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Information Science and Rewriting

Information science and technology address
o data representation
o data transformation
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Information Science and Rewriting

Information science and technology address
o data representation
o data transformation
What about Rewriting in this context ?
o data are terms or more generally structured objects
o this is a way to describe transformations of these objects

o it allows formalizing and analysing the relations between these
objects
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What can you do with Rewriting ?

Can rewriting be used
o for formal specifications ?
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What can you do with Rewriting ?

Can rewriting be used

o for formal specifications ?
functional or algebraic framework, express and check properties
of specifications.

o as a programming langage ?
high-level, type discipline, prototyping, efficient compilation

o in a proof environnement ?
equality in first-order theories, computational part of proofs, as a
logic and a higher-order calculus.
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NSNS
1) A smooth introduction
\?,\) Defining term rewriting
O Terms and Substitutions
O Matching
O Rewriting
@ More on rewriting
_3) Properties of rewrite systems
O Abstract rewrite systems
O Termination
O Confluence
O Completion of TRS

! 4) Equational rewrite systems
O Matching modulo
O Rewriting modulo
5) Strategies
O Why strategies ?
O Abstract strategies
O Properties of rewriting under strategies
O Strategy language
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(Some) Additional Recommended Readings

o Term Rewriting Systems
Terese (M. Bezem, J. W. Klop and R. de Vrijer, eds.)
Cambridge Univerty press, 2002

o Term Rewriting and all That
Franz Baader and Tobias Nipkow
Cambridge Univerty press, 1998

o Repository of Lectures on Rewriting and Related Topics
gsl.loria.fr

o The rewriting and IFIP WG1.6 page
rewriting.loria.fr

o The Rewriting Calculus Home page
rho.loria.fr
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A smooth introduction
A simple game

The rules of the game :
e —> O

o0 —> O
0 —> @

ce —> @

A starting point :

0000000000 00CO000 OO0

Who wins ?
= \Who puts the last white ?
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A smooth introduction

000000000000 @00
0O0C@e0ee00e0O0eeo
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®© 000600 00

®© 000 000

Horatiu CIRSTEA, Hélene KIRCHNER



A smooth introduction

000000000000 @00
0O0C@e0ee00e0O0eeo
[eNeX Nl X Welol Nelel I')
0O0Oe0ee0O0eOee
coeeecOeOCee
cCeeeo0OCeO 00
©ee00 000 00
®© 000600 00

®© 000 000

Can | always win ?

Horatiu CIRSTEA, Hélene KIRCHNER



A smooth introduction

000000000000 @00
0O0C@e0ee00e0O0eeo
[eNeX Nl X Welol Nelel I')
0O0Oe0ee0O0eOee
coeeecOeOCee
cCeeeo0OCeO 00
©ee00 000 00
®© 000600 00
® 000 000

® 0600 60
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A smooth introduction

000000000000 @00
0O0C@e0ee00e0O0eeo
[eNeX Nl X Welol Nelel I')
0O0Oe0ee0O0eOee
coeeecOeOCee
cCeeeo0OCeO 00
©ee00 000 00
®© 000600 00

®© 000 000

Can | always win ? Does the game terminate ? Do we always get the same result ?
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A smooth introduction

What are the basic operations that have been used ?
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A smooth introduction

What are the basic operations that have been used ?

1— Matching
The data : ee €0 O 0O 00
The rewrite rule : B e

2— Compute what should be substituted
The lefthand side : °
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A smooth introduction

What are the basic operations that have been used ?

1— Matching
The data : ee €0 O 0O 00
The rewrite rule : B e

2— Compute what should be substituted
The lefthand side : °

3— Replacement
The new generated data: ee[e|cec ee

Note that the last list is a NEW object.
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A smooth introduction

Addition in Peano arithmetic

Peano gives a meaning to addition by using the following axioms :

O+-x=x
S(X)+y=8(x+Yy)
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A smooth introduction

Addition in Peano arithmetic

Peano gives a meaning to addition by using the following axioms :

O+-x=x
S(X)+y=8(x+Yy)

What's [fRelfestilt] of s(s(0)) + s(s(0)) ?
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A smooth introduction

Addition in Peano arithmetic

Peano gives a meaning to addition by using the following axioms :

O+-x=x
S(X)+y=8(x+Yy)

What's [fRelfestilt] of s(s(0)) + s(s(0)) ?

s(s(0)) + s(s(0)) = s(s(0) + s(s(0))
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A smooth introduction

Addition in Peano arithmetic

Peano gives a meaning to addition by using the following axioms :

O+-x=x
S(X)+y=8(x+Yy)

What's [fRelfestilt] of s(s(0)) + s(s(0)) ?

S(S(O))+S(S(0))= s(s(0) + s(s(0))
s(s(0 + s(s(0))))
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A smooth introduction

Addition in Peano arithmetic

Peano gives a meaning to addition by using the following axioms :

O+-x=x
S(X)+y=8(x+Yy)
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A smooth introduction

Addition in Peano arithmetic

Peano gives a meaning to addition by using the following axioms :

O+-x=x
S(X)+y=8(x+Yy)

| | A
oW Ww v ®

Is there a better result?
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A smooth introduction

Addition in Peano arithmetic

Compute a result by turning the equalities into rewrite rules :

0+x —-x
S(X)+y —Ss(x+y)
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A smooth introduction

Addition in Peano arithmetic

Compute a result by turning the equalities into rewrite rules :

0+x —-x
S(X)+y —Ss(x+y)

) — 8(s(0) + s(s(0)) —

+
2
%)
—
o
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A smooth introduction

Addition in Peano arithmetic

Compute a result by turning the equalities into rewrite rules :

0+x —-x
S(X)+y —Ss(x+y)

(8(0)) s(s(0)) — s(s(0) + s(s(0)) —
0 s(s (;)))))

Is this computation ferminating ,
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A smooth introduction
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Compute a result by turning the equalities into rewrite rules :
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A smooth introduction
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A smooth introduction

What are the basic operations that have been used ?
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The data : s(-) + -
The rewrite rule : _ — S(X+Yy)

2— Compute what should be substituted

The instanciated Ihs : s(s(0) + s(s(0)))

Horatiu CIRSTEA, Hélene KIRCHNER



A smooth introduction

What are the basic operations that have been used ?

1— Matching

The data : s(-) + -
The rewrite rule : _ — S(X+Yy)

2— Compute what should be substituted

The instanciated Ihs : s(s(0) + s(s(0)))

3— Replacement
The new generated data : ’s(s(O)+s(s(0))) ‘
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A smooth introduction

What are the basic operations that have been used ?

1— Matching

The data : s(-) + -
The rewrite rule : _ — S(X+Yy)

2— Compute what should be substituted

The instanciated Ihs : s(s(0) + s(s(0)))

3— Replacement
The new generated data : ’s(s(O)+s(s(O))) ‘

Note that this last entity is a NEW object.
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A smooth introduction
Fibonacci

(o] fib(0) —» 1
8 fib(1) — 1
] fib(n) — fib(n— 1)+ fib(n — 2)

fib(J8)
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A smooth introduction
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A smooth introduction
Fibonacci

(o] fib(0) —» 1
8 fib(1) — 1
] fib(n) — fib(n— 1)+ fib(n — 2)

fib(@B) — [ fib(2) + fib(1)

fib2) + fib(1) — fib(2) + M
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A smooth introduction
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A smooth introduction
Fibonacci

(o] fib(0) —» 1
8 fib(1) — 1
] fib(n) — fib(n— 1)+ fib(n — 2)

fib(@B) — [ fib(2) + fib(1)

fib(2) + fib(1) —  fib(2) + 4
fio(@h +1— | fib() + fib(0Y) | + 1
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A smooth introduction
Fibonacci

