Rewriting - Computation and Deduction

Horatiu CIRSTEA, Hélène KIRCHNER

INRIA

Nancy and Bordeaux, France

October 2008

Companion Document : www.loria.fr/~hkirchne

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 1 / 178

P

- data representation
- data transformation

- data representation
- data transformation

What about Rewriting in this context?

伺 ▶ ◀ 글 ▶ ◀ 글 ▶

- data representation
- data transformation

What about Rewriting in this context?

data are terms or more generally structured objects

- data representation
- data transformation

What about Rewriting in this context?

- data are terms or more generally structured objects
- this is a way to describe transformations of these objects

- data representation
- data transformation

What about Rewriting in this context?

- data are terms or more generally structured objects
- this is a way to describe transformations of these objects
- it allows formalizing and analysing the relations between these objects

🗇 🕨 🖌 🖃 🕨 🖌 🗐

o for formal specifications ?

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 3 / 178

o for formal specifications ?

functional or algebraic framework, express and check properties of specifications.

向下 イヨト イヨト

- for formal specifications ? functional or algebraic framework, express and check properties of specifications.
- as a programming langage ?

向下 くヨト くヨト

- for formal specifications ? functional or algebraic framework, express and check properties of specifications.
- as a programming langage ? high-level, type discipline, prototyping, efficient compilation

伺 ▶ ◀ 글 ▶ ◀ 글 ▶

o for formal specifications ?

functional or algebraic framework, express and check properties of specifications.

• as a programming langage ? high-level, type discipline, prototyping, efficient compilation

in a proof environnement?

• for formal specifications ?

functional or algebraic framework, express and check properties of specifications.

- as a programming langage ? high-level, type discipline, prototyping, efficient compilation
- in a proof environnement?

equality in first-order theories, computational part of proofs, as a logic and a higher-order calculus.

く 同 ト く ヨ ト く ヨ ト

1

A smooth introduction

- Defining term rewriting
 - Terms and Substitutions
 - Matching
 - Rewriting
 - More on rewriting
- 3 Properties of rewrite systems
 - Abstract rewrite systems
 - Termination
 - Confluence
 - Completion of TRS
- 4 Equational rewrite systems
 - Matching modulo
 - Rewriting modulo
- 5 Strategies
 - Why strategies ?
 - Abstract strategies
 - Properties of rewriting under strategies
 - Strategy language

日とくほとくほど

(Some) Additional Recommended Readings

- Term Rewriting Systems
 Terese (M. Bezem, J. W. Klop and R. de Vrijer, eds.)
 Cambridge Univerty press, 2002
- Term *Re*writing and *all That* Franz Baader and Tobias Nipkow
 Cambridge Univerty press, 1998
- Repository of Lectures on Rewriting and Related Topics gsl.loria.fr
- The rewriting and IFIP WG1.6 page rewriting.loria.fr
- The Rewriting Calculus Home page rho.loria.fr

A simple game

The rules of the game :

A starting point :

Who wins ? Who puts the last white ?

A (10) A (10)

Can I always win?

Horatiu CIRSTEA, Hélène KIRCHNER

Can I always win? Does the game terminate?

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 7 / 178

Can I always win? Does the game terminate? Do we always get the same result?

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 7 / 178

What are the basic operations that have been used?

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 8 / 178

What are the basic operations that have been used?

1- Matching

The data : The rewrite rule :

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 8 / 178

What are the basic operations that have been used?

1- Matching

The data : The rewrite rule :

2– Compute what should be substituted The lefthand side :

向下 イヨト イヨト

What are the basic operations that have been used?

The data : The rewrite rule :

2– Compute what should be substituted The lefthand side :

3– Replacement

The new generated data : $\bullet \bullet \boxed{\bullet} \circ \bullet \circ \bullet \bullet$

0 • 0 • • $\bullet \circ$

向下 くヨト くヨト

What are the basic operations that have been used?

Note that the last list is a NEW object.

Peano gives a meaning to addition by using the following axioms :

$$0 + x = x$$
$$s(x) + y = s(x + y)$$

向下 くヨト くヨト

Peano gives a meaning to addition by using the following axioms :

$$0 + x = x$$

$$s(x) + y = s(x + y)$$

What's the result of $s(s(0)) + s(s(0))$?

Peano gives a meaning to addition by using the following axioms :

$$0+x=x\\ s(x)+y=s(x+y)$$
 What's the result of $s(s(0))+s(s(0))$?

 $\boldsymbol{s}(\boldsymbol{s}(0)) + \boldsymbol{s}(\boldsymbol{s}(0)) = \boldsymbol{s}(\boldsymbol{s}(0) + \boldsymbol{s}(\boldsymbol{s}(0))$

Peano gives a meaning to addition by using the following axioms :

$$0 + x = x$$

 $s(x) + y = s(x + y)$
What's the result of $s(s(0)) + s(s(0))$?
 $s(s(0)) + s(s(0)) = s(s(0) + s(s(0)))$
 $= s(s(0 + s(s(0))))$

< 回 > < 回 > < 回 >

Peano gives a meaning to addition by using the following axioms :

$$0 + x = x$$

 $s(x) + y = s(x + y)$
What's the result of $s(s(0)) + s(s(0))$?
 $s(s(0)) + s(s(0)) = s(s(0) + s(s(0)))$
 $= s(s(0 + s(s(0))))$
 $= s(0) + s(s(s(0)))$
 $= 0 + 0 + 0 + s(s(s(s(0))))$
 $= ...$

P

Peano gives a meaning to addition by using the following axioms :

$$0 + x = x$$

 $s(x) + y = s(x + y)$
What's the result of $s(s(0)) + s(s(0))$?
 $s(s(0)) + s(s(0)) = s(s(0) + s(s(0)))$
 $= s(s(0 + s(s(0))))$
 $= s(s(s(s(0))))$
 $= s(0) + s(s(s(0)))$
 $= 0 + 0 + 0 + s(s(s(s(0))))$
 $= ...$

Is there a *better* result?

伺 ▶ ◀ 글 ▶ ◀ 글 ▶

Compute a result by turning the equalities into rewrite rules :

$$0 + x \rightarrow x$$
$$s(x) + y \rightarrow s(x + y)$$

Compute a result by turning the equalities into rewrite rules :

$$\begin{array}{c} 0 + x \twoheadrightarrow x \\ s(x) + y \twoheadrightarrow s(x + y) \\ \end{array}$$

$$\begin{array}{c} s(s(0)) + s(s(0)) \twoheadrightarrow s(s(0) + s(s(0))) \\ \end{array}$$

$$\begin{array}{c} s(s(0 + s(s(0)))) \\ \end{array}$$

$$\begin{array}{c} s(s(s(s(0)))) \\ \end{array}$$

・ 戸 ト ・ 三 ト ・ 三 ト

Compute a result by turning the equalities into rewrite rules :

$$0 + x \rightarrow x$$

$$s(x) + y \rightarrow s(x + y)$$

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0)) \rightarrow s(s(0 + s(s(0))))$$

$$s(s(s(s(0)))) \rightarrow s(s(s(0)) \rightarrow s(s(0)))$$

Is this computation *terminating*,

向下 イヨト イヨト

Compute a result by turning the equalities into rewrite rules :

$$\begin{array}{c} 0 + x \twoheadrightarrow x \\ s(x) + y \twoheadrightarrow s(x + y) \\ s(s(0)) + s(s(0)) \twoheadrightarrow s(s(0) + s(s(0))) \\ \end{array}$$

$$\begin{array}{c} s(s(0 + s(s(0)))) \\ \end{array}$$

$$s(s(s(s(0)))) \\ \end{array}$$

Is this computation terminating, is there always a result (e.g. an expression without +)

Compute a result by turning the equalities into rewrite rules :

$$0 + x \rightarrow x$$

$$s(x) + y \rightarrow s(x + y)$$

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0)) \rightarrow s(s(0 + s(s(0))))$$

$$s(s(s(s(0)))) \rightarrow s(s(s(0)) \rightarrow s(s(0)))$$

Is this computation **terminating**, is there always a **result** (e.g. an expression without +) is such a result **unique**???

Compute a result by turning the equalities into rewrite rules :

$$0 + x \rightarrow x$$

$$s(x) + y \rightarrow s(x + y)$$

$$s(s(0)) + s(s(0)) \rightarrow s(s(0) + s(s(0)) \rightarrow s(s(0 + s(s(0))))$$

$$s(s(s(s(0)))) \rightarrow s(s(s(0)) \rightarrow s(s(0)))$$

Is this computation **terminating**, is there always a **result** (e.g. an expression without +) is such a result **unique**???
What are the basic operations that have been used?

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 11 / 178

P

What are the basic operations that have been used?

1- Matching

The data : The rewrite rule :

$$\frac{s(s(0)) + s(s(0))}{s(x) + y} \rightarrow s(x + y)$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 11 / 178

What are the basic operations that have been used?

1- Matching

The data : The rewrite rule :

$$\frac{s(s(0)) + s(s(0))}{s(x) + y} \rightarrow s(x + y)$$

2- Compute what should be substituted

The instanciated lhs :

$$s(s(0) + s(s(0)))$$

@ ▶ < 글 ▶ < 글 ▶

What are the basic operations that have been used?

1- Matching

The data : The rewrite rule :

$$\frac{s(s(0)) + s(s(0))}{s(x) + y} \rightarrow s(x + y)$$

2- Compute what should be substituted

The instanciated lhs :

$$s(s(0) + s(s(0)))$$

3– Replacement

The new generated data :

What are the basic operations that have been used?

1- Matching

The data : The rewrite rule :

$$\frac{s(s(0)) + s(s(0))}{s(x) + y} \rightarrow s(x + y)$$

2- Compute what should be substituted

The instanciated lhs :

$$s(s(0) + s(s(0)))$$

3– Replacement

The new generated data :

Note that this last entity is a NEW object.

$$\begin{array}{lll} [\alpha] & fib(0) & \twoheadrightarrow & 1 \\ [\beta] & fib(1) & \twoheadrightarrow & 1 \\ [\gamma] & fib(n) & \twoheadrightarrow & fib(n-1) + fib(n-2) \end{array}$$

Rewriting - Computation and Deduction 12 / 178

<ロ> <目> <目> <目> <目> <目> <目> <目> <日> <</p>

$$\begin{array}{rcl} [\alpha] & \textit{fib}(0) & \rightarrow & 1 \\ [\beta] & \textit{fib}(1) & \rightarrow & 1 \\ [\gamma] & \textit{fib}(n) & \rightarrow & \textit{fib}(n-1) + \textit{fib}(n-2) \end{array}$$

$$\begin{array}{rcl} \textit{fib}(3) & \rightarrow & \textit{fib}(2) + \textit{fib}(1) \end{array}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・ 亘 - ∽ へ ⊙ >

$$\begin{array}{cccc} [\alpha] & fib(0) & \rightarrow & 1 \\ [\beta] & fib(1) & \rightarrow & 1 \\ [\gamma] & fib(n) & \rightarrow & fib(n-1) + fib(n-2) \end{array}$$

$$\begin{array}{cccc} fib(3) & \rightarrow & fib(2) + fib(1) \\ fib(2) + fib(1) \end{array}$$

<ロ> <目> <目> <目> <目> <目> <目> <目> <日> <</p>

$$\begin{array}{cccc} [\alpha] & fib(0) & \rightarrow & 1 \\ [\beta] & fib(1) & \rightarrow & 1 \\ [\gamma] & fib(n) & \rightarrow & fib(n-1) + fib(n-2) \end{array}$$

$$\begin{array}{cccc} fib(2) + fib(1) \\ fib(2) + fib(1) & \rightarrow & fib(2) + 1 \end{array}$$

(日)

= 900

$$\begin{array}{cccc} [\alpha] & fib(0) & \rightarrow & 1 \\ [\beta] & fib(1) & \rightarrow & 1 \\ [\gamma] & fib(n) & \rightarrow & fib(n-1) + fib(n-2) \end{array}$$

$$\begin{array}{cccc} fib(3) & \rightarrow & fib(2) + fib(1) \\ fib(2) + & fib(1) & \rightarrow & fib(2) + 1 \\ fib(2) & + & 1 \end{array}$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 12 / 178

<ロ> <目> <目> <目> <目> <目> <目> <目> <日> <</p>

$$\begin{array}{cccc} [\alpha] & fib(0) & \rightarrow & 1 \\ [\beta] & fib(1) & \rightarrow & 1 \\ [\gamma] & fib(n) & \rightarrow & fib(n-1) + fib(n-2) \end{array}$$

$$\begin{array}{cccc} fib(2) + fib(1) \\ fib(2) + fib(1) & \rightarrow & fib(2) + 1 \\ fib(2) + 1 & \rightarrow & fib(1) + fib(0) + 1 \end{array}$$

Rewriting - Computation and Deduction 12 / 178

イロト イポト イヨト イヨト

= 900

$$\begin{bmatrix} \alpha \end{bmatrix} fib(0) \rightarrow 1 \\ \begin{bmatrix} \beta \end{bmatrix} fib(1) \rightarrow 1 \\ \begin{bmatrix} \gamma \end{bmatrix} fib(n) \rightarrow fib(n-1) + fib(n-2)$$

$$fib(3) \rightarrow fib(2) + fib(1) \\ fib(2) + fib(1) \rightarrow fib(2) + 1 \\ fib(2) + 1 \rightarrow fib(1) + fib(0) + 1$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 12 / 178

(日)

= 900

Rewriting - Computation and Deduction 12 / 178

ヘロン 人間 とくほとくほとう

-2

$$\begin{bmatrix} \alpha \end{bmatrix} \quad fib(0) \quad \rightarrow \quad 1 \\ \begin{bmatrix} \beta \end{bmatrix} \quad fib(1) \quad \rightarrow \quad 1 \\ \begin{bmatrix} \gamma \end{bmatrix} \quad fib(n) \quad \rightarrow \quad fib(n-1) + fib(n-2) \end{bmatrix}$$

$$fib(3) \quad \rightarrow \quad fib(2) + fib(1) \quad fib(2) + 1 \quad fib(2) + 1 \quad fib(2) + 1 \quad fib(2) + 1 \quad fib(1) + fib(0) + 1 \quad fib(1) + fib(0) + 1 \quad fi$$

Finally fib(3) = 3, fib(4) = 5, ...

<ロト <回 > < 回 > < 回 > .

-2

$F \rightarrow F + F - F - FF + F + F - F$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 13 / 178

$F \rightarrow F + F - F - FF + F + F - F$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 13 / 178

-

$F \rightarrow F + F - F - FF + F + F - F$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 13 / 178

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 13 / 178

L-systems (Lindenmeier)

Horatiu CIRSTEA, Hélène KIRCHNER

イロト イ団ト イヨト イヨト

Ecological Rewriting

http ://algorithmicbotany.org/

Horatiu CIRSTEA, Hélène KIRCHNER

Sorting by rewriting

```
rules for List
X, Y : Nat ; L L' L'' : List;
hd (X L) => X ; tl (X L) => L ;
sort nil => nil .
sort (L X L' Y L'') => sort (L Y L' X L'') if Y < X .
end
```

sort (6 5 4 3 2 1) => ...

On what objects can rewriting act?

It can be defined on

- terms like 2 + i(3) or XML documents
- strings like "What is rewriting ?" (sed performs string rewriting)
- graphs
- sets
- multisets
- ...

・ 同 ト ・ ヨ ト ・ ヨ ト ・

On what objects can rewriting act?

It can be defined on

- terms like 2 + i(3) or XML documents
- strings like "What is rewriting ?" (sed performs string rewriting)
- graphs
- sets
- multisets
- ...

We will "restrict" in this lecture to first-order terms

- Defining term rewriting
 - Terms and Substitutions
 - Matching

2

- Rewriting
- More on rewriting
- Properties of rewrite systems
 - Abstract rewrite systems
 - Termination
 - Confluence
 - Completion of TRS
- 4 Equational rewrite systems
 - Matching modulo
 - Rewriting modulo

5 Strategies

- Why strategies ?
- Abstract strategies
- Properties of rewriting under strategies
- Strategy language

Defining term rewriting

The relation, the logic, the calculus

This part deals with the rewriting relation on first-order term

This is just the oriented version of replacement of equal by equal

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 18 / 178

First-order terms

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 19 / 178

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Signature and first-order terms

 \mathcal{F}_0 a set of symbols of arity 0 (the constants)

 \mathcal{F}_i a set of symbols of arity *i*

 $\mathcal{F} = \cup_n \mathcal{F}_n$

 \mathcal{X} a set of arity 0 symbols called variables.

 $\mathcal{T}(\mathcal{F},\mathcal{X})$ is the smallest set such that :

• $\mathcal{X} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{X})$,

• $\forall f \in \mathcal{F}, \forall t_1, \ldots, t_n \in \mathcal{T}(\mathcal{F}, \mathcal{X}) : f(t_1, \ldots, t_n) \in \mathcal{T}(\mathcal{F}, \mathcal{X})$.

 $\mathcal{T}(\mathcal{F}, \emptyset) = \mathcal{T}(\mathcal{F})$ is the set of ground terms.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ●

Terms as mappings : $(\mathbf{N}, .) \rightarrow \mathcal{F}$

t = f(a + x, h(f(a, b))) is represented by :

position \mapsto symbol		
Λ	\mapsto	f
1	\mapsto	+
1.1	\mapsto	а
1.2	\mapsto	X
2	\mapsto	h
2.1	\mapsto	f
2.1.1	\mapsto	а
2.1.2	\mapsto	b

 $\mathcal{D}om(t) = \{\Lambda, 1, 1.1, 1.2, 2, 2.1, 2.1.1, 2.1.2\}$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

With the following signature :

 $\mathcal{F} = \{f, a\}$ with arity(f) = 2, arity(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms ?

f(a, a) f(x, f(a, x))f(x, f(y, z))

・ 同 ト ・ ヨ ト ・ ヨ ト ・

With the following signature :

 $\mathcal{F} = \{f, a\}$ with arity(f) = 2, arity(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x))f(x, f(y, z))

< 同 > < 回 > < 回 > -

With the following signature :

 $\mathcal{F}=\{f,a\}$ with arity(f)= 2, arity(a)= 0, $x,y,z\in\mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z))

< 同 > < 回 > < 回 > -

With the following signature :

 $\mathcal{F} = \{f, a\}$ with *arity*(f) = 2, *arity*(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z)) is linear

What about the following terms?

