} is in tree solved form but {z =’
f(y,2),z="a} or {x =7 f(y,a),x =" a} are not in tree solved forms.

Tree solved forms have the following straightforward but useful property:

Lemma 3.8 A unification problem P with tree solved form:

?

P:(xl ="t AN - A In:?tn)

has, up to subsumption equivalence, a unique most general idempotent unifier {21 — t1, -, 2, — t,}
denoted pp.

This is an immediate consequence of the following result:

Lemma 3.9 If z is a variable that does not occur in the term ¢, then the equation 2 =" t has 0 = {x + t}
as most general idempotent unifier.

Proof: ¢ is obviously a solution.
Conversely, let 6 be a solution, then oz = 0t = 6z. If y € Var(t) then oy = 0y.
Thus o <V ()U{z} 9. The idempotency of o is an immediate consequence of the fact that = & Var(t).
O

Note that these two results remain valid in any equational theory FE.

It is clear that in general a unification problem has not a unique tree solved form: for example the
problem P = {z =’ y} is itself a tree solved form but {y =’ =} is also such a solved form for P. This is
of course related to the (stricto-sensus non-) unicity of most general unifiers. Let us look at that problem
from the point of view of solved forms. As quoted first in [LMMS8], for a given solvable unification problem
P, the number of equations of tree solved forms of P does not depend on the computing strategy of the
unification algorithm but is a natural invariant of the unification problem.

Theorem 3.3 Let S be a solvable unification problem and P,Q be two of its tree solved forms. Then
|P| = |Q| and the number of solved variables and parameters of P and Q are the same.

By analogy with linear algebra, the number of solved variables of a tree solved form is called in [LMMS&S§]
its rank and the number of parameters, which is also an invariant, is called the dimension of the equational
problem.

This result is a consequence of the following lemmas where we first prove that two equivalent tree solved
forms have the same set of variables.

Lemma 3.10 In any regular theory, if P and @ are two equivalent tree solved forms then Var(P) = Var(Q).
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Proof: By contradiction. Assume that x is a solved variable in P but is not a variable of Q. If x is solved
in P then pup = {x — t} 4+ p for some term ¢ and substitution u. Since z is not a variable of @ and
assuming the theory regular, u is solution of @ but not of P, contradicting the fact that P and Q are
equivalent.

If x is a parameter in P but is not a variable of Q). Then pp = {y — t[z]} + p for some term ¢, some
variable y and a substitution u. Since pp is an idempotent unifier, we have following Lemma 27

HoiP _Var(P)UVar(Q) Ho-

But since = ¢ Var(Q), we have:
nour(y) = po(tlr]) = rlx]
for some term 7. On the other side pug(y) = s where s does not contain any z because x is assumed

not to be a variable of ). Assuming the theory regular, which is the case of the empty theory, it is not
possible to have r[z] = s and thus z should also be a variable of Q. O

Lemma 3.11 If P and @ are two equivalent tree solved forms then |P| = |Q].

Proof: The principle of the proof is to establish an injection m between the solved variables of P and of Q.
Let z be a solved variable in P, ie. P = {x ="s}uUP'}.
If x is a solved variable of @) then we define w(z) = z.
If x is not a solved variable of () then there exists a variable y such that y =’ ¢[z] € Q. And since z is
not solved in @Q:

T = () = po(s).
But this is possible only if s is a variable z and pg(s) is also a variable. And because of the last
equality, this variable should be z. In this situation we necessary have:

P={z="2}UP}and Q= {z=" 2} UQ’}

In this case, let us define 7 by 7(z) = z.

We have now to prove that 7 is an injection.
Let us assume that this is not true. In which case:

P={e="s2="t}JUP}and Q= {y="u}UQ’}

such that (1) : m(x) =y and (2) : w(z) = y. By definition of 7, there are two possible cases for each
of the equalities (1) and (2). We summarize all the possible cases in the following table:

T=1y T=uUY=S:
Z:y I:y:Z Z:y:S
z=uy=t|lrz=y=1t| r=2=

But all these cases are clearly impossible since P and @) are tree solved forms (and thus z and z,  and
t, z and s must be different variables).