(o] fib(0) —» 1
8 fib(1) — 1
] fib(n) — fib(n— 1)+ fib(n — 2)

fib(@B) — [ fib(2) + fib(1)

fib2) + fib(1) — fib(2) + M

fio(@h +1— | fib() + fib(0Y) | + 1
fib(1) + fib(0) + 1
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A smooth introduction
Fibonacci

(o] fib(0) —» 1
8 fib(1) — 1
] fib(n) — fib(n— 1)+ fib(n — 2)

fib(@B) — [ fib(2) + fib(1)

fib2) + fib(1) — fib(2) + M

fio(@h +1— | fib() + fib(0Y) | + 1
fib(1) + fib(0) + 1 — 1| + fib(0) + 1
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A smooth introduction
Fibonacci

(o] fib(0) — 1
8 fib(1) — 1
] fib(n) — fib(n—1) + fib(n — 2)

fib(@B) — [ fib(2) + fib(1)

fib(2) + fib(1) — fib(2) + 4

fio(@) +1— | fib(W) + fib(0) -+ 1
fib(1) + fib(0) +1 — [ + fib(0) + 1

Finally fib(3) = 3, fib(4) =5, ..
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A smooth introduction
Graphical Rewriting

F—-F+F-F—FF+F+F—F
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A smooth introduction
Graphical Rewriting

F—-F+F-F—FF+F+F—F

L-systems (Lindenmeier)
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A smooth introduction

Ecological Rewriting

Plant development

productions

http ://algorithmicbotany.org/
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A smooth introduction
Sorting by rewriting

rules for List
X, Y : Nat ; L L" L'’ : List;
hd (X L) => X ; tl (X L) => L ;
sort nil => nil .
sort (L X L’ YL'’) => sort (L YL’ XL'’") if ¥ < X
end

sort (6 54 3 2 1) => ...
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A smooth introduction

On what objects can rewriting act ?

It can be defined on
o terms like 2 +i(3) or XML documents
o strings like “What is rewriting ?” (sed performs string rewriting)
o graphs
o sets
o multisets
Q...
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A smooth introduction

On what objects can rewriting act ?

It can be defined on
o terms like 2 +i(3) or XML documents
o strings like “What is rewriting ?” (sed performs string rewriting)
o graphs
o sets
o multisets
Q...
We will “restrict” in this lecture to first-order [{Efms!
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Defining term rewriting

\2) Defining term rewriting
O Terms and Substitutions
O Matching
O Rewriting
@ More on rewriting

Horatiu CIRSTEA, Hélene KIRCHNER



Defining term rewriting
The relation, the logic, the calculus

This part deals with the

on
first-order term

This is just the oriented version of replacement of equal by equal
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Defining term rewriting Terms and Substitutions

First-order terms
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Defining term rewriting Terms and Substitutions

Signature and first-order terms

Fo a set of symbols of arity 0 (the constants)
F; a set of symbols of arity /

F =UnFn

X a set of arity 0 symbols called variables .

T(F,X) isthe smallest set such that :
o XCT(F,X),
o VEe FV,...,.thae T(F,X): f(ty,....t)) € T(F,X).

T(F,0) = T(F) is the set of ground terms .
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Defining term rewriting Terms and Substitutions

Terms as mappings : (N,.) — F

t=f(a+ x,h(f(a,b))) is represented by :

position — symbol

A — f
1 — +
1.1 — a
1.2 — X
2 — h
2.1 — f
211 a
212 — b

Dom(t) = {a,1,1.1,1.2,2,2.1,2.1.1,2.1.2}
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a)

f(x,f(a, x))

f(x, f(y, 2))
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a, x))

f(x, f(y, 2))
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x, f(y. 2))
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x,f(y,z)) islinear

What about the following terms ?
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x,f(y,z)) islinear

What about the following terms ?
f(a,a, a)is
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x,f(y,z)) islinear

What about the following terms ?
f(a, a, a) is ill-formed (since f is of arity 2)
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x,f(y,z)) islinear

What about the following terms ?

f(a, a, a) is ill-formed (since f is of arity 2)
ais
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x,f(y,z)) islinear

What about the following terms ?

f(a, a, a) is ill-formed (since f is of arity 2)
ais correct
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x,f(y,z)) islinear

What about the following terms ?
f(a, a, a) is ill-formed (since f is of arity 2)
ais correct
x(a)is
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x,f(y,z)) islinear

What about the following terms ?
f(a, a, a) is ill-formed (since f is of arity 2)
ais correct
x(a) is ill-formed (since all variables are assumed of arity 0)
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x,f(y,z)) islinear

What about the following terms ?
f(a, a, a) is ill-formed (since f is of arity 2)

ais correct
x(a) is ill-formed (since all variables are assumed of arity 0)
fis
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Defining term rewriting Terms and Substitutions

Examples and (some) terminology

With the following signature :

F = {f, a} with arity(f) = 2, arity(a) =0, x,y,z € X :
what are the following terms ?

f(a,a) is ground,

f(x,f(a,x)) is not linear but

f(x,f(y,z)) islinear

What about the following terms ?
f(a, a, a) is ill-formed (since f is of arity 2)
ais correct
x(a) is ill-formed (since all variables are assumed of arity 0)
f is ill-formed (since f is of arity 2)
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Defining term rewriting Terms and Substitutions

Subterms

t[s], denotesthe term t with s as subterm at position (or
occurrence) w .
tl, denotes the subterm at occurrence w .

f(a+ x, h(f(a, b)))|2 = h(f(a, b))
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Defining term rewriting Terms and Substitutions

Terms as trees

t=f(a+ x,h(f(a,b))) is represented by :

/ \
aV \X

2.1
f
2.1./ sz
a b
|t| is the size of t i.e. the cardinality of Dom(t).
f(a+ x; h(f(a,b)))| = 8

Var(t) denotes the set of variables in t .
Var(f(a + x, h(f(a,b)))) = {x}
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f(f(a,b),g(a))|11?
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f(f(a,b),g(a))|11? —a
What is f(f(a, b),g(a))|a ?
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f(f(a, b),g(a))|1.1
What is f(f(a, b),g(a))|a ? — f(f(a,b),g(a))
What is f(f(a,b),g(a))|127?
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f(f(a,b),g(a))|11? —a
What is f(f(a, b),g(a))|a ? — f(f(a,b),g(a))
What is f(f(a,b),g(a))|127? —b

What is the arity of f just above ?
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f(f(a,b),g(a))|11? —a
What is f(f(a, b),g(a))|a ? — f(f(a,b),9(a))
What is f(f(a, b), g(a))|1.2 ? —b
What is the arity of f just above ? —2

What is the arity of a just above ?
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f(f(a,b),g(a))|11? —a
What is f(f(a, b),g(a))|a ? — f(f(a,b),9(a))
What is f(f(a, b), g(a))|1.2 ? —b
What is the arity of f just above ? —2
What is the arity of a just above ? —0

What are the variables of f(f(a, b),g(a))|12 ?
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f(f(a,b),g(a))|11? —a
What is f(f(a, b),g(a))|a ? — f(f(a,b),9(a))
What is f(f(a, b), g(a))|1.2 ? —b
What is the arity of f just above ? —2
What is the arity of a just above ? —0
What are the variables of f(f(a, b), g(a))|1.2? — 0

What are the variables of f(f(x, x),g(a))|1.2?
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f(f(a,b),g(a))|11? —a
What is f(f(a, b),g(a))|a ? — f(f(a,b),g(a))
What is f(f(a,b),g(a))|127? —b
What is the arity of f just above ? —2
What is the arity of a just above ? —0
What are the variables of f(f(a, b), g(a))|1.2? —0
What are the variables of f(f(x, x),g(a))|12? — {x}

What are the variables of f(f(x, x),g(a)) ?
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Defining term rewriting Terms and Substitutions

Simple questions—

What is f(f(a,b),g(a))|11? —a
What is f(f(a, b),g(a))|a ? — f(f(a,b),g(a))
What is f(f(a,b),g(a))|127? —b
What is the arity of f just above ? —2
What is the arity of a just above ? —0
What are the variables of f(f(a, b), g(a))|1.2? —0
What are the variables of f(f(x, x),g(a))|12? — {x}
What are the variables of f(f(x, x),g(a)) ? — {x}
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Defining term rewriting Terms and Substitutions

Substitutions
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Defining term rewriting Terms and Substitutions

Substitution

A substitution ¢ is a mapping from the set ot variables to the set of
terms :

o: X —T(F,X)
It is extended as a morphism from terms to terms :

o:T(F,X)—T(F,X)

o(f(t, &) = f(o(t), o (f2))
Ifo={x—ay— f(ag(z)),z— g(z2)}, then
o(f(x,f(a, 2))) = f(a f(a 9(2))).
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Defining term rewriting Matching

Matching
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Defining term rewriting Matching

Matching

Finding a @@= o such that
olly=t

is called the matching problem from [/ to t.
This is denoted -

It is decidable in linear time in the size of t.