With the following signature :

 $\mathcal{F}=\{f,a\}$ with arity(f)= 2, arity(a)= 0, $x,y,z\in\mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z)) is linear

What about the following terms ? f(a, a, a) is

With the following signature :

 $\mathcal{F} = \{f, a\}$ with arity(f) = 2, arity(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z)) is linear

What about the following terms?

f(a, a, a) is ill-formed (since f is of arity 2)

With the following signature :

 $\mathcal{F} = \{f, a\}$ with arity(f) = 2, arity(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z)) is linear

What about the following terms?

f(a, a, a) is ill-formed (since *f* is of arity 2) *a* is

With the following signature :

 $\mathcal{F} = \{f, a\}$ with arity(f) = 2, arity(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z)) is linear

What about the following terms?

f(a, a, a) is ill-formed (since *f* is of arity 2) *a* is correct

< 🗇 > < 🖻 > < 🖻 >
With the following signature :

 $\mathcal{F} = \{f, a\}$ with arity(f) = 2, arity(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z)) is linear

What about the following terms?

f(a, a, a) is ill-formed (since *f* is of arity 2) *a* is correct x(a) is

< 回 > < 回 > < 回 >

With the following signature :

 $\mathcal{F} = \{f, a\}$ with arity(f) = 2, arity(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z)) is linear

What about the following terms?

f(a, a, a) is ill-formed (since *f* is of arity 2)

a is correct

x(a) is ill-formed (since all variables are assumed of arity 0)

< 🗇 > < 🖻 > < 🖻 >

With the following signature :

 $\mathcal{F} = \{f, a\}$ with arity(f) = 2, arity(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z)) is linear

What about the following terms?

f(a, a, a) is ill-formed (since *f* is of arity 2) *a* is correct x(a) is ill-formed (since all variables are assumed of arity 0) *f* is

< 回 > < 回 > < 回 >

With the following signature :

 $\mathcal{F} = \{f, a\}$ with arity(f) = 2, arity(a) = 0, $x, y, z \in \mathcal{X}$: what are the following terms ?

f(a, a) is ground, f(x, f(a, x)) is not linear but f(x, f(y, z)) is linear

What about the following terms?

f(a, a, a) is ill-formed (since *f* is of arity 2) *a* is correct x(a) is ill-formed (since all variables are assumed of arity 0)

f is ill-formed (since f is of arity 2)

< 回 > < 回 > < 回 >

Subterms

$\frac{t[s]_{\omega}}{c}$ denotes the term $\frac{t}{c}$ with $\frac{s}{c}$ as subterm at position (or occurrence) $\frac{\omega}{c}$.

 $|t|_{\omega}$ denotes the subterm at occurrence ω .

$$f(a + x, h(f(a, b)))|_2 = h(f(a, b))$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Terms as trees

|t| is the size of t i.e. the cardinality of $\mathcal{D}om(t)$.

|f(a+x,h(f(a,b)))| = 8

 $\mathcal{V}ar(t)$ denotes the set of variables in t.

$$\mathcal{V}ar(f(a+x,h(f(a,b)))) = \{x\}$$

What is $f(f(a, b), g(a))|_{1,1}$?

Horatiu CIRSTEA, Hélène KIRCHNER

<ロト < 回 > < 回 > < 回 > < 回 > .

What is $f(f(a, b), g(a))|_{1.1}$? What is $f(f(a, b), g(a))|_{\Lambda}$?

- a

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 25 / 178

・ 同 ト ・ ヨ ト ・ ヨ ト ・

What is $f(f(a, b), g(a))|_{1.1}$?

What is $f(f(a, b), g(a))|_{\Lambda}$?

What is $f(f(a, b), g(a))|_{1.2}$?

-a-f(f(a,b),g(a))

・ 同 ト ・ ヨ ト ・ ヨ ト ・

What is $f(f(a, b), g(a))|_{1.1}$?

- What is $f(f(a, b), g(a))|_{\Lambda}$?
- What is $f(f(a, b), g(a))|_{1.2}$?

What is the arity of *f* just above?

-a-f(f(a,b),g(a))-b

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- What is $f(f(a, b), g(a))|_{1.1}$?
- What is $f(f(a, b), g(a))|_{\Lambda}$?
- What is $f(f(a, b), g(a))|_{1.2}$?
- What is the arity of *f* just above ?
- What is the arity of a just above?

-a -f(f(a,b),g(a)) -b -2

< 回 > < 回 > < 回 >

What is $f(f(a, b), g(a)) _{1,1}$?	— a
What is $f(f(a, b), g(a)) _{\Lambda}$?	- f(f(a, b), g(a))
What is $f(f(a, b), g(a)) _{1,2}$?	-b
	- 2
What is the arity of <i>f</i> just above?	_
What is the arity of <i>a</i> just above ?	— 0
What are the variables of $f(f(a, b), g(a)) _{1,2}$?	

What is $f(f(a, b), g(a)) _{1.1}$?	— a
What is $f(f(a, b), g(a)) _{\Lambda}$?	-f(f(a,b),g(a))
What is $f(f(a, b), g(a)) _{1.2}$?	— b
What is the arity of <i>f</i> just above ?	- 2
What is the arity of <i>a</i> just above ?	— 0
What are the variables of $f(f(a, b), g(a)) _{1.2}$?	— Ø
What are the variables of $f(f(x, x), g(a)) _{1.2}$?	

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

What is $f(f(a, b), g(a)) _{1.1}$?	— a
What is $f(f(a, b), g(a)) _{\Lambda}$?	-f(f(a,b),g(a))
What is $f(f(a, b), g(a)) _{1.2}$?	— b
What is the arity of <i>f</i> just above ?	- 2
What is the arity of <i>a</i> just above ?	— 0
What are the variables of $f(f(a, b), g(a)) _{1.2}$?	— Ø
What are the variables of $f(f(x, x), g(a)) _{1.2}$?	$- \{x\}$
What are the variables of $f(f(x, x), g(a))$?	

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

What is $f(f(a, b), g(a)) _{1.1}$?	— a
What is $f(f(a,b),g(a)) _{\Lambda}$?	-f(f(a,b),g(a))
What is $f(f(a, b), g(a)) _{1.2}$?	— b
What is the arity of <i>f</i> just above ?	- 2
What is the arity of <i>a</i> just above ?	— 0
What are the variables of $f(f(a, b), g(a)) _{1.2}$?	— Ø
What are the variables of $f(f(x, x), g(a)) _{1.2}$?	$- \{x\}$
What are the variables of $f(f(x, x), g(a))$?	$-\{x\}$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Substitutions

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 26 / 178

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Substitution

A substitution σ is a mapping from the set of variables to the set of terms :

$$\sigma: \mathcal{X} \mapsto \mathcal{T}(\mathcal{F}, \mathcal{X})$$

It is extended as a morphism from terms to terms :

 $\sigma: \mathcal{T}(\mathcal{F}, \mathcal{X}) \mapsto \mathcal{T}(\mathcal{F}, \mathcal{X})$ $\sigma(f(t_1, t_2)) = f(\sigma(t_1), \sigma(t_2))$

If $\sigma = \{ x \mapsto a, y \mapsto f(a, g(z)), z \mapsto g(z) \}$, then $\sigma(f(x, f(a, z))) = f(a, f(a, g(z))).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Matching

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 28 / 178

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Matching

Finding a substitution σ such that

 $\sigma(I) = t$

is called the matching problem from $\frac{1}{t}$ to $\frac{t}{t}$.

This is denoted $I \ll^{?} t$

It is decidable in linear time in the size of t.

It induces a relation on terms called subsumption

< 回 > < 回 > < 回 >

Defining term rewriting

Matching

Matching : A rule based description

・ロト ・ 四ト ・ ヨト ・ ヨト

Defining term rewriting

Matching

Matching : A rule based description

Delete \rightarrow	$t \ll^{?} t \land P$ P	
Decomposition \rightarrow	$f(t_1,\ldots,t_n) \ll^? f(t'_1,\ldots,t'_n) \land P$ $\bigwedge_{i=1,\ldots,n} t_i \ll^? t'_i \land P$	
SymbolClash $ ightarrow$	$f(t_1,\ldots,t_n) \ll^? g(t_1',\ldots,t_m') \land P$ Fail	if $f eq g$
SymbolVariableClash \rightarrow	$f(t_1,\ldots,t_n) \ll^? x \land P$ Fail	if $\pmb{x} \in \mathcal{X}$
MergingClash \rightarrow	$x \ll^{?} t \land x \ll^{?} t' \land P$ Fail	if <i>t ≠ t'</i> < ≅ ► ≅ ∽

Find a match

$$\begin{aligned} x + (y * 3) \ll^{?} 1 + (4 * 3) \\ \Rightarrow_{\text{Decomposition}} x \ll^{?} 1 \land y * 3 \ll^{?} 4 * 3 \\ \Rightarrow_{\text{Decomposition}} x \ll^{?} 1 \land y \ll^{?} 4 \land 3 \ll^{?} 3 \\ \Rightarrow_{\text{Delete}} x \ll^{?} 1 \land y \ll^{?} 4 \end{aligned}$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 31 / 178

<ロト <回 > < 回 > < 回 > .

= 900

Find a match

$$x + (y*3) \ll^{?} 1 + (4*3)$$

$$\Rightarrow_{\text{Decomposition}} x \ll^{?} 1 \land y*3 \ll^{?} 4*3$$

$$\Rightarrow_{\text{Decomposition}} x \ll^{?} 1 \land y \ll^{?} 4 \land 3 \ll^{?} 3$$

$$\Rightarrow_{\text{Delete}} x \ll^{?} 1 \land y \ll^{?} 4$$

$$x + (y*y) \ll^{?} 1 + (4*3)$$

$$\Rightarrow_{\text{Decomposition}} x \ll^{?} 1 \land y*y \ll^{?} 4*3$$

 $\Rightarrow_{\text{Decomposition}} x \ll^{?} 1 \land y \ll^{?} 4 \land y \ll^{?} 3$

⇒_{MergingClash} Fail

Matching rules

Does it terminate ? Do we always get the same result ?

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 32 / 178

A (10) A (10)

Matching rules

Does it terminate? Do we always get the same result?

Theorem The normal form by the rules in *Match*, of any matching problem $t \ll^{?} t'$ such that $\mathcal{V}ar(t) \cap \mathcal{V}ar(t') = \emptyset$, exists and is unique.

- If it is **Fail**, then there is no match from t to t'.
- 2 If it is of the form $\bigwedge_{i \in I} x_i \ll^{?} t_i$ with $I \neq \emptyset$, the substitution $\sigma = \{\mathbf{x}_i \mapsto \mathbf{t}_i\}_{i \in I}$ is the unique match from t to t'.
- ③ If it is empty then t and t' are identical : t = t'.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Matching

Matching is used everywhere

ML TOM **XQUERY** "pattern matching" in general

. . .

Horatiu CIRSTEA, Hélène KIRCHNER

Matching

Matching is used everywhere

ML TOM XQUERY "pattern matching" in general

CyberSitter censors "menu */ #define" because of the string "nu...de". From Internet Risks Forum NewsGroup (RISKS), vol. 19, issue 56.

□ ▶ < □ ▶ < □ ▶</p>

Term subsumption

$$\boldsymbol{s} \ll \boldsymbol{t} \Longleftrightarrow \sigma(\boldsymbol{s}) = \boldsymbol{t}$$

Vocabulary : t is called an instance of s s is said more general than t or s subsumes t σ is a match from s to t. \ll is a quasi-ordering on terms called subsumption.

$$f(\mathbf{x}, \mathbf{y}) \ll f(f(\mathbf{a}, \mathbf{b}), \mathbf{h}(\mathbf{y}))$$

Theorem : [Huet78]

Up to renaming, the subsumption ordering on terms is well-founded.

Notice that

 $s \le t \Rightarrow f(u, s) \le f(u, t)$ since $x \le a$ but $f(x, x) \not\le f(x, a)$

$$s \le t \
eq \sigma(s) \le \sigma(t)$$

since
 $x \le a$ but $(x \mapsto b)x \not\le (x \mapsto b)a$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 35 / 178

Rewriting

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 36 / 178

<ロト < 回 > < 回 > < 回 > .

Definition of rewriting

It relies on 5 notions :

- The objects : terms and rewrite rules
- The actions
 - matching
 - substitutions
 - replacement

and, given a rule and a term, it consists in :

- finding a subterm of the term
- that matches the left hand side of the rule
- and replacing that subterm by the right hand side of the rule instanciated by the match

Rewriting

Formally

t rewrites to t' using the rule $l \rightarrow r$ if

$$t_{|p} = \sigma(I)$$
 and $t' = t[\sigma(r)]_p$

This is denoted

$$t \longrightarrow_{\rho}^{I \longrightarrow r} t'$$

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 四ト ・ ヨト ・ ヨト

A term rewrite system *R* (a set of rewrite rules) determines a relation on terms denoted \longrightarrow_R :

・ 同 ト ・ ヨ ト ・ ヨ ト

A term rewrite system *R* (a set of rewrite rules) determines a relation on terms denoted \longrightarrow_{R} :

iff there exist $t, I \rightarrow r \in R$, an occurrence ω in t, such that $u = t[\sigma(I)]_{\omega}$ and $v = t[\sigma(r)]_{\omega}$

< 🗇 > < 🖻 > < 🖻 > .

A term rewrite system *R* (a set of rewrite rules) determines a relation on terms denoted \longrightarrow_R :

iff there exist *t*, $I \rightarrow r \in R$, an occurrence ω in *t*, such that $u = t[\sigma(l)]_{\omega}$ and $v = t[\sigma(r)]_{\omega}$

$$\boldsymbol{t}[\boldsymbol{\sigma}(\boldsymbol{I})]_{\omega} \twoheadrightarrow_{\boldsymbol{R}} \boldsymbol{t}[\boldsymbol{\sigma}(\boldsymbol{r})]_{\omega}$$

< 🗇 > < 🖻 > < 🖻 > .

A term rewrite system *R* (a set of rewrite rules) determines a relation on terms denoted \longrightarrow_{R} :

 $U \rightarrow R V$

iff there exist $t, I \rightarrow r \in R$, an occurrence ω in t, such that $u = t[\sigma(I)]_{\omega}$ and $v = t[\sigma(r)]_{\omega}$

$$\boldsymbol{t}[\boldsymbol{\sigma}(\boldsymbol{I})]_{\omega} \twoheadrightarrow_{\boldsymbol{R}} \boldsymbol{t}[\boldsymbol{\sigma}(\boldsymbol{r})]_{\omega}$$

USUALLY, when defining the rewriting relation, one requires the all rewrite rules satisfy $Var(r) \subseteq Var(l)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・
Simple examples —

Consider the rewrite system R:

$$\begin{array}{ccc} x + x & \rightarrow & x \\ (a + x) + y & \rightarrow & y + x \end{array}$$

How many redexes are in (a + a) + (a + a)?

A (10) + A (10) +

Simple examples —

Consider the rewrite system R:

$$\begin{array}{ccc} x + x & \rightarrow & x \\ (a + x) + y & \rightarrow & y + x \end{array}$$

How many redexes are in (a + a) + (a + a)?

Draw the rewrite derivation tree issued from (a + a) + (a + a).

Horatiu CIRSTEA, Hélène KIRCHNER

< 回 > < 回 > < 回 >

Simple examples —

Consider the rewrite system R :

$$\begin{array}{ccc} x + x & \rightarrow & x \\ (a + x) + y & \rightarrow & y + x \end{array}$$

How many redexes are in (a + a) + (a + a)?

Draw the rewrite derivation tree issued from (a + a) + (a + a).

Is ((a + a) + (a + a), a) in the transitive closure of \rightarrow ?

Simple examples —

Consider the rewrite system R :

$$\begin{array}{rcl} x+x & \twoheadrightarrow & x \\ (a+x)+y & \twoheadrightarrow & y+x \end{array}$$

How many redexes are in (a + a) + (a + a)?

Draw the rewrite derivation tree issued from (a + a) + (a + a).

Is ((a + a) + (a + a), a) in the transitive closure of \rightarrow ? yes

Is (a, a) in the transitive closure of \rightarrow ?

Simple examples —

Consider the rewrite system R :

$$\begin{array}{rcl} x+x & \twoheadrightarrow & x \\ (a+x)+y & \twoheadrightarrow & y+x \end{array}$$

How many redexes are in (a + a) + (a + a)?

Draw the rewrite derivation tree issued from (a + a) + (a + a).

Is ((a + a) + (a + a), a) in the transitive closure of \rightarrow ? ves

Is (a, a) in the transitive closure of \rightarrow ?

Is (a, a) in the reflexive closure of \rightarrow ?

– no

Simple examples —

Consider the rewrite system R :

$$\begin{array}{rcl} x+x & \twoheadrightarrow & x \\ (a+x)+y & \twoheadrightarrow & y+x \end{array}$$

How many redexes are in (a + a) + (a + a)?

Draw the rewrite derivation tree issued from (a + a) + (a + a).

Is ((a + a) + (a + a), a) in the transitive closure of \rightarrow ? ves

- Is (a, a) in the transitive closure of \rightarrow ?
- Is (a, a) in the reflexive closure of \rightarrow ? ves

Is there any infinite derivation starting from a finite tree using R?

< 同 > < 回 > < 回 > -

— no

Simple examples —

Consider the rewrite system R :

$$\begin{array}{ccc} x + x & \rightarrow & x \\ (a + x) + y & \rightarrow & y + x \end{array}$$

How many redexes are in (a + a) + (a + a)?

Draw the rewrite derivation tree issued from (a + a) + (a + a).

Is ((a + a) + (a + a), a) in the transitive closure of \rightarrow ? ves

Is (a, a) in the transitive closure of \rightarrow ? — no

Is (a, a) in the reflexive closure of \rightarrow ? ves

Is there any infinite derivation starting from a finite tree using R? — no Why?

< 🗇 > < 🖻 > < 🖻 > .