This prove that 7 is injective and thus that |P| < |Q|. But we can in the same way define an injection
from @ to P and thus prove that |Q| < |P| which terminates the proof. O

The reader may had noticed that the previous proof can be extended to the case of regular collapse free
theories.

3.2.3 Dag solved form

We now define another kind of solved form, which is important for complexity (and efficiency) reasons, by
relaxing the third condition defining tree solved forms:

Definition 3.5 A dag solved form for a unification problem P is any system of equations:
T z?tl JANEREIVAY xn:?tn
equivalent to P such that Vi,z; € X and:
(i) V1<i<n,z; € Var(P),

(16) V1<4i,5<n,i#j=x; #z,
(191) V1<i<j<n,z; ¢ Var(t;).
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Notice that a tree solved form is a dag solved form and than the two definitions differ only in item (7).
Of course, dag solved forms save space, since the value of the variable z; may not be duplicated in the #;s

for j > i (see section BZZH).

Example 3.6 The equational problem {z =’ f(y,z) A y =" a} is a dag solved form but {y =" a A z =’
f(y,2)} is not and {x =" f(z,y)} is of course not, because of the cycle on the variable .

Lemma 3.12 A unification problem:
P:(xl :?tl VANEIIVAN Tn :?tn)

in dag solved form has, up to subsumption equivalence, a unique most general idempotent unifier o =
Op--+0201, where g; = {,Ti — ti}.

Proof: First, o is a solution of P, since
Vi oxj =0pn...0201Tj = Op ...0j41t; = Ot

by the above conditions on the variables.

Second, o is idempotent by definition of a dag solved form.

Last, in order to prove that o is most general it is enough to prove o =Y (P) g (see Lemma 7).
Let us prove this by induction on n. The base case (j = 0): the system of equation is empty and the
substitution is the identity which is most general.

Let n be at least 1, and 6 be an arbitrary solution.

e for y different from all the z;:
0o -+ 0201(y) = 0(y)

e for x,:
Oon -+ 0201 (2n) = O(tn) = O(zn)

e for z; sit. i < n:
Oy, -+ - o901 (x;) by definition of the o; we get:
=00, 0;—10;(x;) by definition of the o; we get:
=00, 0i-1(t;) by application of the induction hypothesis on
the system P without the first ¢ equations we
get:

which concludes the proof. O
Dag solved forms relate to the so-called occur-check ordering on X'

Definition 3.6 Given a unification problem P, let ~p be the equivalence on X generated by the pairs (z, y)
such that =" y € P. The occur-check relation <°¢ on X’ defined by P is the quasi-ordering generated by
the pairs (2’,9') such that @’ ~p x,2 =" f(s1,...,8,) € P,y € Var(f(s1,...,50)),y ~p ¥

Example 3.7 For the following system P = 2 =7 f(u,a) A v =" g(f(a,2)) A z ="y A x =" z we have
x~py~pzandy <°u =<z

In a dag solved form, any two variables are not in the equivalence of the occur-check ordering. Conversely,
a system of equations of the form z =’ ¢ with € X and such that <°¢ is acyclic, can be ordered (using
topological sort) so as to meet the above condition. Accordingly, such a set of equations will be considered
in dag solved form.

3.2.4 Complete sets of rules for syntactic unification

We are now giving transformation rules for computing solved forms of unification problems. They use a
constant F which denote a unification problem without solution.
Notation: Given a set of equations P, {z — s} P denotes the conjunction of equations obtained from P by
replacing all the occurrences of the variable x by the term s.

Let SyntacticUnification be the following set of transformation rules:
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Delete PAs="s

> P
Decompose P A f(s1,...,8,) =" f(t1,...,tn)

> P AS ="t A ...\ Sp="1,
Conflict P A f(s1,..0y80) =" g(t1, ... tp)

> F if f#g
Coalesce PAx="y

s {z—ylP Az="y if 2,y € Var(P) and x #y
Check* P A oz ="si[za] A ...

coo N Ty =7 Spm1]

> F if s; ¢ X for some i€ [1..n]
Merge PAraz="sANz="t

W PAxz="sAs="t if 0<|s| <]t
Check PANx="5s

> F if x € Var(s) and s ¢ X
Eliminate PANx="5s

s {z—s}P Az="s if x ¢ Var(s),s ¢ X,z € Var(P)

SyntacticUnification: Rules for syntactic unification

The transformation rules Conflict and Decompose must be understood as schemas, f and g being
quantified over the signature. We avoid merging Coalesce and Eliminate into a single rule on purpose,
because they do not play the same role. Coalesce takes care of variable renaming: this is the price to pay
for alpha-conversion. Eliminate is quite different from Coalesce because it makes terms growing, thus we
will see how to avoid applying it.