It induces a relation on terms called E=EEEED
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Defining term rewriting Matching

Matching : A rule based description

Delete t<’tAP
— P
Decomposition f(ty,.... t) << f(t,,....t)) AP

— /\,-:17.“7 t<< t/ AP

SymbolClash f(ty,....tn) <" g(t],....th) AP
—  Fail if f#g

SymbolVariableClash  f(t;,..., t;) <’ x A P
—  Fail ifxeX
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Defining term rewriting Matching

Matching : A rule based description

Delete t<’tAP
— P
Decomposition f(ty,.... t) << f(t,,....t)) AP

— /\,-:17.“7 t<< t/ AP

SymbolClash f(ty,....tn) <" g(t],....th) AP

—  Fail if f#g
SymbolVariableClash  f(t;,..., t;) <’ x A P

—  Fail ifx e X
MergingClash x<tAXxL AP

—  Fail if t £t
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Defining term rewriting Matching

Find a match

x+(y+3) <’ 14(4+3)
=>Decomposition X <"1 A y*3 <"4+%3
= Decomposition X <1 A y <"4 AN 3<78
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Defining term rewriting Matching

Find a match

x+(y+3) <’ 14(4+3)
=>Decomposition X <"1 A y*3 <"4+%3
= Decomposition X <1 A y <"4 AN 3<78

= Delete X <"1 A y <" 4

X+(y+y) < 1+(4+3)
=>Decomposition X <"1 A yxy <"4%3
=>Decomposition X <"1 A 3% <'4 A y <'3

=”MergingClash Fail
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Defining term rewriting Matching

Matching rules

Does it terminate ?
Do we always get the same result ?

Horatiu CIRSTEA, Hélene KIRCHNER



Defining term rewriting Matching

Matching rules

Does it terminate ?
Do we always get the same result ?

_ The normal form by the rules in Match, of any matching
problem t <’ t' such that Var(t) N Var(t') = (), exists and is unique.
@ Ifitis Fail , then there is no match from t to ¢t
@ Ifitis of the form A;c,x; < t; with / # 0, the substitution
o = {X; — ti}ic; is the unique match from t to t'.

@ Ifitis empty then t and t’ are identical : t=1".
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Defining term rewriting Matching

Matching is used everywhere

ML

TOM

XQUERY

“pattern matching” in general
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Defining term rewriting Matching

Matching is used everywhere

ML

TOM

XQUERY

“pattern matching” in general

CyberSitter censors "menu */ #define" because of the string "nu...de".
From Internet Risks Forum NewsGroup (RISKS), vol. 19, issue 56.
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Defining term rewriting Matching

Term subsumption

SKt<=o(s) =t

Vocabulary :

tis called an instance of s

s is said more general than t or

S subsumes t

o isa match from sto t.

< is a quasi-ordering on terms called subsumption .

f(x,y) < f(f(a,b), h(y))

Theorem : [Huet78]
Up to renaming, the subsumption ordering on terms is well-founded.
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Defining term rewriting Matching

Notice that

s<t # f(us) <f(ut)
since
x < abut f(x,x) £ f(x, a)

s<t # o(s)<o(t)
since
x < abut (x— b)x £ (x+— b)a
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Defining term rewriting Rewriting

Rewriting
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Defining term rewriting Rewriting

Definition of rewriting

It relies on 5 notions :

The objects : terms and rewrite rules
The actions

o matching

o substitutions

o replacement

and, given a rule and a term, it consists in :
finding a subterm of the term
that matches the left hand side of the rule

and replacing that subterm by the right hand side of the rule
instanciated by the match
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Defining term rewriting Rewriting

Formally

t rewritesto t' usingtherule [ — r if
tp=o(l) and t' =to(r)lp

This is denoted

|—r t/
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Defining term rewriting Rewriting

Rewrite relation

A term rewrite system R (a set of rewrite rules) determines a relation
on terms denoted —p :

Horatiu CIRSTEA, Hélene KIRCHNER



Defining term rewriting Rewriting

Rewrite relation

A term rewrite system R (a set of rewrite rules) determines a relation
on terms denoted —p :

u—-pv
iff
there exist t, | — r € R, an occurrence w in t, such that
u = tlo(N)]w
and
v =tlo(r)].
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Defining term rewriting Rewriting

Rewrite relation

A term rewrite system R (a set of rewrite rules) determines a relation
on terms denoted —p :

u—-pv
iff
there exist t, | — r € R, an occurrence w in t, such that
u = tlo(N)]w
and
v =tlo(r)].

to(D]w —r tlo(r)
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Defining term rewriting Rewriting

Rewrite relation

A term rewrite system R (a set of rewrite rules) determines a relation
on terms denoted —p :

u—-pv
iff
there exist t, | — r € R, an occurrence w in t, such that
u = tlo(N)]w
and
v =tlo(r)].

to(D]w —r tlo(r)

USUALLY, when defining the rewriting relation, one requires the all
rewrite rules satisfy Var(r) C Var(/).
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Defining term rewriting Rewriting

Simple examples —

Consider the rewrite system R :
X+ X — X

(@a+x)+y — y+x

How many redexes are in (a+ a) + (a+a) ?
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Defining term rewriting Rewriting

Simple examples —

Consider the rewrite system R :

X+ X — X
(@a+x)+y — y+x

How many redexes are in (a+ a) + (a+a) ? —4

Draw the rewrite derivation tree issued from (a+ a) + (a+ a).
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Defining term rewriting Rewriting

Simple examples —

Consider the rewrite system R :

X+ X — X
(@a+x)+y — y+x

How many redexes are in (a+ a) + (a+a) ? —4
Draw the rewrite derivation tree issued from (a+ a) + (a+ a).

Is ((a+ a) + (a+ a), a) in the transitive closure of —?
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Defining term rewriting Rewriting

Simple examples —

Consider the rewrite system R :

X+ X — X
(@a+x)+y — y+x

How many redexes are in (a+ a) + (a+a) ? —4
Draw the rewrite derivation tree issued from (a+ a) + (a+ a).
Is ((a+ a) + (a+ a), a) in the transitive closure of —? — yes

Is (a, a) in the transitive closure of —?
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Defining term rewriting Rewriting

Simple examples —

Consider the rewrite system R :

X+ X — X
(@a+x)+y — y+x

How many redexes are in (a+ a) + (a+a) ? —4
Draw the rewrite derivation tree issued from (a+ a) + (a+ a).

Is ((a+ a) + (a+ a), a) in the transitive closure of — ? — yes
Is (a, a) in the transitive closure of —? — no

Is (a, a) in the reflexive closure of —?
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Defining term rewriting Rewriting

Simple examples —

Consider the rewrite system R :
X+ X — X

(@a+x)+y — y+x

How many redexes are in (a+ a) + (a+a) ? —4

Draw the rewrite derivation tree issued from (a+ a) + (a+ a).