More on rewriting

Expressiveness of rewriting

[Max Dauchet 1989] A Turing machine can be simulated by a single rewrite rule This unique rewrite rule can further be left linear and regular! ... Termination of a rewrite relation

On the use of term rewriting

- for programming (ASF, ELAN, MAUDE, ML, OBJ, Stratego, ...)
- for proving (Completion procedures, proof systems, ...)
- for solving (Constraint manipulations, ...)
- for verifying (Exhaustive (and may be intelligent) search)

What are the typical problems of the field?

Confluence Termination Control of rewriting : strategies Conditional rewriting Theorem proving and rewriting Rewriting and higher-order features : ρ-calculus Types and rewriting

Extended notions of rewriting

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 44 / 178

・ロト ・ 同ト ・ ヨト ・ ヨト

Conditional rules

$I \rightarrow r$ if c

- $I, r \in \mathcal{T}(\mathcal{F}, \mathcal{X}),$
- c a boolean term
- $\mathcal{V}ar(r) \cup \mathcal{V}ar(c) \subseteq \mathcal{V}ar(l)$

The rule applies on a term t provided the matching substitution σ allows $c\sigma$ to reduce to true.

< 同 > < 回 > < 回 > -

Applying a conditional rewrite rule

$$\begin{array}{rcl} even(0) & \twoheadrightarrow & true \\ even(s(x)) & \twoheadrightarrow & odd(x) \\ odd(x) & \twoheadrightarrow & true & \text{if} & not(even(x)) \\ odd(x) & \twoheadrightarrow & false & \text{if} & even(x) \end{array}$$

 $\textit{even}(\textit{s}(0)) \longrightarrow \textit{odd}(0) \longrightarrow \textit{false}$

$I \rightarrow r$ where $p_1 := c_1 \dots$ where $p_n := c_n$

•
$$I, r, p_1, \ldots, p_n, c_1, \ldots, c_n \in \mathcal{T}(\mathcal{F}, \mathcal{X}),$$

- $\mathcal{V}ar(p_i) \cap (\mathcal{V}ar(I) \cup \mathcal{V}ar(p_1) \cup \cdots \cup \mathcal{V}ar(p_{i-1})) = \emptyset$,
- $\mathcal{V}ar(r) \subseteq \mathcal{V}ar(I) \cup \mathcal{V}ar(p_1) \cup \cdots \cup \mathcal{V}ar(p_n)$
- $\mathcal{V}ar(c_i) \subseteq \mathcal{V}ar(I) \cup \mathcal{V}ar(p_1) \cup \cdots \cup \mathcal{V}ar(p_{i-1}).$

where true := c is equivalently written if c. p_i is oftern reduced to a variable x.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Generalized rule application

$$I \rightarrow r$$
 where $p_1 := c_1 \dots$ where $p_n := c_n$

To apply this rewrite rule on *t*, the matching substitution σ from *l* to *t* (i.e. such that $l\sigma = t$) is successively composed with each match μ_i from p_i to $c_i \sigma \mu_1 \dots \mu_{i-1}$, for all $i = 1, \dots, n$.

$$move(S) \rightarrow C(x, y)$$
 where $\langle x, y \rangle := position(S)$ if $x = y$

< 同 > < 回 > < 回 > -

- A smooth introduction
- Defining term rewriting
 - Terms and Substitutions
 - Matching
 - Rewriting

3

- More on rewriting
- Properties of rewrite systems
 - Abstract rewrite systems
 - Termination
 - Confluence
 - Completion of TRS
- 4 Equational rewrite systems
 - Matching modulo
 - Rewriting modulo

5 Strategies

- Why strategies ?
- Abstract strategies
- Properties of rewriting under strategies
- Strategy language

Think abstractly

The properties of this relation could be studied in an abstract way : \Rightarrow Abstract rewrite systems

< 同 ト < 三 ト < 三 ト

Abstract rewrite systems

 $\ensuremath{\mathfrak{I}}$ Consider a set $\ensuremath{\mathcal{T}}$

\supset Consider a binary relation \longrightarrow on \mathcal{T} (one-step reduction)

 \Rightarrow *a* \longrightarrow *b* : *b* is the reduct of *a*

⊃ Induced relations

- \blacktriangleright transitive closure : $\stackrel{+}{\longrightarrow}$
- \blacktriangleright transitive reflexive closure : $\stackrel{*}{\longrightarrow}$
- \blacktriangleright symetric closure : \longleftrightarrow

向下 イヨト イヨト

Consider an ARS (\mathcal{T},\rightarrow)

⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.

三 のへの

Consider an ARS (\mathcal{T},\rightarrow)

- ⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.
- The relation → is terminating (or strongly normalizing, or noetherian) if every reduction sequence is finite.

< 回 > < 回 > < 回 >

Consider an ARS (\mathcal{T},\rightarrow)

- ⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.
- The relation → is terminating (or strongly normalizing, or noetherian) if every reduction sequence is finite.

< 回 > < 回 > < 回 >

Consider an ARS (\mathcal{T},\rightarrow)

- ⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.
- The relation → is terminating (or strongly normalizing, or noetherian) if every reduction sequence is finite.
 a → a is not terminating
- C The relation → is weakly normalizing (or weakly terminating) if every element $t \in T$ has a normal form.

□ ▶ < □ ▶ < □ ▶</p>

Consider an ARS (\mathcal{T},\rightarrow)

- ⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.
- The relation → is terminating (or strongly normalizing, or noetherian) if every reduction sequence is finite.
 a → a is not terminating
- C The relation → is weakly normalizing (or weakly terminating) if every element $t \in T$ has a normal form.

□ ▶ < □ ▶ < □ ▶</p>

.

Consider an ARS (\mathcal{T},\rightarrow)

- ⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.
- The relation → is terminating (or strongly normalizing, or noetherian) if every reduction sequence is finite.
 a → a is not terminating
- ⇒ The relation \rightarrow is weakly normalizing (or weakly terminating) if every element $t \in T$ has a normal form.

 $a \rightarrow a$ $a \rightarrow b$ is weakly terminating

C The relation → has the unique normal form property if for any $t, t' \in T, t \xleftarrow{*} t'$ and t, t' are normal forms imply t = t'.

伺下 イヨト イヨト ニヨ

Showing normalization

A (partial) order on T is a reflexive, antisymetric and transitive relation.

An ordering is **total** on \mathcal{T} when two terms are always comparable

> is well-founded or Noetherian on ${\cal T}$ if there is no infinite decreasing sequence on ${\cal T}$:

$$t_1 > t_2 > t_3 > \ldots$$

Theorem

Consider an ARS $(\mathcal{A}, \rightarrow)$.

 \rightarrow is terminating

```
iff
```

there exists a well-founded (partial) order > on \mathcal{T} and a mapping ϕ s.t. for all rewrite rule $a \rightarrow a'$ implies $\phi(a) > \phi(a')$.

Example

Use the order $(>,\mathbb{N})$ which is well-founded.

Several choices for strings $\mathcal{A} = (\bullet \mid \circ)^*$

- φ(w) = number of •
 works for all •-decreasing reductions
- φ(w) = number of
 o
 works for all
 o-decreasing reductions

< 回 > < 回 > < 回 >

Example

Use the order $(>,\mathbb{N})$ which is well-founded.

Several choices for strings $\mathcal{A} = (\bullet \mid \circ)^*$

- φ(w) = number of •
 works for all •-decreasing reductions
- φ(w) = number of
 o
 works for all
 o-decreasing reductions

< 日 > < 同 > < 回 > < 回 > .

Example

Use the order $(>,\mathbb{N})$ which is well-founded.

Several choices for strings $\mathcal{A} = (\bullet \mid \circ)^*$

- φ(w) = number of •
 works for all •-decreasing reductions
- φ(w) = number of
 o
 works for all
 o-decreasing reductions

 φ(w) = number of
 • and
 vorks for all length-decreasing reductions

Definitions (Relathionships

Localy confluent (LC)

Church Rosser (CR)

Diamond property (DP)

Confluent (C)

Local versus global confluence

2 $LC \Rightarrow C?$

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・四ト ・ヨト・

Local versus global confluence

 $1 C \Rightarrow LC$

- **2** $LC \Rightarrow C?$
 - Consider four distinct elements a, b, c, d of T and the relation : a → b b → a
 - $a \rightarrow c$
 - $b \rightarrow d$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

-1

Newman's lemma

[Newman 1942]

Provided the relation \rightarrow is terminating

then

 \rightarrow is confluent iff it is locally confluent

Proof :

Newman's lemma

[Newman 1942]

Provided the relation \rightarrow is terminating

then

 \rightarrow is confluent iff it is locally confluent

Proof :

- locally confluent if confluent
 - 🗢 obvious

A (10) A (10)

Newman's lemma

[Newman 1942]

Provided the relation \rightarrow is terminating

then

 \rightarrow is confluent iff it is locally confluent

Proof :

- locally confluent if confluent
 obvious
- confluent if locally confluent
 ?

< 回 > < 回 > < 回 >

Noetherian induction : a fondamental tool

- Let $(\mathcal{T}, >)$ be an ordered set s.t. > is well-founded.
- Let \mathcal{P} be a proposition :

 - 2 $\mathcal{P}(t)$ is provable for all minimal element t,

then $\forall t \in \mathcal{T}, \mathcal{P}(t)$.

Noetherian induction : a fondamental tool

Consider $(\mathcal{T}, \rightarrow)$

How to build well founded orderings?

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 60 / 178

・ロト ・ 四ト ・ ヨト ・ ヨト

R (or \rightarrow_R) terminates

iff all derivation issued from any term terminates.

Termination implies the existence of normal form(s) for any term.

Termination is in general undecidable

but interesting sufficient condition can be found.

P

Termination

Proving termination could be tricky

Horatiu CIRSTEA, Hélène KIRCHNER

<ロト < 回 > < 回 > < 回 > < 回 > .

-1

Termination

Proving termination could be tricky

$$f(a, b, x) \rightarrow f(x, x, x)$$

is terminating

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 62 / 178

A (10) A (10)

Termination

Proving termination could be tricky

$$f(a, b, x) \rightarrow f(x, x, x)$$

is terminating

 $\begin{array}{lll} g(x,y) & \twoheadrightarrow & x \\ g(x,y) & \twoheadrightarrow & y, \end{array}$

is terminating

Rewriting - Computation and Deduction 62 / 178

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Termination

Proving termination could be tricky

$$f(a, b, x) \rightarrow f(x, x, x)$$

is terminating

 $\begin{array}{lll} g(x,y) & \twoheadrightarrow & x \\ g(x,y) & \twoheadrightarrow & y, \end{array}$

is terminating

Is the union terminating?

・ロト ・ 同ト ・ ヨト ・ ヨト

$$\begin{array}{rcl} f(a,b,x) & \twoheadrightarrow & f(x,x,x) \\ g(x,y) & \twoheadrightarrow & x \\ g(x,y) & \twoheadrightarrow & y, \end{array}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - 少へ⊙

$$egin{array}{rcl} f(a,b,x) & woheadrightarrow f(x,x,x) \ g(x,y) & woheadrightarrow x \ g(x,y) & woheadrightarrow y, \end{array}$$

We have the derivation :

$$f(g(a,b), g(a,b), g(a,b)) \longrightarrow f(a, g(a,b), g(a,b)) \longrightarrow f(a, b, g(a,b))$$
(Tovama 1986)

<ロト <回 > < 回 > < 回 > .

ensures finiteness of computations

Horatiu CIRSTEA, Hélène KIRCHNER

< □ > < 同 > < 回 > < 回 > < 回 >

- ensures finiteness of computations
- is a necessary condition for deciding of other properties (non ambiguity, reachability tests, ...)

伺 ▶ ◀ ᆿ ▶ ◀ ᆿ ▶

- ensures finiteness of computations
- is a necessary condition for deciding of other properties (non ambiguity, reachability tests, ...)
- is undecidable.

Proving Termination

Termination of rewriting can be checked by sufficient conditions :

- Syntactic and semantic methods (applying directly to the TRS) KBO [Knuth & Bendix 1970], LPO [Kamin & Levy 1980], RPO [Dershowitz 1982], RPOS [Steinbach 1989], GPO [Dershowitz & Hoot 1995], Polynomial interpretations [Lankford 1975, Ben Cherifa & Lescanne 1986],...
- Transformational approaches (transforming one TRS into another) Semantic labelling [Zantema 1995], Dependency pairs [Arts & Giesl 1996], ...
- Induction on the derivation trees (schematization by abstraction and narrowing of the derivations)
 [Fissore & Gnaedig & Kirchner 2003]

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 66 / 178

<ロト <回 > < 回 > < 回 > .

= 990

Orderings on terms

A Reduction ordering is an ordering on \mathcal{T} , stable by context and substitution : \blacktriangleright for every context $C[_]$ and for all substitutions σ , if t > s then C[t] > C[s] and $\sigma(t) > \sigma(s)$.

Theorem *R* terminates iff there exists a well-founded reduction ordering > s.t. for all rewrite rule $(I \rightarrow r) \in R$, I > r.

Example

The rules of the game :

l > r if |l| > |r|

Rewriting - Computation and Deduction 68 / 178

<ロト < 回ト < 回ト < 回ト < 回ト -

= 900

Example

The rules of the game :

l > r if |l| > |r|

$$\begin{split} |f(f(x,x),y)| > &|f(y,y)| \\ \text{but} \\ |f(f(x,x),f(x,x))| \neq &|g(g(x,x),g(x,x))| \end{split}$$

イロト イポト イヨト イヨト

= 900

Example modified

The rules of the game slightly change :

Horatiu CIRSTEA, Hélène KIRCHNER

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Example modified

The rules of the game slightly change :

$$|I > r$$
 if $|I|_{\bullet \circ} > |r|_{\bullet \circ}$
 $||t|_{\bullet \circ} =$ number of \bullet and \circ of the term t)

$$|\bullet \bullet|_{\bullet\circ} = 2
eq 2 = |\circ \circ|_{\bullet\circ}$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Example

The rules of the game :

$$l > r$$
 if $|l|_{\bullet \circ + \bullet} > |r|_{\bullet \circ + \bullet}$

$$|\circ\circ|_{\bullet\circ+\bullet}=2
eq 2=|\bullet|_{\bullet\circ+\bullet}$$

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 四ト ・ ヨト ・ ヨト

Extensions of reduction ordering

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 71 / 178

・ロト ・ 同ト ・ ヨト ・ ヨト

Lexicographical extensions

Let > be an ordering on T. Its **lexicographical extension** $>^{lex}$ on T^n is defined as :

$$(\boldsymbol{s}_1,\ldots,\boldsymbol{s}_n)>^{lex}(t_1,\ldots,t_n)$$

if there exists *i*, $1 \le i \le n$ s.t. $s_i >_i t_i$, and $\forall j, 1 \le j < i, s_j = t_j$.

If > is well-founded on \mathcal{T} , then $>^{lex}$ is well-founded on \mathcal{T}^n .

Lexicographical extensions

Let > be an ordering on T. Its **lexicographical extension** $>^{lex}$ on T^n is defined as :

$$(\boldsymbol{s}_1,\ldots,\boldsymbol{s}_n)>^{lex}(t_1,\ldots,t_n)$$

if there exists *i*, $1 \le i \le n$ s.t. $|s_i >_i t_i|$, and $|\forall j, 1 \le j < i, s_j = t_j|$.

If > is well-founded on \mathcal{T} , then $>^{lex}$ is well-founded on \mathcal{T}^n .

FALSE for an infinite product of ordered sets : $\mathcal{T} = \{a, b\}$ with a < b

$$b >^{lex} ab >^{lex} aab >^{lex} aaab >^{lex} \dots$$

Multiset extensions

Let > an ordering on T.

Its (strict) multiset extension denoted $>^{mult}$ is defined by :

$$\mathcal{M} = \{\boldsymbol{s}_1, \ldots, \boldsymbol{s}_m\} >^{mult} \mathcal{N} = \{\boldsymbol{t}_1, \ldots, \boldsymbol{t}_n\}$$

if there exist $i \in \{1, ..., m\}$ and $1 \le j_1 < ... < j_k \le n$ with $k \ge 0$, such that :

s_i > *t_{j₁}*,..., *s_i* > *t_{j_k}* and,
 either *M* -{ *s_i*} >^{*mult*} *N* - {*t_{j₁}*,..., *t_{j_k}*} or the multisets *M* -{ *s_i*} and *N* - {*t_{j1}*,..., *t_{j_k}*} are equal.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multiset extensions - Examples

if > is well-founded on \mathcal{T} , then>^{*mult*} is well-founded on $\mathcal{M} \sqcap \downarrow \sqcup (\mathcal{T})$.