First of all let us prove that all these rules are sound i.e. preserve the set of unifiers.

Lemma 3.13 All the rules in SyntacticUnification are sound.

Proof: Let us prove that Delete is sound: If o is a solution of P then it is also solution of P A s =’ s and
the converse is also obvious. Notice that this will also hold in any equational theory.

A more interesting case is Decompose: If ¢ is solution of P A s; =7 t; A ... A s, =' t, then
clearly by congruence o is solution of P A f(s1,...,8,) = f(t1,...,tn). Conversely, when o is
solution of P A f(s1,...,8,) =" f(t1,...,t,) then it should be solution of P and f(co(s1),...,0(s,)) =
f(o(1),...,0(ts)). Since this equality is syntactic, this implies that o is solution of P A s; =’
ti A ... A sy, ="t,. Notice that this cannot be extented as such to an equational theory (imagine for
example f commutative). O

Definition 3.7 A syntactic unification procedure is any sequence of application of the transformation rules
in SyntacticUnification on a finite set of equations P.

In fact a strategy of application of the rules in SyntacticUnification determines a unification procedure.
Some are complete, some are not. Let us first show that a brute force fair strategy is complete.

Theorem 3.4 Starting with a unification problem P and using the above rules repeatedly until none is
applicable results in F iff P has no solution, or else it results in a tree solved form of P:

X1 :?tl A o A xn:?tn.

Moreover
o={r1—t1,...,2n =t}

is a most general unifier of P.

Proof: By Lemma BT3 all the considered rules preserve the set of solutions. We shall now prove that the
process stops and that the normal forms are indeed tree solved forms.

This last point follows immediately from a step by step inspection of the different cases, left as exercise
to the reader.
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The most difficult point is to prove that the process terminates. This is not completely obvious, since
the rule Eliminate makes terms bigger but Decompose decrease their size. The type of an equation
is a positive integer defined by:

type(z,y)=2 if z,y,€ X
type(x,t)=1if x e X, t ¢ X
type(s,t) =0if s,t ¢ X

the complexity of one equation is:

I(s ="t) = (max(|s|, [t]), type(s, 1))
and the complexity of a system is defined as:

I(F) = (0,0)
I(Sl :?tl N ... N\ Sy =7 tn) = (N,{I(Sl :?tl),...,I(Sn =7 tn)})

where N is the number of non-solved variables. We compare the complexities lexicographically, using
the standard ordering on naturals for the first component and the multiset ordering for the second
component (for a definition of the multiset ordering see section EEZ7).

We will now check that each application of the rule in SyntacticUnification decreases the complexity
of the system on which it is applied.
Delete decreases the second component.

Decompose may increase the number of solved variables but in any case it decreases the second
component since it replaces an equation by stricly smaller ones.

Conflict obviously decreases I.

Coalesce stricly increases the number of solved variables since y € Var(P).

Check obviously decreases I.

Eliminate increases by one the number of solved variable since z € Var(P) and = ¢ s and s ¢ X.
Check* obviously decreases I.

Merge may increase the number of solved variables, but in any case it decreases the type of the
equation considered. Let us detail this in the last case. Let S = (P A x ="s A o ="t). Then

1(8) = (& {I(P), I(x =" 5),I(z =" 1)})

and
IPAz="sAs="t)=(&{I(P),I(z="5),I(s="1)}).

So because we impose 0 < |s| < |t|, max(|s], |t|) = max(|z|, [t|) and type(x =" t) > type(s =" t),
thus I as decreased.