Is ((a+ a) + (a+ a), a) in the transitive closure of —? — yes
Is (a, a) in the transitive closure of —? — no
Is (a, a) in the reflexive closure of —? — yes

Is there any infinite derivation starting from a finite tree using R ?
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Defining term rewriting Rewriting

Simple examples —

Consider the rewrite system R :

X+ X — X
(@a+x)+y — y+x

How many redexes are in (a+ a) + (a+a) ? —4

Draw the rewrite derivation tree issued from (a+ a) + (a+ a).

Is ((a+ a) + (a+ a), a) in the transitive closure of —? — yes
Is (a, a) in the transitive closure of —? — no
Is (a, a) in the reflexive closure of —? — yes

Is there any infinite derivation starting from a finite tree using R? — no
Why ?
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Defining term rewriting More on rewriting

Expressiveness of rewriting

[Max Dauchet 1989]
A Turing machine can be simulated by a single rewrite rule
This unique rewrite rule can further be left linear and regular !

... Termination of a rewrite relation
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Defining term rewriting More on rewriting

On the use of term rewriting

o for programming (ASF, ELAN, MAUDE, ML, OBJ, Stratego, ...)
o for proving (Completion procedures, proof systems, ...)

o for solving (Constraint manipulations, . ..)

o for verifying (Exhaustive (and may be intelligent) search)
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Defining term rewriting More on rewriting

What are the typical problems of the field ?

Confluence

Termination

Control of rewriting : strategies

Conditional rewriting

Theorem proving and rewriting

Rewriting and higher-order features : p-calculus
Types and rewriting
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Defining term rewriting More on rewriting

Extended notions of rewriting
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Defining term rewriting More on rewriting

Conditional rules

[ —r if ¢

o LreT(F,X),
o caboolean term
o Var(r)UVar(c) C Var(l)

The rule applies on a term t provided the matching substitution o
allows co to reduce to frue .
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Defining term rewriting More on rewriting

Applying a conditional rewrite rule

even(0) — true

even(s(x)) — odd(x)
odd(x) — true if not(even(x))
odd(x) — false if even(x)

even(s(0)) — odd(0) — false
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Defining term rewriting More on rewriting

Generalized rules

| — r where p; .= ¢y ... where p, .= ¢,

o Lr,pi,...,PnsC1,...,Cn € T(F,X),

o Var(pj) N (Var(l)uVar(py)U---UVar(pi_1)) = 0,
o Var(r) CVar(l)UVar(pi)U---UVar(pn)

o Var(cj) C Var(l)uVar(py) U---UVar(pi_1).

where frue := c is equivalently written if c.
p; is oftern reduced to a variable x.
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Defining term rewriting More on rewriting

Generalized rule application

| — r where p; := ¢y ... where p, := ¢j

To apply this rewrite rule on t, the matching substitution o from / to t
(i.e. such that /o = t) is successively composed with each match p;

from p; to cijopy ... pj_q, foralli=1,... n.

move(S) — C(x,y) where < x,y >:= position(S) ifx =y
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Properties of rewrite systems

Q) Properties of rewrite systems
O Abstract rewrite systems
O Termination
O Confluence
O Completion of TRS
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Properties of rewrite systems Abstract rewrite systems

The properties of this relation could be studied in an abstract way :
= Abstract rewrite systems
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Properties of rewrite systems Abstract rewrite systems

Abstract rewrite systems

2 Consider a set 7

> Consider a binary relation — on 7 (one-step reduction)
w g— b:bisthe reduct of a

2 Induced relations

= transitive closure : ——
w transitive reflexive closure ; ——
= symetric closure : «—
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Properties of rewrite systems Abstract rewrite systems

Normalization

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.
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Properties of rewrite systems Abstract rewrite systems

Normalization

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.

> The relation — is terminating (or strongly normalizing, or
noetherian) if every reduction sequence is finite.
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Properties of rewrite systems Abstract rewrite systems

Normalization

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.

> The relation — is terminating (or strongly normalizing, or
noetherian) if every reduction sequence is finite.
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Properties of rewrite systems Abstract rewrite systems

Normalization

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.

2 The relation — is terminating (or strongly normalizing, or
noetherian) if every reduction sequence is finite.
a — ais not terminating

> The relation — is weakly normalizing (or weakly terminating) if
every element t € 7 has a normal form.
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Properties of rewrite systems Abstract rewrite systems

Normalization

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.

2 The relation — is terminating (or strongly normalizing, or
noetherian) if every reduction sequence is finite.
a — ais not terminating

> The relation — is weakly normalizing (or weakly terminating) if
every element t € 7 has a normal form.
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Properties of rewrite systems Abstract rewrite systems

Normalization

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.

2 The relation — is terminating (or strongly normalizing, or
noetherian) if every reduction sequence is finite.
a — ais not terminating

> The relation — is weakly normalizing (or weakly terminating) if
every element t € 7 has a normal form.
a— a a— bis weakly terminating

> The relation — has the unique normal form property if for any
t,t € T,t<— t and t,t are normal forms imply t = t'.
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Properties of rewrite systems Abstract rewrite systems

Showing normalization

A (partial) order on 7 is a reflexive, antisymetric and transitive relation.
An ordering is total on 7 when two terms are always comparable

> is well-founded or Noetherian on 7 if there is no infinite
decreasing sequence on 7 :

h>b>10h>...

Consider an ARS (A,—).

— is terminating

iff

there exists a well-founded (partial) order > on 7 and a mapping ¢ s.t.
for all rewrite rule a — & implies ¢(a) > ¢(&).
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Properties of rewrite systems Abstract rewrite systems

Example

Use the order (>,N) which is well-founded.

Several choices for strings A = (e | 0)*

o ¢(w) = number of e
works for all e-decreasing reductions

o ¢(w) = number of o
works for all o-decreasing reductions
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Properties of rewrite systems Abstract rewrite systems

Example

Use the order (>,N) which is well-founded.

Several choices for strings A = (e | 0)*

o ¢(w) = number of e
works for all e-decreasing reductions

o ¢(w) = number of o
works for all o-decreasing reductions

®® —> O
o0 —> O
0 —> @

ce —> @
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Properties of rewrite systems Abstract rewrite systems

Example

Use the order (>,N) which is well-founded.

Several choices for strings A = (e | 0)*

o ¢(w) = number of e
works for all e-decreasing reductions

o ¢(w) = number of o
works for all o-decreasing reductions

®® —> O
o0 —> O
0 —> @

ce —> @

o ¢(w) = number of e and o
works for all length-decreasing reductions
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Properties of rewrite systems Abstract rewrite systems

Deflnltlons ( < Relathionships )

Localy confluent (LC) Diamond property (DP)
fo fo
VRN VAN
b b b b
* A s * W
f3 f3
Church Rosser (CR) Confluent (C)

fo
Fra g t b

Gl pf ®
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Properties of rewrite systems Abstract rewrite systems

Local versus global confluence

@ C=1LC

@ LC=C?
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Properties of rewrite systems Abstract rewrite systems

Local versus global confluence

@ C=1LC

@ LC=C?

w Consider four distinct
elements a, b, c,d of T [ Y

and the relation :
a—b

b— a
a—cC
b—d

j\
o

it

(9]
Q
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Properties of rewrite systems Abstract rewrite systems

Newman’s lemma

[Newman 1942]

Provided the relation — is terminating
then

— is confluent iff it is locally confluent

Proof :
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Properties of rewrite systems Abstract rewrite systems

Newman’s lemma

[Newman 1942]

Provided the relation — is terminating
then

— is confluent iff it is locally confluent

Proof :

o locally confluent if confluent
= obvious
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Properties of rewrite systems Abstract rewrite systems

Newman’s lemma

[Newman 1942]

Provided the relation — is terminating
then

— is confluent iff it is locally confluent

Proof :

o locally confluent if confluent
= obvious

o confluent if locally confluent
- ?
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Properties of rewrite systems Abstract rewrite systems

Noetherian induction : a fondamental tool

Let (7, >) be an ordered set s.t. > is well-founded.