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 74 / 178

向下 イヨト イヨト

Multiset extensions - Examples

if > is well-founded on \mathcal{T} , then>^{*mult*} is well-founded on $\mathcal{M} \sqcap \downarrow \sqcup(\mathcal{T})$.

$$\begin{array}{l} \{3,3,1,2\} >^{mult} \{3,1\} \\ \{3,3,1,2\} >^{mult} \{3,2,2,2,2\} \\ \{3,3,1,2\} >^{mult} \{3,0\} >^{mult} \{3\} >^{mult} \{\}. \end{array}$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Syntactic reduction ordering

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 75 / 178

・ロト ・ 四ト ・ ヨト ・ ヨト

For a given precedence on \mathcal{F} ,

$$s = f(s_1, ..., s_n) >_{lpo} t = g(t_1, ..., t_m)$$

if at least one of the following condition is satisfied :

For a given precedence on \mathcal{F} ,

$$s = f(s_1, ..., s_n) >_{lpo} t = g(t_1, ..., t_m)$$

if at least one of the following condition is satisfied :

1
$$f = g$$
 and $(s_1, \dots, s_n) >_{lpo}^{lex} (t_1, \dots, t_m)$ and $\forall j \in \{1, \dots, m\}, s >_{lpo} t_j$

For a given precedence on \mathcal{F} ,

$$s = f(s_1, ..., s_n) >_{lpo} t = g(t_1, ..., t_m)$$

if at least one of the following condition is satisfied :

1
$$f = g$$
 and $(s_1, \dots, s_n) >_{lpo}^{lex} (t_1, \dots, t_m)$ and
 $\forall j \in \{1, \dots, m\}, s >_{lpo} t_j$
2 $f >_{\mathcal{F}} g$ and $\forall j \in \{1, \dots, m\}, s >_{lpo} t_j$

For a given precedence on \mathcal{F} ,

$$s = f(s_1, ..., s_n) >_{lpo} t = g(t_1, ..., t_m)$$

if at least one of the following condition is satisfied :

1
$$f = g$$
 and $(s_1, \ldots, s_n) >_{lpo}^{lex} (t_1, \ldots, t_m)$ and
 $\forall j \in \{1, \ldots, m\}, s >_{lpo} t_j$
2 $f >_{\mathcal{F}} g$ and $\forall j \in \{1, \ldots, m\}, s >_{lpo} t_j$
3 $\exists i \in \{1, \ldots, n\}$ s.t either $s_i >_{lpo} t$, or $s_i = t$

- A B M A B M

For a given precedence on \mathcal{F} ,

$$s = f(s_1, ..., s_n) >_{lpo} t = g(t_1, ..., t_m)$$

if at least one of the following condition is satisfied :

1
$$f = g$$
 and $(s_1, \dots, s_n) >_{lpo}^{lex} (t_1, \dots, t_m)$ and
 $\forall j \in \{1, \dots, m\}, s >_{lpo} t_j$
2 $f >_{\mathcal{F}} g$ and $\forall j \in \{1, \dots, m\}, s >_{lpo} t_j$
3 $\exists i \in \{1, \dots, n\}$ s.t either $s_i >_{lpo} t$, or $s_i = t$

Theorem LPO is a simplification ordering i.e. a reduction ordering that contains the subterm ordering.

Extension of LPO

The definition of the ordering can be extended to terms with variables by adding the following conditions :

- 1) two different variables are incomparable,
- a function symbol and a variable are incomparable.

A typical LPO example

Termination of the Ackermann function :

$$\begin{array}{rcl} ack(0,y) & \twoheadrightarrow & succ(y) \\ ack(succ(x),0) & \twoheadrightarrow & ack(x,succ(0)) \\ ack(succ(x),succ(y)) & \twoheadrightarrow & ack(x,ack(succ(x),y)). \end{array}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

A typical LPO example

Termination of the Ackermann function :

$$\begin{array}{rcl} ack(0,y) & \twoheadrightarrow & succ(y) \\ ack(succ(x),0) & \twoheadrightarrow & ack(x,succ(0)) \\ ack(succ(x),succ(y)) & \twoheadrightarrow & ack(x,ack(succ(x),y)). \end{array}$$

With $ack >_{\mathcal{F}} succ$, we can show that

$$\begin{array}{rll} ack(0,y) &>_{lpo} & succ(y) \\ ack(succ(x),0) &>_{lpo} & ack(x,succ(0)) \\ ack(succ(x),succ(y)) &>_{lpo} & ack(x,ack(succ(x),y)). \end{array}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

-1

Multiset Path Ordering (MPO)

For a given precedence on \mathcal{F} , $s = f(s_1, ..., s_n) \ge_{mpo} t = g(t_1, ..., t_m)$ if one at least of the following conditions holds : (1) f = g and $\{s_1, ..., s_n\} \ge_{mpo}^{mult} \{t_1, ..., t_m\}$ (2) $f \ge_{\mathcal{F}} g$ and $\forall j \in \{1, ..., m\}, s \ge_{mpo} t_j$ (3) $\exists i \in \{1, ..., n\}$ such that either $s_i \ge_{mpo} t$ or $s_i \sim t$ where \sim means equivalent up to permutation of subterms.

An MPO example

Termination of the max function :

$$\begin{array}{rcl} max(n,0) & \twoheadrightarrow & n \\ max(0,n) & \twoheadrightarrow & n \\ max(succ(n),succ(m)) & \twoheadrightarrow & succ(max(n,m)) \end{array}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

-1
An MPO example

Termination of the max function :

$$\begin{array}{rcl} max(n,0) & \twoheadrightarrow & n \\ max(0,n) & \twoheadrightarrow & n \\ max(succ(n),succ(m)) & \twoheadrightarrow & succ(max(n,m)) \end{array}$$

Precedence $? >_{\mathcal{F}} ?$

・ロト ・ 四ト ・ ヨト ・ ヨト

An MPO example

Termination of the max function :

$$\begin{array}{rcl} max(n,0) & \twoheadrightarrow & n \\ max(0,n) & \twoheadrightarrow & n \\ max(succ(n),succ(m)) & \twoheadrightarrow & succ(max(n,m)) \end{array}$$

Precedence $max >_{\mathcal{F}} succ$

・ロト ・ 四ト ・ ヨト ・ ヨト

Semantic reduction ordering

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 81 / 178

・ロト ・ 同ト ・ ヨト ・ ヨト

Building reduction orderings using interpretations

Consider a homomorphism τ from ground terms to (A, >) with > a well-founded ordering and let f_{τ} denote the image of $f \in \mathcal{F}$ using τ ; τ and > are constrained to satisfy the monotonicity condition :

$$\forall a, b \in \mathcal{A}, \forall f \in \mathcal{F}, a > b \text{ implies } f_{\tau}(\ldots, a, \ldots) > f_{\tau}(\ldots, b, \ldots).$$

Then the ordering $>_{\tau}$ defined by :

$$\forall \boldsymbol{s}, \boldsymbol{t} \in \mathcal{T}(\mathcal{F}), \ \boldsymbol{s} >_{\tau} \boldsymbol{t} \ ext{if} \ \boldsymbol{\tau}(\boldsymbol{s}) > \boldsymbol{\tau}(\boldsymbol{t}),$$

is well-founded.

Building reduction orderings using interpretations

Then the ordering $>_{\tau}$ is extended by defining

 $\forall \boldsymbol{s}, \boldsymbol{t} \in \mathcal{T}(\mathcal{F}, \mathcal{X}), \ \boldsymbol{s} >_{\tau} \boldsymbol{t} \ \text{if} \ \boldsymbol{\nu}(\tau(\boldsymbol{s})) > \boldsymbol{\nu}(\tau(\boldsymbol{t}))$

for all assignment ν of values in \mathcal{A} to variables of $\tau(s)$ and $\tau(t)$. Because > is assumed to be well-founded, a rewrite system is terminating if one can find \mathcal{A}, τ and > as defined above.

Is the reduction induced by $i(f(x, y)) \rightarrow f(f(i(x), y), y)$ terminating?

Horatiu CIRSTEA, Hélène KIRCHNER

= 990

Is the reduction induced by $i(f(x, y)) \rightarrow f(f(i(x), y), y)$ terminating?

$$\begin{aligned} \tau(i(\mathbf{x})) &= \tau(\mathbf{x})^2 & \tau(\mathbf{x}) &= \mathbf{x} \\ \tau(f(\mathbf{x}, \mathbf{y})) &= \tau(\mathbf{x}) + \tau(\mathbf{y}) & \tau(\mathbf{y}) &= \mathbf{y} \end{aligned}$$

Horatiu CIRSTEA, Hélène KIRCHNER

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Is the reduction induced by $i(f(x, y)) \rightarrow f(f(i(x), y), y)$ terminating?

$$\begin{aligned} \tau(i(\mathbf{x})) &= \tau(\mathbf{x})^2 & \tau(\mathbf{x}) &= \mathbf{x} \\ \tau(f(\mathbf{x}, \mathbf{y})) &= \tau(\mathbf{x}) + \tau(\mathbf{y}) & \tau(\mathbf{y}) &= \mathbf{y} \end{aligned}$$

Monotonicity : a > b implies $f_{\tau}(a) > f_{\tau}(b)$ (each function is increasing on natural numbers)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Is the reduction induced by $i(f(x, y)) \rightarrow f(f(i(x), y), y)$ terminating?

$$\begin{aligned} \tau(\mathbf{i}(\mathbf{x})) &= \tau(\mathbf{x})^2 & \tau(\mathbf{x}) &= \mathbf{x} \\ \tau(\mathbf{f}(\mathbf{x}, \mathbf{y})) &= \tau(\mathbf{x}) + \tau(\mathbf{y}) & \tau(\mathbf{y}) &= \mathbf{y} \end{aligned}$$

Monotonicity : a > b implies $f_{\tau}(a) > f_{\tau}(b)$ (each function is increasing on natural numbers)

$$\begin{aligned} \tau(i(f(x,y))) &= (x+y)^2 = x^2 + y^2 + 2xy \\ \tau(f(f(i(x),y),y)) &= x^2 + 2y \end{aligned}$$

Horatiu CIRSTEA, Hélène KIRCHNER

Is the reduction induced by $i(f(x, y)) \rightarrow f(f(i(x), y), y)$ terminating?

$$\tau(\mathbf{i}(\mathbf{x})) = \tau(\mathbf{x})^2 \qquad \tau(\mathbf{x}) = \mathbf{x}$$

$$\tau(\mathbf{f}(\mathbf{x}, \mathbf{y})) = \tau(\mathbf{x}) + \tau(\mathbf{y}) \qquad \tau(\mathbf{y}) = \mathbf{y}$$

Monotonicity : a > b implies $f_{\tau}(a) > f_{\tau}(b)$ (each function is increasing on natural numbers)

$$\begin{aligned} \tau(i(f(x,y))) &= (x+y)^2 = x^2 + y^2 + 2xy \\ \tau(f(f(i(x),y),y)) &= x^2 + 2y \end{aligned}$$

For any assignment of positive natural numbers *n* and *m* to the variables *x* and *y* : $n^2 + m^2 + 2nm > n^2 + 2m$

Another example

Is the following system terminating?

$$\begin{array}{rcl} \ominus \ominus x & \rightarrow & x \\ \ominus(x \oplus y) & \rightarrow & (\ominus x) \oplus (\ominus y) \\ \ominus(x \otimes y) & \rightarrow & (\ominus x) \otimes (\ominus y) \\ x \otimes (y \oplus z) & \rightarrow & (x \otimes y) \oplus (x \otimes z) \\ (x \oplus y) \otimes z & \rightarrow & (x \otimes z) \oplus (y \otimes z) \end{array}$$

Horatiu CIRSTEA, Hélène KIRCHNER

イロト イロト イヨト イヨト

-1

Another example

Is the following system terminating?

$$\begin{array}{rcl} \ominus \ominus x & \rightarrow & x \\ \ominus (x \oplus y) & \rightarrow & (\ominus x) \oplus (\ominus y) \\ \ominus (x \otimes y) & \rightarrow & (\ominus x) \otimes (\ominus y) \\ x \otimes (y \oplus z) & \rightarrow & (x \otimes y) \oplus (x \otimes z) \\ (x \oplus y) \otimes z & \rightarrow & (x \otimes z) \oplus (y \otimes z) \end{array}$$

Interpretation :

$$\tau(\ominus x) = 2^{\tau(x)}$$

$$\tau(x \oplus y) = \tau(x) + \tau(y) + 1$$

$$\tau(x \otimes y) = \tau(x)\tau(y)$$

$$\tau(c) = 3$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

-1

Recursion analysis

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 86 / 178

・ロト ・ 四ト ・ ヨト ・ ヨト

Dependency pairs method

Standard approaches compare left- and right-hand sides of rules Automated techniques often use simplification orders, but fail on

$$\begin{array}{rcl} & \textit{minus}(x,0) & \twoheadrightarrow & x \\ & \textit{minus}(s(x),s(y)) & \twoheadrightarrow & \textit{minus}(x,y) \\ & & \textit{div}(0,s(y)) & \twoheadrightarrow & 0 \\ & & \textit{div}(s(x),s(y)) & \twoheadrightarrow & s(\textit{div}(\textit{minus}(x,y),s(y))) \end{array}$$

Dependency pairs method

Standard approaches compare left- and right-hand sides of rules Automated techniques often use simplification orders, but fail on

$$\begin{array}{rcl} \min(x,0) & \rightarrow & x \\ \min(s(x),s(y)) & \rightarrow & \min(x,y) \\ div(0,s(y)) & \rightarrow & 0 \\ div(s(x),s(y)) & \rightarrow & s(div(\min(x,y),s(y))) \end{array}$$

$div(s(x), s(s(x))) \geq s(div(minus(x, s(x)), s(s(x))))$

The dependency pair approach focusses only on those subterms which are responsible for starting new reductions

Dependency pairs for termination

$$\begin{array}{rcl} & \min(x,0) & \rightarrow & x \\ & \min(s(x),s(y)) & \rightarrow & \min(x,y) \\ & div(0,s(y)) & \rightarrow & 0 \\ & div(s(x),s(y)) & \rightarrow & s(div(\min(x,y),s(y))) \end{array}$$

minus and *div* (top of lhs) are called defined functions. If $f(s_1, ..., s_n) \rightarrow C[g(t_1, ..., t_m)]$ is a rule and *g* is defined, then $F(s_1, ..., s_n) \rightarrow G(t_1, ..., t_m)$ is a dependency pair.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Dependency pairs for termination

$$\begin{array}{rcl} \min(x,0) & \rightarrow & x \\ \min(s(x),s(y)) & \rightarrow & \min(x,y) \\ div(0,s(y)) & \rightarrow & 0 \\ div(s(x),s(y)) & \rightarrow & s(div(\min(x,y),s(y))) \end{array}$$

minus and *div* (top of lhs) are called defined functions. If $f(s_1, ..., s_n) \rightarrow C[g(t_1, ..., t_m)]$ is a rule and *g* is defined, then $F(s_1, ..., s_n) \rightarrow G(t_1, ..., t_m)$ is a dependency pair.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Dependency pairs method

A sequence of dependency pairs $DP(R) = s_1 \rightarrow t_1, s_2 \rightarrow t_2, s_3 \rightarrow t_3,...$ is a dependency chain iff there exists a substitution σ s.t. :

$$t_1 \sigma \rightarrow^* s_2 \sigma, \ t_2 \sigma \rightarrow^* s_3 \sigma, \dots$$

Theorem : A rewrite system *R* terminates iff there is no infinite dependency chain.

Dependency Graph :

- Nodes are dependency pairs
- There is an arrow from $s_1 \rightarrow t_1$ to $s_2 \rightarrow t_2$ if there exists a substitution σ s.t. : $t_1 \sigma \rightarrow^* s_2 \sigma$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Dependency pairs method

$(\geq, >)$ is a reduction pair iff

- > is stable by substitution and well-founded
- \geq is stable by context and by substitution
- > and \geq are compatible : > $\circ \geq \subseteq$ > or $\geq \circ > \subseteq$ >.

Theorem : A rewrite system *R* terminates if for any cycle *P* in the dependency graph, there exists a reduction pair $(\geq, >)$ such that

- $I \ge r$ for all rules $I \rightarrow r$ in R
- s > t for at least one dependency pair $s \rightarrow t$ in P
- $s' \ge t'$ for all other dependency pairs $s' \rightarrow t'$ in *P*

く 同 ト く ヨ ト く ヨ ト

Well-founded reduction orderings

Syntactic

Based on the precedence concept (i.e. a partiel order $>_{\mathcal{F}}$ on \mathcal{F}) Example : Recursive or Lexicographic path ordering [Dershowitz, 82]

Semantic

Terms are interpreted in another structure where a well-founded ordering is known (e.g. the natural numbers)

Example : Polynomial interpretations

Combinations

Ordering combining semantical and syntactical behavior

 Recursion analysis Induction, dependency pairs

A (10) + A (10) +

How to determine the unicity of the result?

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 92 / 178

・ロト ・ 同ト ・ ヨト・

Consider an ARS $(\mathcal{T}, \rightarrow)$

⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Consider an ARS (\mathcal{T},\rightarrow)

- ⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.
- The relation → is terminating (or strongly normalizing, or noetherian) if every reduction sequence is finite.

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider an ARS $(\mathcal{T}, \rightarrow)$

- ⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.
- The relation → is terminating (or strongly normalizing, or noetherian) if every reduction sequence is finite.
- C The relation → is weakly normalizing (or weakly terminating) if every element $t \in T$ has a normal form.

Consider an ARS $(\mathcal{T}, \rightarrow)$

- ⊃ An element $t \in T$ is a →-normal form if there exists no $t' \in T$ such that $t \to t'$.
- The relation → is terminating (or strongly normalizing, or noetherian) if every reduction sequence is finite.
- C The relation → is weakly normalizing (or weakly terminating) if every element $t \in T$ has a normal form.
- C The relation → has the unique normal form property if for any $t, t' \in T, t \stackrel{*}{\longleftrightarrow} t'$ and t, t' are normal forms imply t = t'.

・ 同 ト ・ ヨ ト ・ ヨ ト

Confluence

Definitions

Localy confluent (LC)

Church Rosser (CR)

Diamond property (DP)

Confluent (C)

Newman's lemma

[Newman 1942]

Provided the relation --> is terminating

then

→ is confluent iff it is locally confluent

・ 同 ト ・ ヨ ト ・ ヨ ト

Confluence

Allows us to forget about non-determinism :

Whatever rewriting is done we will converge later.

Confluence

Back with the simple game

From a given start, is the result determinist?

Analysing the different cases

Disjoint redexes :

$$\cdots \underline{\otimes \otimes} \cdots \underline{\otimes \otimes} \cdots \\ \cdots \underline{\otimes \otimes} \cdots \\ \underline{\otimes \otimes} \cdots \\ \cdots$$

is the same as :

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 四ト ・ ヨト ・ ヨト

No disjoint redexes (central black) :

Rewriting - Computation and Deduction 99 / 178

No disjoint redexes (central white) :

Horatiu CIRSTEA, Hélène KIRCHNER

-1

→ Undecidable in general, confluence is decidable for finite and terminating rewrite systems.

→ Assuming termination of the rewrite relation, its confluence is equivalent to the confluence of critical pairs.

→ If a rewrite system is orthogonal (linear and non-overlapping), then it is confluent.

向下 イヨト イヨト

Critical pair

A non-variable term t' and a term t overlap if there exists a position ω in t such that $t_{|\omega}$ and t' are unifiable (with $t_{|\omega}$ not a variable).

向下 イヨト イヨト

Critical pair

A non-variable term t' and a term t overlap if there exists a position ω in t such that $t_{|\omega}$ and t' are unifiable (with $t_{|\omega}$ not a variable).