Finally, o is a mgu of P since it is a mgu for a tree solved form of P by LemmaB8 O

As shown by the previous proof, the condition 0 < |s| < [¢| is fundamental in the Merge rule.
Exercice 18 — Give a unification problem P such that without that condition Merge does not terminate
Answer: Take P = {z =" f(z) A =" f(f(z))}
Now that we have proved that the whole set of rule terminates, we can envisage complete restrictions of
it. Let us first define useful subsets of the rules in SyntacticUnification. We introduce the set of rules:
TreeUnify={Delete, Decompose, Conflict, Coalesce, Check, Eliminate}
and =
DagUnify ={Delete, Decompose, Conflict, Coalesce, Check*, Merge}.

Corollary 3.2 Starting with a unification problem P and using the rules TreeUnify repeatedly until none
is applicable, results in F iff P has no solution, or else in a tree solved form:

{Il :? tl VAPV In :? tn}

such that o = {1 — t1,...,2, — t,} is a most general unifier of P.
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Proof: This is a clear consequence of Theorem B4l In fact Merge and Check™® are useless for getting the
tree solved forms. Termination is of course not affected when the set of rules is restricted. O

Exercice 19 — Apply the set of rules TreeUnify to the following unification problems:
flg(h(z),a),2,9(h(a),y)) =" fl9(h(9(y,y)),a),z,2)

°

f(g(h(=),a),z,9(h(a),y)) =" fla,z,2)

Answer:
We can also forbid the application of the Eliminate rule, in which case we get dag solved forms:

Corollary 3.3 Starting with a unification problem P and using the rules DagUnify repeatedly until none
is applicable, results in F iff P has no solution, or else in a dag solved form

€1 Z?tl VAN LL‘n:?tn
such that o = {z, — t,}... {21 — 1} is a most general unifier of P.

Proof: This is also a clear consequence of Theorem B4l One can check easily that the normal forms are
indeed dag solved forms and termination is not affected. O

Exercice 20 — Apply the set of rules DagUnify to the following unification problem:
flg(h(z),a),2,9(h(a),y)) =" fl9(h(9(y,y)),a),z,2)

Compare with what you get using the set of rules TreeUnify.
Answer:

3.2.5 Complexity of Syntactic Unification

Designing an algorithm for syntactic unification involves implementing the above rules, with appropriate
data structures for representing terms and storing equations, as well as a specific search plan. Terms can be
represented as labeled trees without sharing, or as dags. Equations can be stored in a queue or a stack, or in
a more elaborated data structure in order to speed up Merge, Eliminate or Check*. The search can be
driven by the data structure storing the equations, or it can again contribute to the speed-up by performing
Eliminate and Check efficiently. We review some of these issues in turn.

Syntactic unification can be polynomial or exponential in space and time according to the data structure
of terms representation. If terms are represented by labeled trees, then unification is exponential in the worst
case. If terms are represented by labeled dags, then unification can be linear. One reason is the following;:
given two unifiable terms s and ¢ with most general unifier o, then the size of o(s) depends on the data
structure of terms.

Example 3.8 Consider for instance the terms:

s = f(xnaf(xnfla'"af(IQaf(ava))"'))
t = f(f@n-1,2n-1), -, f(f(22,22), f(f(21,21),21)) ).

that can be represented as follows:
f f
Ty f f f
/ N\ /N / N\
Tr_1 Tr—1 Tr—1 f
Tp—2 Tp—2

xQ/f\f f/f\:z:
a/ \a xl/ \xl

1
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then the most general unifier is given by the substitution

o ={z1— f(a,a),z2 — f(f(a,a), f(a,a)), -+ n = f(fCooy) fCooy o))}

and the size of o(z;) for i € [1..n] is exactly 27! — 1. This can be depicted by:

M)f/\
N, /\

Tp—
! ! /f T f
a a a a a a a a
This substitution can be kept in the form:
o ={r1+ f(a,a),x2 — f(z1,71), 20— f(Tn-1,Tn-1)}

In which case the size needed for the storage of x; is now equal to 3 X 4, since it implies the storage of
Z1,---,T;—1. This can be represented as follows:

ey
NN

Ln— 1|—>f

N

x2|—>f

Tp b——>

,

/
™~

T1—= f

a/ \a

The first version corresponds to a tree representation, whereas th