Let P be a proposition :
@ vteT, Wt e{t|t>1}, P{)] = P(t)

@ P(t) is provable for all minimal element ¢,

then Vt € 7,P(t).
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Properties of rewrite systems Abstract rewrite systems

Noetherian induction : a fondamental tool

Consider (7, —)

1
m—1/ \ / y:1
t t b
\ q/ /
u
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Properties of rewrite systems Termination

How to build well founded orderings ?
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Properties of rewrite systems Termination

Termination

R (or —Rg) terminates
iff all derivation issued from any term terminates.

Termination implies the existence of normal form(s) for any term.

Termination is in general undecidable
but interesting sufficient condition can be found.
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Properties of rewrite systems Termination

Proving termination could be tricky ...
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Properties of rewrite systems Termination

Proving termination could be tricky ...

f(a,b,x) — f(x,x,x)

is terminating
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Properties of rewrite systems Termination

Proving termination could be tricky ...

f(a,b,x) — f(x,x,x)

is terminating

is terminating
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Properties of rewrite systems Termination

Proving termination could be tricky ...

f(a,b,x) — f(x,x,Xx)

is terminating

is terminating

Is the union terminating ?
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Properties of rewrite systems Termination

f(a,b,x) — f(x,x,Xx)
gx,y) — x
gxy) — vy,
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Properties of rewrite systems Termination

f(a,b,x) — f(x,x,Xx)
gx,y) — x
gxy) — vy,

We have the derivation :

: N
f(g(a7 b)vg(av b)a g(aa b)) - f(aag(aa b)a g(a7 b)) - f(aa bag(aa b))

[Toyama 1986]
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Properties of rewrite systems Termination

Termination

o ensures finiteness of computations
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Properties of rewrite systems Termination

Termination

o ensures finiteness of computations

0 is a necessary condition for deciding of other properties
(non ambiguity, reachability tests, .. .)
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Properties of rewrite systems Termination

Termination

o ensures finiteness of computations

0 is a necessary condition for deciding of other properties
(non ambiguity, reachability tests, .. .)

0 is undecidable.
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Properties of rewrite systems Termination

Proving Termination

Termination of rewriting can be checked by sufficient conditions :

o Syntactic and semantic methods (applying directly to the TRS)
KBO [Knuth & Bendix 1970], LPO [Kamin & Levy 1980], RPO
[Dershowitz 1982], RPOS [Steinbach 1989], GPO [Dershowitz & Hoot
1995], Polynomial interpretations [Lankford 1975, Ben Cherifa &
Lescanne 1986],. . .

o Transformational approaches (transforming one TRS into another)
Semantic labelling [Zantema 1995], Dependency pairs [Arts & Giesl
1996], ...

o Induction on the derivation trees (schematization by abstraction
and narrowing of the derivations)
[Fissore & Gnaedig & Kirchner 2003]
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Properties of rewrite systems Termination

Termination
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Properties of rewrite systems Termination

Orderings on terms

A Reduction ordering is an ordering on 7,
stable by context and substitution :
w for every context C[_| and for all substitutions o,

if t>s then C[t] > C[s] and o(t) > o(s) .

IThearem! R terminates iff there exists a well-founded reduction
ordering > s.t. for all rewrite rule (/| - r) € R, [ > r.

Horatiu CIRSTEA, Hélene KIRCHNER



Properties of rewrite systems Termination

Example

The rules of the game :

(1)
(e]e}

[ J©)

b

oce

I>rif |I|>|r]|
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Properties of rewrite systems Termination

Example

The rules of the game :

e —> O
o0 —> O
0 —> @

I>rif |I|>|r]|

F(F(x; %), V)= (v, y)

but

[F(F(x, %), F(x, %)) | # 19(g(x, X), g(x, X))
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Properties of rewrite systems Termination

Example modified

The rules of the game slightly change :

0 —> OO
o0 — O
0O —> @

ce —> @
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Properties of rewrite systems Termination

Example modified

The rules of the game slightly change :

0 —> OO
o0 — O
0O —> @

ce —4> @
[ >r if |/|.o>|r|oo

(|t|leo=number of e and o of the term f)

[eefec =2%#2=]00ls
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Properties of rewrite systems Termination

Example

The rules of the game :

®® —> OO
o0 —> @
O —> @

ce —> @

I> 71 if [lleose>|l|eote

[o0leote =27 2=0]eore
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Properties of rewrite systems Termination

Extensions of reduction ordering
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Properties of rewrite systems Termination

Lexicographical extensions

Let > be an ordering on 7.
Its lexicographical extension >/ on 7" is defined as :

(S1,..,8n) > (t,..., ty)
if there exists i, 1 <i<nst s;>;t,and Vj,1<j<i, s=1.

If > is well-founded on 7, then>'?¥ is well-founded on 7.
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Properties of rewrite systems Termination

Lexicographical extensions

Let > be an ordering on 7.
Its lexicographical extension >/ on 7" is defined as :

(S1,..,8n) > (t,..., ty)
if there exists i, 1 <i<nst s;>;t,and Vj,1<j<i, s=1.
If > is well-founded on 7, then>'?¥ is well-founded on 7.

FALSE for an infinite product of ordered sets :
7 ={ab}witha<b

b > ap > gap S1eX gaap >lex
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Properties of rewrite systems Termination

Multiset extensions

Let > an ordering on 7.
Its (strict) multiset extension denoted >™ js defined by :
M={sy,...,8m} >MIN = {t,... t}

if there exist i € {1,...,m}and 1 < j; < ... < jx < nwith kK > 0, such
that :
o si>t,...,8 >t and,
o either M —{ s;} >™M N —{t, ... 1} or the multisets M —{ s;}
and N — {t,...,t } are equal.
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Properties of rewrite systems Termination

Multiset extensions - Examples

if > is well-founded on 7, then>™ js well-founded on MM[LI(T).
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Properties of rewrite systems Termination

Multiset extensions - Examples

if > is well-founded on 7, then>™ js well-founded on MM[LI(T).

{3,3,1,2} >™ {31}
{3,8,1,2} >mit {3 2 2 2 2}
{8,3,1,2} ~ mult {3,0} ~ mult {3} ~ mult 0.
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Properties of rewrite systems Termination

Syntactic reduction ordering
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Properties of rewrite systems Termination

Lexicographic Path Ordering (LPO)

For a given precedence on F,

S=1(S1,..,8n) >po t =9g(t,...,tm)

if at least one of the following condition is satisfied :
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Properties of rewrite systems Termination

Lexicographic Path Ordering (LPO)

For a given precedence on F,

S=1(S1,..,8n) >po t =9g(t,...,tm)
if at least one of the following condition is satisfied :
@ f=g and (sy,...,8p) >fg"§(t1,...,tm) and
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Properties of rewrite systems Termination

Lexicographic Path Ordering (LPO)

For a given precedence on F,

S=1(S1,..,8n) >po t =9g(t,...,tm)
if at least one of the following condition is satisfied :
@ f=g and (sy,...,8p) >fg"§(t1,...,tm) and
Vie{l,...,m}, 8 >po b

@ f>rgand Vje{1,....m},s>p b
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Properties of rewrite systems Termination

Lexicographic Path Ordering (LPO)

For a given precedence on F,

S=1(S1,..,8n) >po t =9g(t,...,tm)
if at least one of the following condition is satisfied :
@ f=g and (sy,...,8p) >§g"§(t1,...,tm) and
Vie{l,...,m}, 8 >po b
@ f>rgand Vje{1,....m},s>p b

@ 3Fie{1,...,n} steither s;>pot,0r 5p=t.
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Properties of rewrite systems Termination

Lexicographic Path Ordering (LPO)

For a given precedence on F,

S=1(S1,..,8n) >po t =9g(t,...,tm)
if at least one of the following condition is satisfied :
@ f=g and (sy,...,8p) >fg"§(t1,...,tm) and
Vie{l,...,m}, 8 >po b
@ f>rgand Vje{1,....m},s>p b

@ 3Fie{1,...,n} steither s;>pot,0r 5p=t.