Two terms *t* and *t'* are unifiable if there exists a substitution σ such that $\sigma(t) = \sigma(t')$. σ is called a unifier of *t* and *t'*.
Parenthesis

Unification problems

Horatiu CIRSTEA, Hélène KIRCHNER

イロト イロト イヨト イヨト

Solve an equation

Does it exist x, y, z such that

$$\mathbf{x} + (\mathbf{z} * \mathbf{y}) = \mathbf{y} + (\mathbf{x} * \mathbf{z})$$

An infinity of solutions, but a most general one

$$x = y = z$$

Unification problem : a most general unifier of t and t' is a minimal unifier for the subsumption ordering extended to substitutions. It is unique up to renaming.

A B F A B F

General Unification Problems

- \mathcal{F} a set of function symbols,
- \mathcal{X} a set of variables,
- \mathcal{A} an \mathcal{F} -algebra.

 $|\mathsf{A}| < \mathcal{F}, \mathcal{X}, \mathcal{A} >$ -unification problem

is a disjunction of existentially quantified formulas

$$P_j = \exists \vec{z} \bigwedge_{i \in I_j} s_i =^?_{\mathcal{A}} t_i$$

sometimes abbreviated

$$P_j = \exists \vec{z} \{ s_i =^?_{\mathcal{A}} t_i \}_{i \in I_j}.$$

A unifier to such a problem is a *substitution* σ such that $\exists j, \forall i \in I_j, \quad \mathcal{A} \models \exists \vec{z} \ \sigma_{|\mathcal{X} - \vec{z}}(s_i) = \sigma_{|\mathcal{X} - \vec{z}}(t_i).$

SYNTACTIC UNIFICATION

Formulas : quantifier free unification problems Domain : $\mathcal{T}(\mathcal{F}, \mathcal{X})$ (no equational axioms) Interpretation : trivial one Solved forms : Tree or dag solved forms

From : J.A. Robinson. A machine-oriented logic based on the resolution principle. *Journal of the Association for Computing Machinery*, 12 :23–41, 1965.

5.8 *Unification Algorithm*. The following process, applicable to any finite nonempty set A of well formed expressions, is called the Unification Algorithm :

Step 1. Set $\sigma_0 = \varepsilon$ and k = 0, and go to step 2.

Step 2. If $A\sigma_k$ is not a singleton, go to step 3. Otherwise, set $\sigma_A = \sigma_k$ and terminate.

Step 3. Let V_k be the earliest, and U_k the next earliest, in the lexical ordering of the disagreement set B_k of $A\sigma_k$. If V_k is a variable, and does not occur in U_k , set $\sigma_{k+1} = \sigma\{U_k/V_k\}$, add 1 to k, and return to step 2. Otherwise, terminate.

. . .

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Rules for syntactic unification

$$\begin{array}{rcl} \textit{Delete} & \textit{P} \land \textit{s} = ? \textit{s} \\ \rightarrow & \textit{P} \end{array}$$

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

Rules for syntactic unification

$$\begin{array}{rcl} \textit{Delete} & \textit{P} \land \textit{s} = ? \textit{s} \\ & \rightarrow & \textit{P} \end{array}$$

Decompose $P \land f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)$ $\rightarrow P \land s_1 = t_1 \land \ldots \land s_n = t_n$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ …

Rules for syntactic unification

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

Rules for syntactic unification

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

Rules for syntactic unification

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

Rules for syntactic unification

$$\begin{array}{rcl} \textit{Eliminate} & \textit{P} \land \textit{x} = ? \textit{s} \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & &$$

if $x \notin \mathcal{V}ar(s), s \notin x, x \in \mathcal{V}ar(P)$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 110 / 178

• (1) • (

Rules for syntactic unification

Eliminate $P \land x = ? s$ $\bowtie \{x \mapsto s\}P \land x = ? s$ i Merge $P \land x = ? s \land x = ? t$ $\bowtie P \land x = ? s \land s = ? t$ i

 $\text{if } \textbf{\textit{x}} \notin \mathcal{V} ar(\textbf{\textit{s}}), \textbf{\textit{s}} \notin \textbf{\textit{x}}, \textbf{\textit{x}} \in \mathcal{V} ar(\textbf{\textit{P}})$

if $0 < |s| \le |t|$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 110 / 178

Rules for syntactic unification

$ \begin{array}{l} \boldsymbol{P} \wedge \boldsymbol{x} = \stackrel{?}{s} \boldsymbol{s} \\ \{ \boldsymbol{x} \mapsto \boldsymbol{s} \} \boldsymbol{P} \wedge \boldsymbol{x} = \stackrel{?}{s} \end{array} $	if $x \notin \mathcal{V}ar(s), s \notin x, x \in \mathcal{V}ar(P)$
$P \land \mathbf{x} = \mathbf{x} \land \mathbf{x} = \mathbf{x} \land \mathbf{x} = \mathbf{x} t$ $P \land \mathbf{x} = \mathbf{x} \land \mathbf{x} = \mathbf{x} \land \mathbf{x} = \mathbf{x} t$	if $0 < \boldsymbol{s} \le t $
$P \land x = s$ Fail	if $x \in \mathcal{V}ar(s)$ and $s \notin x$

Rules for syntactic unification

	$ \begin{array}{l} \boldsymbol{P} \wedge \boldsymbol{x} = \stackrel{?}{\boldsymbol{s}} \boldsymbol{s} \\ \{ \boldsymbol{x} \mapsto \boldsymbol{s} \} \boldsymbol{P} \wedge \boldsymbol{x} = \stackrel{?}{\boldsymbol{s}} \boldsymbol{s} \end{array} $	if $x \notin \mathcal{V}ar(s), s \notin x, x \in \mathcal{V}ar(P)$
•	$P \land \mathbf{x} = \mathbf{x} \land \mathbf{x} = \mathbf{x} \land \mathbf{x} = \mathbf{x} t$ $P \land \mathbf{x} = \mathbf{x} \land \mathbf{x} = \mathbf{x} \land \mathbf{x} = \mathbf{x} t$	if $0 < \boldsymbol{s} \le t $
	$P \land x = s$ Fail	if $x \in \mathcal{V}ar(s)$ and $s \notin x$
Check*	$P \land x_1 = \stackrel{?}{} s_1[x_2] \land \dots \\ \dots \land x_n = \stackrel{?}{} s_n[x_1]$	
H	Fail	if $s_i \notin x$ for some $i \in [1n]$

$$\mathbf{x} + (\mathbf{z} * \mathbf{y}) = \mathbf{y} + (\mathbf{x} * \mathbf{z})$$

Horatiu CIRSTEA, Hélène KIRCHNER

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

$$\mathbf{x} + (\mathbf{z} * \mathbf{y}) = \mathbf{y} + (\mathbf{x} * \mathbf{z})$$

$$\Rightarrow_{\text{decompose}} x = y \land z * y = x * z$$

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\mathbf{x} + (\mathbf{z} * \mathbf{y}) = \mathbf{y} + (\mathbf{x} * \mathbf{z})$$

$$\Rightarrow_{\text{decompose}} x = y \land z * y = x * z$$

$$\Rightarrow_{\text{decompose}} x = y \land z = x \land y = z$$

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\mathbf{x} + (\mathbf{z} * \mathbf{y}) = \mathbf{y} + (\mathbf{x} * \mathbf{z})$$

$$\Rightarrow_{\text{decompose}} x = y \land z * y = x * z$$

$$\Rightarrow_{\text{decompose}} x = y \land z = x \land y = z$$

$$\Rightarrow_{\text{coalesce}} y = z \land x = z \land z = x$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 111 / 178

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\mathbf{x} + (\mathbf{z} * \mathbf{y}) = \mathbf{y} + (\mathbf{x} * \mathbf{z})$$

$$\Rightarrow_{\text{decompose}} x = y \land z * y = x * z$$

$$\Rightarrow_{\text{decompose}} x = y \land z = x \land y = z$$

$$\Rightarrow_{\text{coalesce}} y = z \land x = z \land z = x$$

$$\Rightarrow_{\text{coalesce}} z = x \land y = x \land x = x$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 111 / 178

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\mathbf{x} + (\mathbf{z} * \mathbf{y}) = \mathbf{y} + (\mathbf{x} * \mathbf{z})$$

$$\Rightarrow_{\text{decompose}} x = y \land z * y = x * z$$

$$\Rightarrow_{\text{decompose}} x = y \land z = x \land y = z$$

$$\Rightarrow_{\text{coalesce}} y = z \land x = z \land z = x$$

$$\Rightarrow_{\text{coalesce}} z = x \land y = x \land x = x$$

$$\Rightarrow_{\text{delete}} z = x \land y = x$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 112 / 178

・ロト ・ 一下・ ・ ヨト・

≡ ∽ へ (~

 $x = a^{?}$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 112 / 178

<ロ> <目> <目> <目> <目> <目> <目> <目> <日> <</p>

Examples

$$\begin{array}{l} \mathbf{x} = \mathbf{\hat{x}} \\ \mathbf{x} = \mathbf{\hat{x}}$$

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

≡ ∽ へ (~

$$x = {}^{?} a$$

 $x = {}^{?} a \land y = {}^{?} f(x, a)$
 $f(x, f(x, a)) = {}^{?} f(f(a, b), f(u, v))$

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Strategy : No

A tree solved form for P is any conjunction of equations

$$\mathbf{x}_1 = \mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_n = \mathbf{x}_n$$

equivalent to *P* such that $\forall i, x_i \in x$ and :

$$\begin{array}{ll} (i) & \forall 1 \leq i \leq n, x_i \in \mathcal{V}ar(P), \\ (ii) & \forall 1 \leq i, j \leq n, i \neq j \Rightarrow x_i \neq x_j, \\ (iii) & \forall 1 \leq i, j \leq n, x_i \notin \mathcal{V}ar(t_j). \end{array}$$

Example : $x = f(f(y)) \land z = g(a)$.

< 同 ト く ヨ ト く ヨ ト -

Theorem : Starting with a unification problem *P* and using the above rules repeatedly until none is applicable

- results in Fail iff P has no solution, or else it

- results in a tree solved form $x_1 = t_1 \land \cdots \land x_n = t_n$ with the same set of solutions than *P*.

Moreover

$$\sigma = \{ \mathbf{x}_1 \mapsto \mathbf{t}_1, \dots, \mathbf{x}_n \mapsto \mathbf{t}_n \}$$

is a most general unifier of P.

< 同 > < 回 > < 回 > -

Strategy : Never apply eliminate

A dag solved form for a unification problem *P* is any system of equations :

$$\mathbf{x}_1 = \mathbf{x}_1 \wedge \cdots \wedge \mathbf{x}_n = \mathbf{x}_n$$

equivalent to *P* such that $\forall i, x_i \in x$ and :

$$\begin{array}{ll} (i) & \forall 1 \leq i \leq n, x_i \in \mathcal{V}ar(P), \\ (ii) & \forall 1 \leq i, j \leq n, i \neq j \Rightarrow x_i \neq x_j, \\ (iii) & \forall 1 \leq i \leq j \leq n, x_i \notin \mathcal{V}ar(t_j). \end{array}$$

Example : $x = f(u) \land u = f(y) \land z = g(a)$

Theorem : Starting with a unification problem *P* and using the above rules except *eliminate* repeatedly until none is applicable,

- results in Fail iff P has no solution, or else
- in a dag solved form :

$$x_1 = t_1 \land \ldots \land x_n = t_n$$

such that $\sigma = \{x_n \mapsto t_n\} \dots \{x_1 \mapsto t_1\}$ is a most general unifier of *P*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Critical pair

A non-variable term t' and a term t overlap if there exists a position ω in t such that $t_{|\omega}$ and t' are unifiable (with $t_{|\omega}$ not a variable).

伺 ▶ ◀ 글 ▶ ◀ 글 ▶

Critical pair

A non-variable term t' and a term t overlap if there exists a position ω in t such that $t_{|\omega}$ and t' are unifiable (with $t_{|\omega}$ not a variable).

Do $0 + x \rightarrow x$ and $s(x) + y \rightarrow s(x + y)$ overlap?

< 同 ト < 三 ト < 三 ト

Critical pair

A non-variable term t' and a term t overlap if there exists a position ω in t such that $t_{|\omega}$ and t' are unifiable (with $t_{|\omega}$ not a variable).

Do
$$0 + x \rightarrow x$$
 and $s(x) + y \rightarrow s(x + y)$ overlap?

Where do (x + y) + z and (x' + y') + z' overlap?

< 回 > < 回 > < 回 >

Critical Pairs

Superposition

$$I_1 \rightarrow r_1 \qquad I_2[u] \rightarrow r_2 I_2[r_1]\sigma = r_2\sigma$$

u is a non-variable sub-term of l_2 σ is the $mgu(u, l_1)$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

Critical Pairs

Superposition

$$I_1 \rightarrow r_1 \qquad I_2[u] \rightarrow r_2 I_2[r_1]\sigma = r_2\sigma$$

u is a non-variable sub-term of l_2 σ is the $mgu(u, l_1)$

Do $0 + x \rightarrow x$ and $(x + y) + z \rightarrow x + (y + z)$ overlap?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Critical Pairs

Superposition

$$I_1 \rightarrow r_1 \qquad I_2[u] \rightarrow r_2 I_2[r_1]\sigma = r_2\sigma$$

u is a non-variable sub-term of l_2 σ is the $mgu(u, l_1)$

Do $0 + x \rightarrow x$ and $(x + y) + z \rightarrow x + (y + z)$ overlap?

Compute the critical pairs between these two rules.

・ 同 ト ・ ヨ ト ・ ヨ ト ・
Critical Pair Lemma

R is locally confluent iff all critical pair satisfies :

$$I_2[r_1]\sigma \xrightarrow{*}_R \otimes R \xleftarrow{*} r_2\sigma$$

Critical Pair Lemma

R is locally confluent iff all critical pair satisfies :

$$\mathsf{I}_2[\mathbf{r}_1]\sigma \overset{*}{\longrightarrow}_{\mathbf{R}} \otimes \mathbf{R} \overset{*}{\longleftarrow} \mathbf{r}_2\sigma$$

Prove that the following rewrite systen is locally confluent :

$$\begin{array}{rcl} (\boldsymbol{x} \ast \boldsymbol{y}) \ast \boldsymbol{z} & \twoheadrightarrow & \boldsymbol{x} \ast (\boldsymbol{y} \ast \boldsymbol{z}) \\ f(\boldsymbol{x} \ast \boldsymbol{y}) & \twoheadrightarrow & f(\boldsymbol{x}) \ast f(\boldsymbol{y}) \end{array}$$

Prove that it is confluent.

Orthogonal systems

A rewrite system that is both linear (the left-hand side of each rule is a linear term) and non-overlapping is called orthogonal.

A B M A B M

Orthogonal systems

A rewrite system that is both linear (the left-hand side of each rule is a linear term) and non-overlapping is called orthogonal.

Theorem If a rewrite system is orthogonal, then it is confluent.

向下 くヨト くヨト

Orthogonal systems

A rewrite system that is both linear (the left-hand side of each rule is a linear term) and non-overlapping is called orthogonal.

Theorem If a rewrite system is orthogonal, then it is confluent.

Linearity is needed for non-terminating rewriting system :

$$\begin{array}{l} d(x,x) & \twoheadrightarrow t \\ d(x,c(x)) & \twoheadrightarrow f \\ a & \twoheadrightarrow c(a) \end{array}$$

Other systems

What if the system is non-terminating and non-orthogonal?

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 121 / 178

向下 くヨト くヨト

Other systems

What if the system is non-terminating and non-orthogonal?

Theorem Consider a reduction relation \rightarrow_R and let \rightarrow_D s.t.

$$\rightarrow_R \subseteq \rightarrow_D \subseteq \stackrel{*}{\rightarrow_R}$$

→ D has the diamond property

Then, \rightarrow_R is confluent.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Completion of TRS

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 122 / 178

・ロト ・ 四ト ・ ヨト ・ ヨト

The group example

Let us concentrate on the use of rewriting for proving equational theorems.

$$G = \begin{cases} [Assoc] & (x+y) + z = x + (y+z) \\ [NElmt] & x+0 = x \\ [Inver] & x+i(x) = 0 \end{cases}$$

where these three equational axioms are implicitly assumed to be universaly quantified.

向下 イヨト イヨト

The group example

Let us concentrate on the use of rewriting for proving equational theorems.

$$G = \begin{cases} [Assoc] & (x + y) + z = x + (y + z) \\ [NElmt] & x + 0 = x \\ [Inver] & x + i(x) = 0 \end{cases}$$

where these three equational axioms are implicitly assumed to be universaly quantified.

Simple (?) exercice, prove that 0 + x = x.

What is completion?

Transform any equational proof in E into a valley proof in R:

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 124 / 178

A (10) A (10)

What is completion?

Transform any equational proof in E into a valley proof in R:

Completion as a compilation process

Given an equational theory E

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 125 / 178

Completion as a compilation process

Given an equational theory *E* Find a term rewrite system *R*

@ ▶ < 글 ▶ < 글 ▶

Completion as a compilation process

Given an equational theory *E* Find a term rewrite system *R* Such that,

$$E \vdash t = t' \iff t \stackrel{*}{\longrightarrow}_{B \cdot B} \stackrel{*}{\longleftarrow} t'$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 125 / 178

Orient equalities to build (at least) a well founded ordering

向下 くヨト くヨト

Orient equalities to build (at least) a well founded ordering Simple example

x + 0 = x is oriented into $x + 0 \Rightarrow x$

Orient equalities to build (at least) a well founded ordering Simple example

$$x + 0 = x$$
 is oriented into $x + 0 \Rightarrow x$

Less obvious, how to orient

$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$

伺 ▶ ◀ 글 ▶ ◀ 글 ▶

Orient equalities to build (at least) a well founded ordering Simple example

$$x + 0 = x$$
 is oriented into $x + 0 \Rightarrow x$

Less obvious, how to orient

$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$

Furthermore, well-founded orderings are used to decrease proof complexity

Properties of rewrite systems

Completion of TRS

Completion of groups : starts with

$$P = \begin{cases} x + e &= x \\ x + (y + z) &= (x + y) + z \\ x + i(x) &= e \end{cases}$$

 $R = \emptyset$

1

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 四ト ・ ヨト ・ ヨト

Properties of rewrite systems

Completion of TRS

Completion of groups : starts with

Apply saturation rules

Horatiu CIRSTEA, Hélène KIRCHNER

 $\begin{array}{ccc} \textit{Deduce} & \textit{P},\textit{R} & & & \\ & & & \text{P} \cup \{\textit{p} = \textit{q}\},\textit{R} \\ & & & \text{si} (\textit{p},\textit{q}) \in \textit{CP}(\textit{R}) \end{array}$

Simplify
$$P \cup \{p = q\}, R \Vdash P \cup \{p' = q\}, R$$

si $p \rightarrow_R p'$

Delete $P \cup \{p = p\}, R \Vdash P, R$

 $\begin{array}{ccc} \textit{Compose} \quad P, R \cup \{I \twoheadrightarrow r\} & \Vdash & P, R \cup \{I \twoheadrightarrow r'\} \\ & \text{si } r \twoheadrightarrow_R r' \end{array}$

 $Collapse \quad P, R \cup \{I \rightarrow r\} \quad \Vdash \Rightarrow$

$$P \cup \{l' = r\}, R$$

si $l \rightarrow \frac{g \rightarrow d}{R}$ l' and $l \rightarrow r \gg g \rightarrow q$

イロト イ団ト イヨト イヨトー

三 つへで

Properties of rewrite systems

R =

Completion of TRS

Completion of groups : ends with

$$Q = \emptyset$$

[Knuth & Bendix 1970]

$$\begin{cases} x + e & \rightarrow x \\ e + x & \rightarrow x \\ x + (y + z) & \rightarrow (x + y) + z \\ x + i(x) & \rightarrow e \\ i(x) + x & \rightarrow e \\ i(e) & \rightarrow e \\ i(e) & \rightarrow e \\ (y + i(x)) + x & \rightarrow y \\ (y + x) + i(x) & \rightarrow y \\ i(i(x)) & \rightarrow x \\ i(x + y) & \rightarrow i(y) + i(x) \end{cases}$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 129 / 178

A (10) A (10)

The associated proof transformations

$$\underline{\text{Deduce}}: t' \leftarrow_R^{l \to r} t \to_R^{g \to d} t'' \Longrightarrow t' \longleftrightarrow_P^{p=q} t''$$

$$3 \underline{Simplify:} t \longleftrightarrow_{P}^{p=q} t' \Longrightarrow t \multimap_{R}^{l \multimap r} t'' \longleftrightarrow_{P}^{p'=q} t' \text{ if } p \multimap_{R}^{l \multimap r} p'.$$

$$\ \ \, \underline{\text{Compose}:} t \to_R^{l \to r} t' \Longrightarrow t \to_R^{l \to r'} t'' \leftarrow_R^{g \to d} t' \text{ if } r \to_R^{g \to d} r'.$$

$$\overline{\mathcal{O}} \xrightarrow{\text{Peak without overlap:}} t' \leftarrow_R^{l \to r} t \to_R^{g \to d} t'' \Longrightarrow t' \to_R^{g \to d} t_1 \leftarrow_R^{l \to r} t''$$

⁸ Peak with variable overlap :

$$t' \leftarrow_R^{l \to r} t \to_R^{g \to d} t'' \Longrightarrow t' \xrightarrow{*}_R t_1 \longleftarrow *_R t''$$

・ロト ・ 四ト ・ ヨト ・ ヨト

The main result

The sets of persisting rules and pairs are defined as :

$$P_{\infty} = \bigcup_{i \ge 0} \bigcap_{j > i} P_j$$
 and $R_{\infty} = \bigcup_{i \ge 0} \bigcap_{j > i} R_j$.

If the derivation $(P_0, R_0) \mapsto (P_1, R_1) \mapsto \cdots$ satisfies

- $CP(R_{\infty})$ is a subset of $\bigcup_{i\geq 0} P_i$ (i.e. the set of all generated equalities),
- R_{∞} is reduced and
- P_{∞} is empty,

then R_{∞} is Church-Rosser and terminating.

 $\stackrel{*}{\longleftrightarrow}_{P_0\cup R_0}$ and $\stackrel{*}{\longleftrightarrow}_{R_\infty}$ coincides.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Three possible issues

A completion process may

- terminate
- diverge by generating infinitely many rules
- fail on an unorientable equation

Exercise

Let $\mathcal{F} = \{c, f\}$ where *c* is a constant and *f* a unary operator. Complete the set of equalities

$$f(f(f(f(f(x))))) = x$$

$$f(f(f(x))) = x$$

く 同 ト く ヨ ト く ヨ ト -

Exemple

The theory of idempotent semi-groups (sometimes called bands) is defined by a set E of two axioms :

$$(x * y) * z = x * (y * z)$$
$$x * x = x$$

From $P_0 = E$ the completion generates

$$(x * y) * z \rightarrow x * (y * z)$$

$$x * x \rightarrow x$$

$$x * (x * z) \rightarrow x * z$$

$$x * (y * (x * y)) \rightarrow x * y$$

$$x * (y * (x * (y * z))) \rightarrow x * (y * z)$$
...
$$x * (y * (z * (y * (z * x)))))) \rightarrow x * (y * (z * x))$$

・ロト ・ 同ト ・ ヨト・

A smooth introduction

- Defining term rewriting
 - Terms and Substitutions
 - Matching
 - Rewriting
 - More on rewriting
- 3 Properties of rewrite systems
 - Abstract rewrite systems
 - Termination
 - Confluence
 - Completion of TRS

4 Equational rewrite systems

- Matching modulo
- Rewriting modulo

5 Strategies

- Why strategies ?
- Abstract strategies
- Properties of rewriting under strategies
- Strategy language

Matching and Rewriting Modulo

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 136 / 178

・ロト ・ 同ト ・ ヨト ・ ヨト

-1

Equality modulo C

$$C(+): \forall x, y \in T(\mathcal{F}, \mathcal{X}) \quad x + y = y + x$$

For example, on Peano integer, + is commutative :

$$(\boldsymbol{s}(\boldsymbol{0}) + (\boldsymbol{x} + \boldsymbol{s}(\boldsymbol{y}))) + \boldsymbol{x} =_{\boldsymbol{C}(+)} ((\boldsymbol{s}(\boldsymbol{y}) + \boldsymbol{x}) + \boldsymbol{s}(\boldsymbol{0})) + \boldsymbol{x}$$

Theorem :

$$\begin{array}{c} t_1 + t_2 =_{C(+)} t_1' + t_2' \iff & (t_1 =_{C(+)} t_1' \land t_2 =_{C(+)} t_2') \\ \lor \\ & (t_1 =_{C(+)} t_2' \land t_2 =_{C(+)} t_1') \end{array}$$

A (10) A (10)

-1

Matching modulo

Matching modulo

Finding a substitution σ such that

 $\sigma(I) = t$

is called the matching problem from $\frac{1}{t}$ to $\frac{t}{t}$ (denoted $\frac{1 \ll t}{t}$).

• (1) • (

Matching modulo

Matching modulo

Finding a substitution σ such that

 $\sigma(I) = t$

is called the matching problem from $\frac{1}{t}$ to $\frac{t}{t}$ (denoted $\frac{1}{t} \ll^{2} t$).

Finding a substitution σ such that

 $\sigma(I) =_E t$

is called the matching problem from $\frac{1}{t}$ to $\frac{t}{t}$ (denoted $\frac{1 \ll_{E}^{2} t}{t}$).

- ロ ト - (同 ト - (回 ト -)

Examples (commutative symbol(s))

 $\mathcal{F} = \{a(0), b(0), c(0), f(2), g(2), h(1)\}\$ *f* is assumed to be commutative (the other symbols have no property).

$$C(f): \forall x, y \in T(\mathcal{F}, \mathcal{X}) \quad f(x, y) = f(y, x)$$

• *f*(*a*, *b*) = *f*(*b*, *a*)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Examples (commutative symbol(s))

 $\mathcal{F} = \{a(0), b(0), c(0), f(2), g(2), h(1)\}\$ *f* is assumed to be commutative (the other symbols have no property).

$$C(f): \forall x, y \in T(\mathcal{F}, \mathcal{X}) \quad f(x, y) = f(y, x)$$

•
$$f(a,b) = f(b,a)$$

•
$$g(f(a, b), a) = g(f(b, a), a)$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

— yes

Examples (commutative symbol(s))

 $\mathcal{F} = \{a(0), b(0), c(0), f(2), g(2), h(1)\}\$ *f* is assumed to be commutative (the other symbols have no property).

$$C(f): \forall x, y \in T(\mathcal{F}, \mathcal{X}) \quad f(x, y) = f(y, x)$$

•
$$f(a,b) = f(b,a)$$
 - yes
• $g(f(a,b),a) = g(f(b,a),a)$ - yes

•
$$g(f(a,b),a) = g(a,f(b,a))$$
$\mathcal{F} = \{a(0), b(0), c(0), f(2), g(2), h(1)\}\$ *f* is assumed to be commutative (the other symbols have no property).

$$C(f): \forall x, y \in T(\mathcal{F}, \mathcal{X}) \quad f(x, y) = f(y, x)$$

•
$$f(a,b) = f(b,a)$$
 - yes
• $g(f(a,b),a) = g(f(b,a),a)$ - yes
• $g(f(a,b),a) = g(a,f(b,a))$ - no

• f(a, f(a, b)) = f(f(b, a), a)

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

 $\mathcal{F} = \{a(0), b(0), c(0), f(2), g(2), h(1)\}\$ *f* is assumed to be commutative (the other symbols have no property).

$$C(f): \forall x, y \in T(\mathcal{F}, \mathcal{X}) \quad f(x, y) = f(y, x)$$

•
$$f(a,b) = f(b,a)$$
 - yes
• $g(f(a,b),a) = g(f(b,a),a)$ - yes
• $g(f(a,b),a) = g(a,f(b,a))$ - no
• $f(a,f(a,b)) = f(f(b,a),a)$ - yes
• $f(a,f(b,c)) = f(f(c,b),a)$

 $\mathcal{F} = \{a(0), b(0), c(0), f(2), g(2), h(1)\}\$ *f* is assumed to be commutative (the other symbols have no property).

$$C(f): \forall x, y \in T(\mathcal{F}, \mathcal{X}) \quad f(x, y) = f(y, x)$$

•
$$f(a, b) = f(b, a)$$
 - yes
• $g(f(a, b), a) = g(f(b, a), a)$ - yes
• $g(f(a, b), a) = g(a, f(b, a))$ - no
• $f(a, f(a, b)) = f(f(b, a), a)$ - yes
• $f(a, f(b, c)) = f(f(c, b), a)$ - yes
• $f(f(a, b), c) = f(a, f(b, c))$

ヘロト ヘ戸ト ヘヨト ヘヨト

 $\mathcal{F} = \{a(0), b(0), c(0), f(2), g(2), h(1)\}\$ *f* is assumed to be commutative (the other symbols have no property).

$$C(f): \forall x, y \in T(\mathcal{F}, \mathcal{X}) \quad f(x, y) = f(y, x)$$

•
$$f(a,b) = f(b,a)$$
 - yes
• $g(f(a,b),a) = g(f(b,a),a)$ - yes
• $g(f(a,b),a) = g(a,f(b,a))$ - no
• $f(a,f(a,b)) = f(f(b,a),a)$ - yes
• $f(a,f(b,c)) = f(f(c,b),a)$ - yes
• $f(f(a,b),c) = f(a,f(b,c))$ - no

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Solve the following problems :

• $f(x,y) \ll^?_C f(a,b)$

Solve the following problems :

•
$$f(\mathbf{x}, \mathbf{y}) \ll^{?}_{C} f(\mathbf{a}, \mathbf{b})$$

 $\sigma = \{\mathbf{x} \mapsto \mathbf{a}, \mathbf{y} \mapsto \mathbf{b}\}$

Solve the following problems :

•
$$f(x, y) \ll^{?}_{C} f(a, b)$$

 $\sigma = \{x \mapsto a, y \mapsto b\}$
 $\sigma = \{x \mapsto b, y \mapsto a\}$

Matching modulo

Matching modulo C : examples

Solve the following problems :

•
$$f(x, y) \ll^{?}_{C} f(a, b)$$

 $\sigma = \{x \mapsto a, y \mapsto b\}$
 $\sigma = \{x \mapsto b, y \mapsto a\}$

• $f(y, f(x, x)) \ll_{C}^{?} f(f(f(a, b), f(b, a)), f(b, a))$

Solve the following problems :

•
$$f(x, y) \ll^{?}_{C} f(a, b)$$

 $\sigma = \{x \mapsto a, y \mapsto b\}$
 $\sigma = \{x \mapsto b, y \mapsto a\}$

•
$$f(\mathbf{y}, f(\mathbf{x}, \mathbf{x})) \ll_C^? f(f(f(\mathbf{a}, \mathbf{b}), f(\mathbf{b}, \mathbf{a})), f(\mathbf{b}, \mathbf{a}))$$

 $\sigma = \{\mathbf{x} \mapsto f(\mathbf{a}, \mathbf{b}), \mathbf{y} \mapsto f(\mathbf{a}, \mathbf{b})\}$

Matching modulo C : A rule based description

Equational rewrite systems

Matching modulo

Assume + commutative

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 142 / 178

Find a match

$$\begin{aligned} x*(3+y) \ll_C^? 1*(4+3) \\ \Rightarrow_{\text{Decomposition}} x \ll_C^? 1 & \wedge 3 + y \ll_C^? 4 + 3 \\ \Rightarrow_{C(+)-\text{Decomposition}} x \ll_C^? 1 & \wedge ((3 \ll_C^? 4 \wedge y \ll_C^? 3) \vee (3 \ll_C^? 3 \wedge y \ll_C^? 4)) \\ \Rightarrow_{\text{MergingClash}} x \ll_C^? 1 & \wedge (Fail \vee (3 \ll_C^? 3 \wedge y \ll_C^? 4)) \\ \Rightarrow_{\text{Delete}} x \ll_C^? 1 & \wedge (Fail \vee (y \ll_C^? 4)) \\ \Rightarrow_{\text{Bool}} x \ll_C^? 1 & \wedge y \ll_C^? 4 \end{aligned}$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

1

Horatiu CIRSTEA, Hélène KIRCHNER

Matching rules

Does it terminate? Do we always get the same result?

Horatiu CIRSTEA, Hélène KIRCHNER

< □ > < 同 > < 回 > < 回 > < 回 >

-1

Matching rules

Does it terminate ? Do we always get the same result ?

Theorem The normal form by the rules in *Commutative – Match*, of any matching problem $t \ll^2 t'$ such that $\mathcal{V}ar(t) \cap \mathcal{V}ar(t') = \emptyset$, exists and is unique.

- 1 If it is **Fail**, then there is no match from t to t'.
- ② If it is of the form $\bigvee_{k \in K} \bigwedge_{i \in I} x_i^k \ll_C^? t_i^k$ with $I, K \neq \emptyset$, the substitutions $\sigma^k = \{x_i^k \mapsto t_i^k\}_{i \in I}$ are all the matches from *t* to *t'*.

③ If it is empty then t and t' are identical : t = t'.

Matching modulo associativity-commutativity (1)

 \cup is assumed to be an associative commutative (AC) symbol :

 $\forall x, y, z, \ \cup (x, \cup (y, z)) = \cup (\cup (x, y), z)$ and $\forall x, y, \cup (x, y) = \cup (y, x)$.

$$\{i\} \cup s \ll^?_{AC} \{1\} \cup \{2\} \cup \{3\} \cup \{4\} \cup \{5\}$$

< □ > < 同 > < 回 > < 回 > .

Matching modulo associativity-commutativity (1)

 \cup is assumed to be an associative commutative (AC) symbol :

 $\forall x, y, z, \cup (x, \cup (y, z)) = \cup (\cup (x, y), z)$ and $\forall x, y, \cup (x, y) = \cup (y, x)$.

$$\{1\} \cup \{2\} \cup \{3\} \cup \{4\} \cup \{5\} =_{AC} \\ \{2\} \cup \{3\} \cup \{4\} \cup \{5\} \cup \{1\} =_{AC} \\$$

 $\{5\}\cup\{\,1\}\cup\{\,2\}\cup\{\,3\}\cup\{\,4\}$

5 different and non AC-equivalent matches.

Solve the following problems :

• $f(x, y) \ll^?_{AC} f(a, b)$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 146 / 178

向下 イヨト イヨト

Solve the following problems :

•
$$f(x, y) \ll^{?}_{AC} f(a, b)$$

 $\sigma = \{x \mapsto a, y \mapsto b\}$
 $\sigma = \{x \mapsto b, y \mapsto a\}$

Solve the following problems :

•
$$f(x, y) \ll^{?}_{AC} f(a, b)$$

 $\sigma = \{x \mapsto a, y \mapsto b\}$
 $\sigma = \{x \mapsto b, y \mapsto a\}$

•
$$f(y, f(x, x)) \ll^{?}_{AC} f(f(f(a, b), f(b, a)), f(b, a))$$

向下 くヨト くヨト

Solve the following problems :

•
$$f(x, y) \ll^{?}_{AC} f(a, b)$$

 $\sigma = \{x \mapsto a, y \mapsto b\}$
 $\sigma = \{x \mapsto b, y \mapsto a\}$

•
$$f(\mathbf{y}, f(\mathbf{x}, \mathbf{x})) \ll^{?}_{AC} f(f(f(\mathbf{a}, \mathbf{b}), f(\mathbf{b}, \mathbf{a})), f(\mathbf{b}, \mathbf{a}))$$

 $\sigma = \{\mathbf{x} \mapsto f(\mathbf{a}, \mathbf{b}), \mathbf{y} \mapsto f(\mathbf{a}, \mathbf{b})\}$

Solve the following problems :

•
$$f(x, y) \ll^{?}_{AC} f(a, b)$$

 $\sigma = \{x \mapsto a, y \mapsto b\}$
 $\sigma = \{x \mapsto b, y \mapsto a\}$

•
$$f(y, f(x, x)) \ll^{?}_{AC} f(f(a, b), f(b, a)), f(b, a))$$

 $\sigma = \{x \mapsto f(a, b), y \mapsto f(a, b)\}$
 $\sigma = \{x \mapsto a, y \mapsto f(f(b, b), f(b, a))\}$

Solve the following problems :

•
$$f(x, y) \ll^{?}_{AC} f(a, b)$$

 $\sigma = \{x \mapsto a, y \mapsto b\}$
 $\sigma = \{x \mapsto b, y \mapsto a\}$

•
$$f(y, f(x, x)) \ll^{?}_{AC} f(f(a, b), f(b, a)), f(b, a))$$

 $\sigma = \{x \mapsto f(a, b), y \mapsto f(a, b)\}$
 $\sigma = \{x \mapsto a, y \mapsto f(f(b, b), f(b, a))\}$
 $\sigma = \{x \mapsto b, y \mapsto f(f(a, a), f(b, a))\}$

Solve the following problems :

•
$$f(x, y) \ll^{?}_{AC} f(a, b)$$

 $\sigma = \{x \mapsto a, y \mapsto b\}$
 $\sigma = \{x \mapsto b, y \mapsto a\}$

•
$$f(y, f(x, x)) \ll^{?}_{AC} f(f(f(a, b), f(b, a)), f(b, a))$$

 $\sigma = \{x \mapsto f(a, b), y \mapsto f(a, b)\}$
 $\sigma = \{x \mapsto a, y \mapsto f(f(b, b), f(b, a))\}$
 $\sigma = \{x \mapsto b, y \mapsto f(f(a, a), f(b, a))\}$
...