_ LPO is a simplification ordering
i.e. a reduction ordering that contains the subterm ordering.
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Properties of rewrite systems Termination

Extension of LPO

The definition of the ordering can be extended to terms with variables
by adding the following conditions :

(@ two different variables are incomparable,
@ a function symbol and a variable are incomparable.
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Properties of rewrite systems Termination

A typical LPO example

Termination of the Ackermann function :

ack(0,y) — succ(y)
ack(succ(x),0) — ack(x,succ(0))
ack(succ(x),succ(y)) — ack(x,ack(succ(x),y)).
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Properties of rewrite systems Termination

A typical LPO example

Termination of the Ackermann function :

ack(0,y) — succ(y)
ack(succ(x),0) — ack(x,succ(0))
ack(succ(x),succ(y)) — ack(x,ack(succ(x),y)).

With ack ># succ , we can show that

ack(0,y) >po succ(y)
ack(succ(x),0) >po ack(x,succ(0))
ack(succ(x),succ(y)) >po ack(x,ack(succ(x),y)).
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Properties of rewrite systems Termination

Multiset Path Ordering (MPO)

For a given precedence on F,
conditions holds :
@ f=g and {sy,...,8} >mt {ty,... tm}

, tm) if one at least of the following

@ f>rgand Vje{1,....m},s>mpo t

® 3ie{1,...,n} suchthateither s; >mpot or s; ~t
where ~ means equivalent up to permutation of subterms.
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Properties of rewrite systems Termination

An MPO example

Termination of the max function :

max(n,0) — n
max(0,n) — n
max(succ(n), succ(m)) — succ(max(n, m))
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Properties of rewrite systems Termination

An MPO example

Termination of the max function :

max(n,0) — n
max(0,n) — n
max(succ(n), succ(m)) — succ(max(n, m))

Precedence ? >¢ ?
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Properties of rewrite systems Termination

An MPO example

Termination of the max function :

max(n,0) — n
max(0,n) — n
max(succ(n), succ(m)) — succ(max(n, m))

Precedence max >r succ
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Properties of rewrite systems Termination

Semantic reduction ordering
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Properties of rewrite systems Termination

Building reduction orderings using interpretations

Consider a homomorphism 7 from ground terms to (A, >) with > a
well-founded ordering and let f- denote the image of f € F using 7 ;
7 and > are constrained to satisfy the monotonicity condition :

Va,be ANfeF, a>b implies f(...,a,...) >f(...,b,...).
Then the ordering >, defined by :
Vs, t e T(F), s>, t if 7(s) > 7(t),

is well-founded.
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Properties of rewrite systems Termination

Building reduction orderings using interpretations

Then the ordering >, is extended by defining
Vs, te T(F,X), s>, t if v(r(s)) > v(r(t))
for all assignment v of values in A to variables of 7(s) and 7(f) .

Because > is assumed to be well-founded, a rewrite system is
terminating if one can find A, 7 and > as defined above.
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Properties of rewrite systems Termination

Example

Is the reduction induced by i(f(x,y)) — f(f(i(x),y),y) terminating ?
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Properties of rewrite systems Termination

Example

Is the reduction induced by i(f(x,y)) — f(f(i(x),y),y) terminating ?
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Properties of rewrite systems Termination

Example

Is the reduction induced by i(f(x,y)) — f(f(i(x),y),y) terminating ?

r(i(x) = T(x)2 T(x) = X
T(f(x.y)) = 7(X)+71(y) ) =y

Monotonicity : a > b implies f-(a) > f.(b)
(each function is increasing on natural numbers)
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Properties of rewrite systems Termination

Example

Is the reduction induced by i(f(x,y)) — f(f(i(x),y),y) terminating ?

r(i(x) = T(x)2 T(x) = X
T(f(x.y)) = 7(X)+71(y) ) =y

Monotonicity : a > b implies f-(a) > f.(b)
(each function is increasing on natural numbers)

T(i(f(x.y))) = (x+y)? = x*+y?+2xy
T(f(f(i(x).y).y)) = x*+2y
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Properties of rewrite systems Termination

Example

Is the reduction induced by i(f(x,y)) — f(f(i(x),y),y) terminating ?

Monotonicity : a > b implies f-(a) > f.(b)
(each function is increasing on natural numbers)

T(i(f(x,y))) = (x+y)? = xX®+y?+2xy
T(f(f(i(x),y),y)) = x*+2y
For any assignment of positive natural numbers n and m to the

variables x and y : n® + m? +2nm > n® +2m
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Properties of rewrite systems Termination

Another example

Is the following system terminating ?

Horatiu CIRSTEA, Hélene KIRCHNER



Properties of rewrite systems Termination

Another example

Is the following system terminating ?

coXx — X
oxey) — (ox)a (o))
o(x®y) — (ox)® (oY)
xX@(yez) - (XQy)&(xX®2)
xey)®z - x®2)8(y®2)

Interpretation :

r(ex) = 2™
Txay) = T(X)+7(y)+1
Txey) = 7(X)7(y)

T(c) = 3
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Properties of rewrite systems Termination

Recursion analysis
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Properties of rewrite systems Termination

Dependency pairs method

Standard approaches compare left- and right-hand sides of rules
Automated techniques often use simplification orders, but fail on

minus(x,0) — x
minus(s(x),s(y)) — minus(x,y)
div(0,s(y)) — O
div(s(x),s(y)) — s(div(minus(x,y),s(y)))
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Properties of rewrite systems Termination

Dependency pairs method

Standard approaches compare left- and right-hand sides of rules
Automated techniques often use simplification orders, but fail on

minus(x,0) — x
minus(s(x),s(y)) — minus(x,y)
div(0,s(y)) — O
div(s(x),s(y)) — s(div(minus(x,y),s(y)))

div(s(x),s(s(x))) # s(div(minus(x,s(x)),s(s(x))))

The dependency pair approach focusses only on those subterms
which are responsible for starting new reductions
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Properties of rewrite systems Termination

Dependency pairs for termination

minus(x,0) — x
minus(s(x),s(y)) — minus(x,y)
div(0,s(y)) — O
div(s(x),s(y)) — s(div(minus(x,y),s(y)))

minus and div (top of |hs) are called defined functions.
If f(sq,...,8n) = Cl[g(t, ..., tm)] is @ rule and g is defined, then
F(sq,...,8n) — G(t, ..., tn) is a dependency pair .
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Properties of rewrite systems

Termination

Dependency pairs for termination

—
—
—
—

minus(s(x), (y)
div(0,s(y)
div(s(x),s(y)

X
minus(x, y)

0
s(div(minus(x,y),

s(¥)))

minus and div (top of |hs) are called defined functions.

If f(sq,...,8n) = Cl[g(t, ..., tm)] is @ rule and g is defined, then
F(sq,...,8n) — G(t, ..., tn) is a dependency pair .
M(s(x),s(y)) — Mix,y)
D(s(x),s(y)) — M(x,y)
D(s(x),s(y)) — D(minus(x,y),s(y)))
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Properties of rewrite systems Termination

Dependency pairs method

A sequence of dependency pairs DP(R) = sy — 1, So — bp, S3 —» I3,...
is a dependency chain iff there exists a substitution o s.t. :

o —* Spo, bo —" S30, ...

Theorem : A rewrite system R terminates iff there is no infinite
dependency chain.
Dependency Graph :

o Nodes are dependency pairs

o There is an arrow from sy — t to s» — b if there exists a
substitution o s.t. : o —* S0
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Properties of rewrite systems Termination

Dependency pairs method

(>,>) is a reduction pair iff
o > is stable by substitution and well-founded
0 > is stable by context and by substitution
o > and > are compatible : >0 >C>o0r> o0 >C >.