Rewriting modulo : definition

A class rewrite system R/A is composed of a set of rewrite rules R and a set of equalities A, such that A and R are disjoint sets.

$$\begin{array}{rcl} x+0 & \rightarrow & x \\ x+(0+y) & \rightarrow & x+y \\ x+(-x) & \rightarrow & 0 \\ x+((-x)+y) & \rightarrow & y \\ & --x & \rightarrow & x \\ & -0 & \rightarrow & 0 \\ & -(x+y) & \rightarrow & (-x)+(-y) \end{array}$$

$$\begin{array}{rcl} \mathbf{x} + \mathbf{y} &=& \mathbf{y} + \mathbf{x} \\ (\mathbf{x} + \mathbf{y}) + \mathbf{z} &=& \mathbf{x} + (\mathbf{y} + \mathbf{z}) \end{array}$$

- E - - E -

t (R/A)-rewrites to t' if $t =_A t_1 \longrightarrow_R t_2 =_A t'$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 148 / 178

$$t (R/A)$$
-rewrites to t' if $t =_A t_1 \rightarrow_R t_2 =_A t'$

To be more effective, consider any relation \rightarrow_{RA} such that :

$$\rightarrow R \subseteq \rightarrow RA \subseteq \rightarrow R/A$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 148 / 178

A (10) A (10)

__⊳*R,A*

A term rewrite system *R* (a set of rewrite rules) determines a relation on terms denoted $\longrightarrow_{R,A}$ [Peterson & Stickel,81]

Rewriting - Computation and Deduction 149 / 178

・ロト ・ 同ト ・ ヨト ・ ヨト

__⊳*R,A*

A term rewrite system *R* (a set of rewrite rules) determines a relation on terms denoted $\longrightarrow_{R,A}$ [Peterson & Stickel,81]

U ⊸_{R,A} V

iff there exist $I \rightarrow r \in R$, an occurrence ω in *t*, such that

 $\boldsymbol{u}_{|\omega} =_{\boldsymbol{A}} \sigma(\boldsymbol{I})$

and

 $\mathbf{v} = \mathbf{u}[\sigma(\mathbf{r})]_{\omega}$

[→]R,A

A term rewrite system *R* (a set of rewrite rules) determines a relation on terms denoted $\longrightarrow_{R,A}$ [Peterson & Stickel,81]

U → _{*R*,*A*} *V*

iff there exist $I \rightarrow r \in R$, an occurrence ω in *t*, such that

 $\mathbf{U}_{|\omega} =_{\mathbf{A}} \sigma(\mathbf{I})$

and

 $\mathbf{v} = \mathbf{u}[\sigma(\mathbf{r})]_{\omega}$

USUALLY, when defining the rewriting relation, one requires the all rewrite rules satisfy $Var(r) \subseteq Var(l)$.

・ロット (日) (日) (日) (日)

For example

Let \cup be an AC symbol, such that

$$\{i\} \cup x \to i$$

$$\{1\} \cup \{2\} \cup \{3\} \cup \{4\} \cup \{5\} =_{AC}$$

$$\{2\} \cup \{3\} \cup \{4\} \cup \{5\} \cup \{1\} =_{AC}$$

$$\dots$$

$$\{5\} \cup \{1\} \cup \{2\} \cup \{3\} \cup \{4\}$$

Since this term matches the lefthand side of the rewriting rule in 5 different and non *AC*-equivalent ways, the rewrite rule applies in 5 different ways.

< 回 > < 回 > < 回 >

Assume + to be AC (associative and commutative)

$$R = \{a + a \twoheadrightarrow a\}$$

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 151 / 178

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

-1

Assume + to be AC (associative and commutative)

$$R = \{a + a \rightarrow a\}$$

$$R/E$$
-rewrite the term $(a + c) + a$

A (10) A (10)

-1

Assume + to be AC (associative and commutative)

$$\frac{R}{R} = \{a + a \rightarrow a\}$$

1

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・回ト ・ヨト ・ヨト

Assume + to be AC (associative and commutative)

$$R = \{a + a \twoheadrightarrow a\}$$

R/E-rewrite the term(a + c) + aR, E-rewrite the term(a + c) + a

a+c

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume + to be AC (associative and commutative)

$$R = \{a + a \twoheadrightarrow a\}$$

R/E -rewrite the term (a + c) + aR, E -rewrite the term (a + c) + a

$$R = \{a + a \rightarrow a \quad (a + a) + x \rightarrow a + x\}$$

Horatiu CIRSTEA, Hélène KIRCHNER

く 同 ト く ヨ ト く ヨ ト

a+c

Assume + to be AC (associative and commutative)

$$R = \{a + a \twoheadrightarrow a\}$$

R/E -rewrite the term (a + c) + aR, E -rewrite the term (a + c) + a

$$R = \{a + a \rightarrow a \quad (a + a) + x \rightarrow a + x\}$$

 $\frac{R}{E}$ -rewrite the term (a+c)+a

・ 同 ト ・ ヨ ト ・ ヨ ト ・

a+c
Assume + to be AC (associative and commutative)

$$R = \{a + a \rightarrow a\}$$

R/E -rewrite the term (a + c) + aR, E -rewrite the term (a + c) + a

$$R = \{a + a \rightarrow a \quad (a + a) + x \rightarrow a + x\}$$

 $\frac{R}{E}$ -rewrite the term (a+c)+a

(1) マン・ション・

a+c

a+c

-1

Assume + to be AC (associative and commutative)

$$R = \{a + a \twoheadrightarrow a\}$$

 $\frac{R/E}{R,E}$ -rewrite the term $\frac{(a+c)+a}{(a+c)+a}$

$$R = \{a + a \rightarrow a \quad (a + a) + x \rightarrow a + x\}$$

R/E -rewrite the term (a + c) + aR, E -rewrite the term (a + c) + a

< 🗇 > < 🖻 > < 🖻 > .

a+c

a+c

Assume + to be AC (associative and commutative)

$$R = \{a + a \twoheadrightarrow a\}$$

 $\frac{R/E}{R,E}$ -rewrite the term $\frac{(a+c)+a}{(a+c)+a}$

$$R = \{a + a \rightarrow a \quad (a + a) + x \rightarrow a + x\}$$

R/E -rewrite the term (a + c) + aR, E -rewrite the term (a + c) + a

< 🗇 > < 🖻 > < 🖻 > .

a+c

a+c

a+c

- Huet's approach [JACM80] uses standard rewriting →_R but is restricted to left-linear rules.
- Peterson and Stickel's approach [JACM81] uses *rewriting modulo A*, denoted →_{*R*,*A*}, and requires matching modulo *A*.
- Pedersen's approach [Phd84] uses a restricted version of matching modulo A, confined to variables.
- Jouannaud and Kirchner's method [SIAM86] uses standard rewriting with left-linear rules and rewriting modulo A with non-left-linear rules, mixing advantages of the two first methods.

A (10) A (10)

Definitions

The rewriting relation RA is

Church-Rosser modulo A if

$$=_{R\cup A}\subseteq \xrightarrow{*}_{RA}\circ =_{A}\circ _{RA}\xleftarrow{*}$$

confluent modulo A if

$$_{RA} \stackrel{*}{\longleftrightarrow} \circ \stackrel{*}{\longrightarrow}_{RA} \subseteq \stackrel{*}{\longrightarrow}_{RA} \circ =_{A} \circ _{RA} \stackrel{*}{\longleftarrow}$$

locally coherent with *R* modulo *A* if 0

$$_{RA} \longleftrightarrow \circ \longrightarrow_{R} \subseteq \xrightarrow{*}_{RA} \circ =_{A} \circ _{RA} \xleftarrow{*}_{A} \circ =_{A} \circ _{RA} \mathrel{*}_{A} \circ =_{A} \circ _{RA} \circ =_{A} \circ _{RA} \mathrel{*}_{A} \circ =_{A} \circ _{RA} \circ =_{A} \circ _{A} \circ _{RA} \circ =_{A} \circ _{A} \circ _{RA} \circ =_{A} \circ _{A} \circ _{A} \circ =_{A} \circ _{A} \circ$$

locally coherent with A modulo A if

$$_{RA} \longleftarrow \circ =_{A} \subseteq \xrightarrow{*}_{RA} \circ =_{A} \circ _{RA} \xleftarrow{*}_{A} \circ =_{A} \circ _{RA} \mathrel{*}_{A} \circ =_{A} \circ _{RA} \circ =_{A} \circ _{RA} \mathrel{*}_{A} \circ =_{A} \circ _{RA} \circ _{RA} \circ =_{A} \circ _{RA} \circ _{RA} \circ =_{A} \circ _{RA} \circ _{A} \circ _{RA} \circ =_{A} \circ _{RA} \circ _{RA} \mathrel{*}_{A} \circ =_{A} \circ _{RA} \circ =_{A} \circ _{RA} \circ _{RA} \circ =_{A} \circ _{RA} \circ _{RA} \circ _{A} \circ =_{A} \circ _{RA} \circ _{RA} \circ _{A} \circ =_{A} \circ _{RA} \circ _{RA} \circ _{RA} \circ =_{A} \circ _{RA} \circ _{RA} \circ _{RA} \circ _{RA} \circ _{RA} \circ =_{A} \circ _{RA}$$

Good news

If R/A is terminating, the following properties are equivalent :

- ② →_{*RA*} is confluent modulo *A* and →_{*RA*} is coherent modulo *A*.
- ③ $→_{RA}$ is locally confluent with *R* modulo *A* and locally coherent with *A* modulo *A*.

< 同 > < 回 > < 回 > -

Rewriting and theorem proving, a few examples

- Boolean algebras and rings Applications to proof search in first order logic (Hsiang, 1985).
- Proof of commutativity in specific rings

$$(\forall x, x^n = x) \Rightarrow \forall x, y, (x * y = y * x)$$

n = 3 (Stickel, 1984), *n* pair (Kapur, Zhang, 1991).

• The Robbins conjecture (McCune, 1996) In a Boolean algebra

$$\overline{\overline{x}+y}+\overline{x+y} = y$$

implies

$$\overline{\overline{x}+\overline{y}}+\overline{x+\overline{y}} = y$$

< 回 > < 回 > < 回 >

References on rewriting modulo

- G. Huet. Confluent reductions : Abstract properties and applications to term rewriting systems. *Journal of the ACM*, 27(4) :797–821, October 1980.
- G. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories. *Journal of the ACM*, 28 :233–264, 1981.
- J.-P. Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of equations. *SIAM Journal of Computing*, 15(4) :1155–1194, 1986.
- Enno Ohlebusch. Church-Rosser Theorems for Abstract Reduction Modulo an Equivalence Relation RTA, pages 17-31, LNCS 1379, 1998.
- Claude and Hélène Kirchner. Rewriting Solving Proving www.loria.fr/~ckirchne/rsp.ps.gz

A (10) + A (10) +

Strategies

- A smooth introduction
- Defining term rewriting
 - Terms and Substitutions
 - Matching
 - Rewriting
 - More on rewriting
- 3 Properties of rewrite systems
 - Abstract rewrite systems
 - Termination
 - Confluence
 - Completion of TRS
- 4 Equational rewrite systems
 - Matching modulo
 - Rewriting modulo

5 Strategies

- Why strategies ?
- Abstract strategies
- Properties of rewriting under strategies
- Strategy language

A (10) + A (10) +

Rewrite rules describe local transformations

- Rewrite derivations are computations
- Normal forms are the results
- *t* is in normal form if it cannot be reduced anymore : result of terminating computations
- *t* has a unique normal form if the rewrite system is terminating and confluent.
- Paradigm of computation in algebraic languages : ASF+SDF, OBJ, Maude,...
- and in functional languages : ML, Haskell,...

Strategies describe the control of rewrite rule application

- traversals : innermost, outermost, lazy... (Stratego)
- higher-order functions with choice and iteration (ELAN, TOM)

@ ▶ < 글 ▶ < 글 ▶

Strategies are ALWAYS needed

- Even for "good" TRSs leftmost innermost strategy
 i.e. to make clear how the computation is performed
- 2- To describe the way deduction should be done Lazy evaluation Search plans Action plans Tactics User interaction
- 3- This requires to search for a particular derivation corresponding to the desired strategy.

A (10) A (10)

rewrite rewrite rewrite rewrite rewrite rewrite rewrite rewrite

Logic Programming, Theorem Proving, Constraint Solving are instances of the same deduction schema :

Apply rewrite rules (may be modulo) on formulas with some strategy, until getting specific forms

- Rewrite blindly : implements computations
- Rewrite wisely : implements deduction

Back to Abstract rewrite systems

An Abstract Rewrite System (ARS) is a labelled oriented graph $(\mathcal{O}, \mathcal{S})$.

The nodes in \mathcal{O} are called objects

The oriented labelled edges in S are called steps.

Reductions

For a given ARS \mathcal{A} :

■ A reduction step is an oriented labelled edge ϕ together with its source *a* and target *b*, written $a \rightarrow_{\mathcal{A}}^{\phi} b$.

■ A reduction step is an oriented labelled edge ϕ together with its source *a* and target *b*, written $a \rightarrow_{\mathcal{A}}^{\phi} b$.

2 *A*-derivation : $\pi : a_0 \to^{\phi_0} a_1 \to^{\phi_1} a_2 \dots \to^{\phi_{n-1}} a_n$ or $a_0 \to^{\pi} a_n$. The source of π is a_0 and $dom(\pi) = \{a_0\}$. The target of π is a_n and $\pi a_0 = \{a_n\}$.

- A reduction step is an oriented labelled edge ϕ together with its source *a* and target *b*, written $a \rightarrow_{\mathcal{A}}^{\phi} b$.
- 2 *A*-derivation : $\pi : a_0 \to \phi_0 a_1 \to \phi_1 a_2 \ldots \to \phi_{n-1} a_n$ or $a_0 \to \pi a_n$. The source of π is a_0 and $dom(\pi) = \{a_0\}$. The target of π is a_n and $\pi a_0 = \{a_n\}$.
- 3 A derivation is empty when its source and target are the same. The empty derivation issued from *a* is denoted by *id_a*.

< 同 > < 回 > < 回 > -

- A reduction step is an oriented labelled edge ϕ together with its source *a* and target *b*, written $a \rightarrow_{\mathcal{A}}^{\phi} b$.
- 2 *A*-derivation : $\pi : a_0 \to \phi_0 a_1 \to \phi_1 a_2 \ldots \to \phi_{n-1} a_n$ or $a_0 \to \pi a_n$. The source of π is a_0 and $dom(\pi) = \{a_0\}$. The target of π is a_n and $\pi a_0 = \{a_n\}$.
- 3 A derivation is empty when its source and target are the same. The empty derivation issued from *a* is denoted by *id_a*. The set of all derivations is denoted D(A).

< 同 > < 回 > < 回 > -

- A reduction step is an oriented labelled edge ϕ together with its source *a* and target *b*, written $a \rightarrow_{\mathcal{A}}^{\phi} b$.
- 2 *A*-derivation : $\pi : a_0 \to \phi_0 a_1 \to \phi_1 a_2 \ldots \to \phi_{n-1} a_n$ or $a_0 \to \pi a_n$. The source of π is a_0 and $dom(\pi) = \{a_0\}$. The target of π is a_n and $\pi a_0 = \{a_n\}$.
- 3 A derivation is empty when its source and target are the same. The empty derivation issued from *a* is denoted by *id_a*. The set of all derivations is denoted D(A).
- 4 The concatenation of two derivations π_1 ; π_2 is defined as $a \rightarrow_{\mathcal{A}}^{\pi_1} b \rightarrow_{\mathcal{A}}^{\pi_2} c$ if $\{a\} = dom(\pi_1)$ and $\pi_1 a = dom(\pi_2) = \{b\}$. Then π_1 ; $\pi_2 a = \pi_2 \pi_1 a = \{c\}$

For a given ARS $\mathcal{A} = (\mathcal{O}, \mathcal{S})$:

A is terminating (or strongly normalizing) if all its derivations are of finite length;

For a given ARS $\mathcal{A} = (\mathcal{O}, \mathcal{S})$:

- A is terminating (or strongly normalizing) if all its derivations are of finite length;
- An object a in O is normalized when the empty derivation is the only one with source a (e.g., a is the source of no edge);

For a given ARS $\mathcal{A} = (\mathcal{O}, \mathcal{S})$:

- A is terminating (or strongly normalizing) if all its derivations are of finite length;
- An object a in O is normalized when the empty derivation is the only one with source a (e.g., a is the source of no edge);
- A derivation is normalizing when its target is normalized;

For a given ARS $\mathcal{A} = (\mathcal{O}, \mathcal{S})$:

- A is terminating (or strongly normalizing) if all its derivations are of finite length;
- An object a in O is normalized when the empty derivation is the only one with source a (e.g., a is the source of no edge);
- A derivation is normalizing when its target is normalized;
- An ARS is weakly terminating if every object a is the source of a normalizing derivation.

< 回 > < 回 > < 回 >

Properties : Confluence

An ARS $\mathcal{A} = (\mathcal{O}, \mathcal{S})$ is confluent if

for all objects *a*, *b*, *c* in \mathcal{O} , and all \mathcal{A} -derivations π_1 and π_2 , when $a \rightarrow^{\pi_1} b$ and $a \rightarrow^{\pi_2} c$, there exist *d* in \mathcal{O} and two \mathcal{A} -derivations π_3, π_4 such that $c \rightarrow^{\pi_3} d$ and $b \rightarrow^{\pi_4} d$.

< 🗇 > < 🖻 > < 🖻 >

Abstract strategies

For a given ARS \mathcal{A} :

- In abstract strategy ζ is a subset of the set of all derivations (finite or not) of A.
- 2 ζa = {b | ∃π ∈ ζ such that a →^π b} = {πa | π ∈ ζ}.
 When no derivation in ζ has for source a, we say that the strategy application on a fails.
- 3 $dom(\zeta) = \bigcup_{\delta \in \zeta} dom(\delta)$
- ④ The strategy that contains all empty derivations is *Id* = {*id_a* | *a* ∈ *O*}.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

$$\begin{array}{c} \textcircled{1} \quad \mathcal{A}_{lc} = \begin{array}{c} a & \overbrace{\phi_{3}}^{\phi_{1}} b \\ \downarrow \phi_{4} & \downarrow \phi_{4} \\ c & d \end{array}$$

 $\mathcal{D}(\mathcal{A}_{lc}) \supset \{id_a, \phi_1, \phi_1\phi_3, \phi_1\phi_4, \phi_1\phi_3\phi_1, (\phi_1\phi_3)^n, (\phi_1\phi_3)^{\omega}, \ldots\},$ where ϕ^n denotes the *n*-steps iteration of ϕ and ϕ^{ω} denotes the infinite iteration of ϕ ;

$$\begin{array}{c} \textcircled{1} \quad \mathcal{A}_{lc} = \begin{array}{c} \mathbf{a} \underbrace{\overset{\phi_1}{\overbrace{\phi_3}}}_{\phi_2} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array} \begin{array}{c} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c} \end{array}$$

 $\mathcal{D}(\mathcal{A}_{lc}) \supset \{ id_a, \phi_1, \phi_1\phi_3, \phi_1\phi_4, \phi_1\phi_3\phi_1, (\phi_1\phi_3)^n, (\phi_1\phi_3)^{\omega}, \ldots \},$ where ϕ^n denotes the *n*-steps iteration of ϕ and ϕ^{ω} denotes the infinite iteration of ϕ ;

2
$$\mathcal{A}_{c} = \bigwedge_{\phi_{1}}^{\phi_{2}} \int_{\phi_{1}}^{\phi_{2}} \mathcal{D}(\mathcal{A}_{c}) \supset \{\phi_{1}, \phi_{2}, \phi_{1}\phi_{2}, \dots, (\phi_{1})^{\omega}, (\phi_{2})^{\omega}, \dots\}.$$

< 回 > < 回 > < 回 >

$$\mathcal{A}_{lc} = a \underbrace{\stackrel{\phi_1}{\overbrace{\phi_2}}}_{\phi_2} b \downarrow_{\phi_4} \\ c d$$

A few strategies :

$$(1) \quad \zeta_1 = \mathcal{D}(\mathcal{A}_{lc}), \, \zeta_1 a = \{a, b, c, d\}.$$

Horatiu CIRSTEA, Hélène KIRCHNER

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

$$\mathcal{A}_{lc} = \mathbf{a} \underbrace{\overset{\phi_1}{\overbrace{\phi_3}}}_{\phi_2 \downarrow} \underbrace{\overset{\phi_1}{\overbrace{\phi_3}}}_{c \quad d} \mathbf{b}$$

A few strategies :

(2)
$$\zeta_2 = \emptyset$$
, for all *x* in \mathcal{O}_{lc} , $\zeta_2 x = \emptyset$.

A few strategies :

- 1) $\zeta_1 = \mathcal{D}(\mathcal{A}_{lc}), \zeta_1 a = \{a, b, c, d\}.$
- (2) $\zeta_2 = \emptyset$, for all *x* in \mathcal{O}_{lc} , $\zeta_2 x = \emptyset$.
- 3 ζ₃ = {(φ₁φ₃)*φ₂}, a always converges to c : ζ₃a = {c}; b is not transformed (as well as c and d) : ζ₃b = Ø.

< 🗇 > < 🖻 > < 🖻 > .

A few strategies :

 $(1) \quad \zeta_1 = \mathcal{D}(\mathcal{A}_{lc}), \, \zeta_1 a = \{a, b, c, d\}.$

2
$$\zeta_2 = \emptyset$$
, for all x in \mathcal{O}_{lc} , $\zeta_2 x = \emptyset$.

- ζ₃ = {(φ₁φ₃)*φ₂},
 a always converges to *c* : ζ₃*a* = {*c*};
 b is not transformed (as well as *c* and *d*) : ζ₃*b* = Ø.
- **④** The result of $((\phi_1\phi_3)^{\omega} a)$ is the empty set.

• (1) • (

Termination under strategy

For a given ARS $\mathcal{A} = (\mathcal{O}, \mathcal{S})$ and strategy ζ :

- \mathcal{A} is ζ -terminating if all derivations in ζ are of finite length;
- An object *a* in *O* is ζ-normalized when the empty derivation is the only one in ζ with source *a*;
- A derivation is ζ -normalizing when its target is ζ -normalized;
- An ARS is weakly ζ-terminating if every object a is the source of a ζ-normalizing derivation.

・ 一 ア ・ コ ト ・ ヨ ト

Given the strategy ζ defined as

$$a \rightarrow^{\phi_1} b \rightarrow^{\phi_4} d$$

b is ζ -normalized since there is no derivation in ζ with source *b*.

A (10) A (10)

Confluence under strategy (1)

Weak Confluence under strategy

An ARS $\mathcal{A} = (\mathcal{O}, \mathcal{S})$ is weakly confluent under strategy ζ if

for all objects *a*, *b*, *c* in \mathcal{O} , and all \mathcal{A} -derivations π_1 and π_2 in ζ , when $a \rightarrow^{\pi_1} b$ and $a \rightarrow^{\pi_2} c$

there exists *d* in \mathcal{O} and two \mathcal{A} -derivations π'_3, π'_4 in ζ such that $\pi'_3: a \to b \to d$ and $\pi'_4: a \to c \to d$.

Confluence under strategy (2)

Strong Confluence under strategy

An ARS $\mathcal{A} = (\mathcal{O}, \mathcal{S})$ is strongly confluent under strategy ζ if

for all objects *a*, *b*, *c* in \mathcal{O} , and all \mathcal{A} -derivations π_1 and π_2 in ζ , when $a \rightarrow^{\pi_1} b$ and $a \rightarrow^{\pi_2} c$

there exists *d* in \mathcal{O} and two \mathcal{A} -derivations π_3, π_4 in ζ such that :

1)
$$b \rightarrow^{\pi_3} d$$
 and $c \rightarrow^{\pi_4} d$;

2 π_1 ; π_3 and π_2 ; π_4 belong to ζ .

$$\mathcal{A}_{lc} = \mathbf{a} \underbrace{\overset{\phi_1}{\overbrace{\phi_3}}}_{\phi_2} \mathbf{b} \\ \downarrow_{\phi_4} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{d} \\ \mathbf{d}$$

Consider the following various strategies :

(1) $\zeta_1 = \mathcal{D}(\mathcal{A}_{lc}) : \mathcal{A}_{lc}$ is neither weakly nor strongly confluent under $\zeta_1 : \pi_1 : a \to \phi_1 b \to \phi_4 d$ and $\pi_2 : a \to \phi_2 c$.
$$\mathcal{A}_{lc} = \mathbf{a} \underbrace{\overset{\phi_1}{\overbrace{\phi_2}}}_{\phi_2} \mathbf{b} \\ \downarrow_{\phi_4} \\ c \\ d$$

Consider the following various strategies :

- ① $\zeta_1 = \mathcal{D}(\mathcal{A}_{lc}) : \mathcal{A}_{lc}$ is neither weakly nor strongly confluent under $\zeta_1 : \pi_1 : a \to \phi_1 \ b \to \phi_4 \ d$ and $\pi_2 : a \to \phi_2 \ c$.
- 2 $\zeta_2 = \emptyset$: A_{lc} is trivially both weakly and strongly confluent under ζ_2 .

$$\mathcal{A}_{lc} = \mathbf{a} \underbrace{\overset{\phi_1}{\overbrace{\phi_2}}}_{\phi_2} \mathbf{b} \\ \downarrow_{\phi_4} \\ \mathbf{c} \\ \mathbf{d} \\ \mathbf{d}$$

Consider the following various strategies :

- (1) $\zeta_1 = \mathcal{D}(\mathcal{A}_{lc}) : \mathcal{A}_{lc}$ is neither weakly nor strongly confluent under $\zeta_1 : \pi_1 : a \to \phi_1 b \to \phi_4 d$ and $\pi_2 : a \to \phi_2 c$.
- 2 $\zeta_2 = \emptyset$: A_{lc} is trivially both weakly and strongly confluent under ζ_2 .
- (3) $\zeta_3 = \{(\phi_1\phi_3)^*\phi_2\}$: A_{lc} is also weakly and strongly confluent under ζ_3 .

$$\mathcal{A}_{lc} = \mathbf{a} \underbrace{\overset{\phi_1}{\overbrace{\phi_2}}}_{\phi_2} \mathbf{b} \\ \downarrow_{\phi_4} \\ \mathbf{c} \\ \mathbf{d} \\ \mathbf{d}$$

Consider the following various strategies :

- (1) $\zeta_1 = \mathcal{D}(\mathcal{A}_{lc}) : \mathcal{A}_{lc}$ is neither weakly nor strongly confluent under $\zeta_1 : \pi_1 : a \to \phi_1 b \to \phi_4 d$ and $\pi_2 : a \to \phi_2 c$.
- 2 $\zeta_2 = \emptyset$: A_{lc} is trivially both weakly and strongly confluent under ζ_2 .
- 3 $\zeta_3 = \{(\phi_1\phi_3)^*\phi_2\}$: \mathcal{A}_{lc} is also weakly and strongly confluent under ζ_3 .
- 4 For a different reason, this is also the case for $\zeta_4 = (\phi_1 \phi_3)^{\omega}$ whose result is the empty set.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let $\mathcal{O} = \{a, b, c, d\}$ and reduction steps $\phi_1, \phi_2, \phi_3, \phi_4, \phi'_1, \phi'_2, \phi'_3, \phi'_4$.

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 174 / 178

・ロト ・四ト ・ヨト・

Let $\mathcal{O} = \{a, b, c, d\}$ and reduction steps $\phi_1, \phi_2, \phi_3, \phi_4, \phi'_1, \phi'_2, \phi'_3, \phi'_4$.

This ARS \mathcal{A} is weakly and strongly confluent under the strategy $\zeta =$

 $\{a \rightarrow^{\phi_1} b, a \rightarrow^{\phi_2} c, b \rightarrow^{\phi_3} d, c \rightarrow^{\phi_4} d, a \rightarrow^{\phi_1} b \rightarrow^{\phi_3} d, a \rightarrow^{\phi_2} c \rightarrow^{\phi_4} d\}$

Let $\mathcal{O} = \{a, b, c, d\}$ and reduction steps $\phi_1, \phi_2, \phi_3, \phi_4, \phi'_1, \phi'_2, \phi'_3, \phi'_4$.

This ARS \mathcal{A} is weakly and strongly confluent under the strategy $\zeta =$

 $\{a \to {}^{\phi_1} b, a \to {}^{\phi_2} c, b \to {}^{\phi_3} d, c \to {}^{\phi_4} d, a \to {}^{\phi_1} b \to {}^{\phi_3} d, a \to {}^{\phi_2} c \to {}^{\phi_4} d\}$ but is not under

$$\zeta = \{ \boldsymbol{a} \rightarrow^{\phi_1} \boldsymbol{b}, \boldsymbol{a} \rightarrow^{\phi_2} \boldsymbol{c}, \boldsymbol{b} \rightarrow^{\phi_3} \boldsymbol{d}, \boldsymbol{c} \rightarrow^{\phi_4} \boldsymbol{d} \}$$

Let $\mathcal{O} = \{a, b, c, d\}$ and reduction steps $\phi_1, \phi_2, \phi_3, \phi_4, \phi'_1, \phi'_2, \phi'_3, \phi'_4$.

This ARS A is weakly and strongly confluent under the strategy $\zeta =$

 $\{a \to {}^{\phi_1} b, a \to {}^{\phi_2} c, b \to {}^{\phi_3} d, c \to {}^{\phi_4} d, a \to {}^{\phi_1} b \to {}^{\phi_3} d, a \to {}^{\phi_2} c \to {}^{\phi_4} d\}$ but is not under

$$\zeta = \{ \boldsymbol{a} \rightarrow^{\phi_1} \boldsymbol{b}, \boldsymbol{a} \rightarrow^{\phi_2} \boldsymbol{c}, \boldsymbol{b} \rightarrow^{\phi_3} \boldsymbol{d}, \boldsymbol{c} \rightarrow^{\phi_4} \boldsymbol{d} \}$$

 ${\cal A}$ is weakly but not strongly confluent under the strategy $\zeta =$

$$\{a \rightarrow^{\phi_1} b, a \rightarrow^{\phi_2} c, b \rightarrow^{\phi_3} d, c \rightarrow^{\phi_4} d, a \rightarrow^{\phi_1'} b \rightarrow^{\phi_3'} d, a \rightarrow^{\phi_2'} c \rightarrow^{\phi_4'} d\}$$

Given $\mathcal{A} = (\mathcal{O}_R, \mathcal{S}_R)$ generated by a rewrite system *R*, and a strategy ζ of \mathcal{A} ,

- A strategic rewriting derivation (or rewriting derivation under strategy ζ) is an element of ζ .
- A strategic rewriting step under ζ is a rewriting step t →_R t' that occurs in a derivation of ζ.
 This is also denoted t →_ζ t'.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Elementary strategies : *Identity*, *Fail*, *R*, *Sequence*(s_1 , s_2) or s_2 ; s_1

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 176 / 178

・ 同 ト ・ ヨ ト ・ ヨ ト ・

-1

Elementary strategies : *Identity*, *Fail*, *R*, *Sequence*(s_1 , s_2) or s_2 ; s_1

Choice(s₁, s₂) selects the first strategy that does not fail; it fails if both fail:
 Choice(s₁, s₂)t = s₁t if s₁t does not fail, else s₂t.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Elementary strategies : *Identity*, *Fail*, *R*, *Sequence*(s_1 , s_2) or s_2 ; s_1

Choice(s₁, s₂) selects the first strategy that does not fail; it fails if both fail:
 Choice(s₁, s₂)t = s₁t if s₁t does not fail, else s₂t.

 On a term t, All(s) applies the strategy s on all immediate subterms :

$$All(s)f(t_1,...,t_n) = f(t'_1,...,t'_n)$$

if $st_1 = t'_1, ..., st_n = t'_n$; it fails if there exists *i* such that st_i fails.

Elementary strategies : *Identity*, *Fail*, *R*, *Sequence*(s_1 , s_2) or s_2 ; s_1

Choice(s₁, s₂) selects the first strategy that does not fail; it fails if both fail:
 Choice(s₁, s₂)t = a tif a t does not fail also a t

Choice $(s_1, s_2)t = s_1t$ if s_1t does not fail, else s_2t .

 On a term t, All(s) applies the strategy s on all immediate subterms :

$$All(s)f(t_1,...,t_n) = f(t'_1,...,t'_n)$$

if $st_1 = t'_1, ..., st_n = t'_n$; it fails if there exists *i* such that st_i fails.

 On a term t, One(s) applies the strategy s on the first immediate subterm where s does not fail :

$$One(s)f(t_1,...,t_n) = f(t_1,...,t'_i,...,t_n)$$

if for all j < i, st_j fails, and $st_i = t'_i$; it fails if for all i, st_i fails.

・ロット (日) (日) (日) (日)

Elementary strategies : *Identity*, *Fail*, *R*, *Sequence*(s_1 , s_2) or s_2 ; s_1

Choice(s₁, s₂) selects the first strategy that does not fail; it fails if both fail:
 Choice(s₁, s₂)t = a tif a t does not fail also a t

Choice $(s_1, s_2)t = s_1t$ if s_1t does not fail, else s_2t .

 On a term t, All(s) applies the strategy s on all immediate subterms :

$$All(s)f(t_1,...,t_n) = f(t'_1,...,t'_n)$$

if $st_1 = t'_1, ..., st_n = t'_n$; it fails if there exists *i* such that st_i fails.

 On a term t, One(s) applies the strategy s on the first immediate subterm where s does not fail :

$$One(s)f(t_1,...,t_n) = f(t_1,...,t'_i,...,t_n)$$

if for all j < i, st_i fails, and $st_i = t'_i$; it fails if for all i, st_i fails.

• Fixpoint : $\mu x.s = s[x \leftarrow \mu x.s]$

- Try(s) Repeat(s) OnceBottomUp(s) BottomUp(s) TopDown(s) Innermost(s)
- *Choice*(*s*, *Identity*)
- $= \mu x.Choice(Sequence(s, x), Identity)$
- $= \mu x.Choice(One(x), s)$
- $= \mu x.Sequence(All(x), s)$
- $= \mu x.Sequence(s, All(x))$
- $= \mu x.Sequence(All(x), Try(Sequence(s, x)))$

Programming with Rules and Strategies -TOM

Horatiu CIRSTEA, Hélène KIRCHNER

Rewriting - Computation and Deduction 178 / 178

ヘロマ ヘロマ ヘロマ