Theorem : A rewrite system R terminates if for any cycle P in the
dependency graph, there exists a reduction pair (>, >) such that

o />rforallrules/ —rinR
o s > tfor at least one dependency pair s — tin P
o &' >t for all other dependency pairs s — t' in P
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Properties of rewrite systems Termination

Well-founded reduction orderings

@ Syntactic
Based on the precedence concept (i.e. a partiel order >~ on F)
Example : [Dershowitz, 82]

@ Semantic
Terms are interpreted in another structure where a well-founded
ordering is known (e.g. the natural numbers)
Example : GIEREEREEE

@ Combinations
Ordering combining semantical and syntactical behavior

o Recursion analysis
Induction, dependency pairs
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Properties of rewrite systems Confluence

How to determine the unicity of the result ?
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Properties of rewrite systems Confluence

Back to ARS properties

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.
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Properties of rewrite systems Confluence

Back to ARS properties

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.

> The relation — is terminating (or strongly normalizing, or
noetherian) if every reduction sequence is finite.

Horatiu CIRSTEA, Hélene KIRCHNER



Properties of rewrite systems Confluence

Back to ARS properties

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.

> The relation — is terminating (or strongly normalizing, or
noetherian) if every reduction sequence is finite.

> The relation — is weakly normalizing (or weakly terminating) if
every element t € 7 has a normal form.
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Properties of rewrite systems Confluence

Back to ARS properties

Consider an ARS (7,—)

> Anelementt € 7 is a —-normal form if there exists no t’ € 7
such that t — t'.

> The relation — is terminating (or strongly normalizing, or
noetherian) if every reduction sequence is finite.

> The relation — is weakly normalizing (or weakly terminating) if
every element t € 7 has a normal form.

2 The relation — has the unique normal form property if for any
t.t € T,t<—— t and t, ¥ are normal forms imply t = ¢'.
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Properties of rewrite systems Confluence

Definitions
Localy confluent (LC) Diamond property (DP)
fo fo \
o b i , )
* A ' A R
I3 f3
Church Rosser (CR) Confluent (C)

fo
s t ) to
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Properties of rewrite systems Confluence

Newman’s lemma

[Newman 1942]
Provided the relation — is terminating
then

— is confluent iff it is locally confluent
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Properties of rewrite systems Confluence

Confluence

Allows us to forget about non-determinism :

Whatever rewriting is done we will converge later.

Horatiu CIRSTEA, Hélene KIRCHNER



Properties of rewrite systems Confluence

Back with the simple game

The rules of the game :

e > O
o0 —> O
0 —> @

ce —> @

A starting point :

000000000000 O000 GO0

From a given start, is the result determinist ?
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Properties of rewrite systems Confluence

Analysing the different cases
Disjoint redexes :

is the same as :
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Properties of rewrite systems Confluence

No disjoint redexes (central black) :

o . ee @
. ee - T
o ® oo o0 Qooe
but
oee- - . eee---
00 .80
DO [ ]
or
S 0®0 . e@0 -
@0 00
o Qo (e)
but
0@ . ee0---
oe- - e
o Qoo co0@ooc
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Properties of rewrite systems Confluence

No disjoint redexes (central white) :

L00e---
oe- -
s Oooc
but
00w
Soe- -
0O e
or
000
00
0@ <
but
000
00
o @ooc

-0 @ - -

..2...

.20...

N Yo R

..%...

N Yo RuE
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Properties of rewrite systems Confluence

1) fo
Thus : H i, but what about : # )
N / N /
AN 7/ N\ * s
N / N /
s \ s
I f3
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Properties of rewrite systems Confluence

Confluence

= Undecidable in general, confluence is decidable for finite and
terminating rewrite systems.

= Assuming termination of the rewrite relation, its confluence is
equivalent to the confluence of

= |f a rewrite system is (linear and non-overlapping), then it is
confluent.
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Properties of rewrite systems Confluence

Critical pair

A non-variable term t' and aterm t overlap if there exists a position
w in t such that ., and t' are unifiable (with t,, nota variable).
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Properties of rewrite systems Confluence

Critical pair

A non-variable term t' and aterm t overlap if there exists a position
w in t such that ., and t' are unifiable (with t,, nota variable).

Two terms t and t’ are unifiable if there exists a substitution o such that
o(t) = o(t). o is called a unifier of t and t'.
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Properties of rewrite systems Confluence

Parenthesis

Unification problems
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Properties of rewrite systems Confluence

Solve an equation

Does it exist x, y, z such that
X+(z+y) = y+(x+2)

An infinity of solutions,
but a most general one
X=y=2z

Unification problem : a most general unifier of t and t’ is a minimal
unifier for the subsumption ordering extended to substitutions. It is
unique up to renaming.
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Properties of rewrite systems Confluence

General Unification Problems

F a set of function symbols,

X a set of variables,

A an F-algebra.

A < F, X, A >-unification problem

is a disjunction of existentially quantified formulas

PjZEE /\S,’ :34 f

i€l
sometimes abbreviated

P = 3Z {s; = ti}ie);

A unifier to such a problem is a substitution o such that
Vi€, AE3IZopx_z(S)=0ojx_z(t).
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Properties of rewrite systems Confluence

SYNTACTIC UNIFICATION

Formulas : quantifier free unification problems
Domain : 7 (F, X) (no equational axioms)
Interpretation : trivial one

Solved forms : Tree or dag solved forms
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Properties of rewrite systems Confluence

From : J.A. Robinson. A machine-oriented logic based on the
resolution principle. Journal of the Association for Computing
Machinery, 12 :23—41, 1965.

5.8 Unification Algorithm. The following process, applicable to any
finite nonempty set A of well formed expressions, is called the
Unification Algorithm :

Step 1. Set o9 = € and k = 0, and go to step 2.

Step 2. If Aok is not a singleton, go to step 3. Otherwise, set
oa = ok and terminate.

Step 3. Let Vi be the earliest, and Uy the next earliest, in the
lexical ordering of the disagreement set By of Aog. If Vi is
a variable, and does not occur in Uy , set
ok+1 = o{Ux/Vk}, add 1 to k, and return to step 2.
Otherwise, terminate.
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Properties of rewrite systems Confluence

Rules for syntactic unification

Delete PAs="s

Horatiu CIRSTEA, Hélene KIRCHNER



Properties of rewrite systems Confluence

Rules for syntactic unification

Delete PANs="s
— P
Decompose P A f(sq,...,8p) =" f(ty,.... 1)
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Properties of rewrite systems Confluence

Rules for syntactic unification

Delete PAs="s
— P
Decompose P A f(sq,...,8p) =" f(ty,.... 1)

Conflict P A f(s1,...,80) =" g(ty,..., t)
—  Fail iff+4g
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Properties of rewrite systems Confluence

Rules for syntactic unification

Delete PANs="s
— P
Decompose P A f(sq,...,8p) =" f(ty,.... 1)

Conflict P A f(s1,...,80) =" g(ty,..., t)
—  Fail iff+4g
Coalesce PAx="y
— {xX—y}PAXx="y if x,y € Var(P) A x #
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Properties of rewrite systems Confluence

Rules for syntactic unification

Delete PANs="s
— P
Decompose P A f(sq,...,8p) =" f(ty,.... 1)

Conflict P A f(s1,...,80) =" g(ty,..., t)
—  Fail iff+4g
Coalesce PAx="y
— {xX—y}PAXx="y if x,y € Var(P) A x #
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Properties of rewrite systems Confluence

Rules for syntactic unification

Eliminate P A x ="s
b {X—SIP A Xx="s if x ¢ Var(s),s ¢ x,x € Var(P)
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Properties of rewrite systems Confluence

Rules for syntactic unification

Eliminate P A x ="s
b {X—SIP A Xx="s if x ¢ Var(s),s ¢ x,x € Var(P)

Merge PAx="sAx="t
> PAX="sAs="t if0 < |s| < |t

Horatiu CIRSTEA, Hélene KIRCHNER



Properties of rewrite systems Confluence

Rules for syntactic unification

Eliminate P A x ="s
b {X—SIP A Xx="s if x ¢ Var(s),s ¢ x,x € Var(P)

Merge PAx="sAx="t
> PAX="sAs="t if0 < |s| < |t

Check P Ax='s
v Fail if x € Var(s) and s ¢ x
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Properties of rewrite systems Confluence

Rules for syntactic unification

Eliminate P A x ="s
b {X—SIP A Xx="s if x ¢ Var(s),s ¢ x,x € Var(P)

Merge PAx="sAx="t
> PAX="sAs="t if0 < |s| < |t

Check P Ax='s
v Fail if x € Var(s) and s ¢ x

Checkx P A x4 =7 Sq [XQ] AN

v Fail if s; ¢ x for some i € [1..n]
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Properties of rewrite systems Confluence

Solving an equation

X+(z+y) = y+(x+2)
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Properties of rewrite systems Confluence

Solving an equation

X+(z+y) = y+(x+2)

=decompose X =Y N Z*xy =Xx*Z
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Properties of rewrite systems Confluence

Solving an equation

X+(z+y) = y+(x+2)

=decompose X =Y N Z*xy =Xx*Z

=decompose X =Y N Z=X N y=2
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Properties of rewrite systems Confluence

Solving an equation

X+(z+y) = y+(x+2)

=decompose X =Y N Z*xy =Xx*Z

=decompose X =Y N Z=X N y=2

=coalesce Y =2 N X=2Z N Z=X
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Properties of rewrite systems Confluence

Solving an equation

x+(24y) = y+(x+2)

=decompose X =Y A ZxYy =Xx*Z

=decompose X =Y N Z=X N y=2Z

=coalesce Y =2 N X=2Z N Z=X

=coalesce Z=X N Y=X N X=X
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Properties of rewrite systems Confluence

Solving an equation

x+(24y) = y+(x+2)

=decompose X =Y A ZxYy =Xx*Z

=decompose X =Y N Z=X N y=2Z

=coalesce Y =2 N X=2Z N Z=X

=coalesce Z=X N Y=X N X=X

Sdelete Z=X N Y=X
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Properties of rewrite systems Confluence

Examples
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Properties of rewrite systems Confluence

Examples
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Properties of rewrite systems Confluence

Examples
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Properties of rewrite systems Confluence

Examples

x="a
x:a/\y f( )
F(x, f(x,
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Properties of rewrite systems Confluence

Examples

x="a

x="anAy=""f(x,a)

f(x, f(x,a)) =" f((a,b), f(u, V)
x="aANx="hb
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Properties of rewrite systems Confluence

Examples

x="a

x="anAy=""f(x,a)

f(x, f(x,a)) =" f((a,b), f(u, V)
x="aANx="hb
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Properties of rewrite systems Confluence

Strategy : No

A tree solved form for P is any conjonction of equations

X1:?t1/\"'/\Xn:?tn
equivalent to P such that Vi, x; € x and :
(i) Y1<i<nxe€Var(P),

(”) \V/1§I,j§n,l7éj:>X,7£Xj,
(i) V1 <i,j < n,x ¢ Var(t).

Example : x =" f(f(y)) A z="g(a).
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Properties of rewrite systems Confluence

Theorem : Starting with a unification problem P and using the above
rules repeatedly until none is applicable
— results in Fail iff P has no solution, or else it
— results in a tree solved form x; ="t A --- A X, = t, with the same
set of solutions than P.
Moreover

O':{X1 —H,..., Xp— tn}

is a most general unifier of P.
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Properties of rewrite systems Confluence

Strategy : Never apply eliminate

A dag solved form for a unification problem P is any system of

equations :
X1 :? t1 /\ /\ Xn:? tn

equivalent to P such that Vi, x; € x and :

(i) VY1<i<nxe€Var(P),
(”) V1§I,]§n,l7éj:>X,7£Xj,
(i) V1 <i<j<nx ¢Var(t).

2

Example : x =" f(u) A u="f(y) A z="g(a)
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Properties of rewrite systems Confluence

Theorem : Starting with a unification problem P and using the above
rules except eliminate repeatedly until none is applicable,

— results in Fail iff P has no solution, or else

— in a dag solved form :

?

such that o = {x, — t,} ... {Xxq — t;} is @ most general unifier of P.
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Properties of rewrite systems Confluence

Critical pair

A non-variable term t' and aterm t overlap if there exists a position
w in t suchthat f,, and ' are unifiable (with {,, not a variable).
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Properties of rewrite systems Confluence

Critical pair

A non-variable term t' and aterm t overlap if there exists a position
w in t suchthat f,, and ' are unifiable (with {,, not a variable).

Do 0+ x — x and s(x) +y — s(x+y) overlap?
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Properties of rewrite systems Confluence

Critical pair

A non-variable term t' and aterm t overlap if there exists a position
w in t suchthat f,, and ' are unifiable (with {,, not a variable).

Do 0+ x — x and s(x) +y — s(x+y) overlap?

Where do (x+y)+2z and (x'+ ')+ Z overlap?
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Properties of rewrite systems Confluence

Critical Pairs

Superposition

|1 —> I |2{U] —> Io
|2[r1]0 = Is0

u is a non-variable sub-term of b
o is the mgu(u, h)
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Properties of rewrite systems Confluence

Critical Pairs

Superposition

|1 —> I |2{U] —> Io
|2[r1]0 = Is0

u is a non-variable sub-term of b
o is the mgu(u, h)

Do O+x—-x and (x+y)+Z—=x+(y+2z) overlap?
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Properties of rewrite systems Confluence

Critical Pairs

Superposition

|1 —> I |2{U] —> Io
|2[r1]0 = Is0

u is a non-variable sub-term of b
o is the mgu(u, h)

Do O+x—-x and (x+y)+Z—=x+(y+2z) overlap?

Compute the critical pairs between these two rules.
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Properties of rewrite systems Confluence

Critical Pair Lemma

R is locally confluent iff all critical pair satisfies :

Lblrlo—>g ® g<—ho
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Properties of rewrite systems Confluence

Critical Pair Lemma

R is locally confluent iff all critical pair satisfies :

Lblrlo—>g ® g<—ho

Prove that the following rewrite systen is locally confluent :

(xxy)xz — Xx*x(y*2)
fixxy) — f(x)*f(y)

Prove that it is confluent.
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Properties of rewrite systems Confluence

Orthogonal systems

A rewrite system that is both linear (the left-hand side of each rule is
a linear term) and non-overlapping is called orthogonal.
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Properties of rewrite systems Confluence

Orthogonal systems

A rewrite system that is both linear (the left-hand side of each rule is
a linear term) and non-overlapping is called orthogonal.

ITheorem If a rewrite system is orthogonal, then it is confluent.
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Properties of rewrite systems Confluence

Orthogonal systems

A rewrite system that is both linear (the left-hand side of each rule is
a linear term) and non-overlapping is called orthogonal.

ITheorem If a rewrite system is orthogonal, then it is confluent.

Linearity is needed for non-terminating rewriting system :

dix,x) —t
d(x,c(x)) — f
a — c(a)
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Properties of rewrite systems Confluence

What if the system is non-terminating and non-orthogonal ?
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Properties of rewrite systems Confluence

What if the system is non-terminating and non-orthogonal ?

_ Consider a reduction relation —g and let —p s.t.

—~p C +pC —p
—p has the diamond property

Then, —pg is confluent.
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Properties of rewrite systems Completion of TRS

Completion of TRS
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Properties of rewrite systems Completion of TRS

The group example

Let us concentrate on the use of rewriting for proving equational
theorems.

[Assoc] (x+y)+z=x+(y+2)
G= 1 [NEImt] x+0= X
[Inver] X+ i(x) = 0

where these three equational axioms are implicitly assumed to be
universaly quantified.
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Properties of rewrite systems Completion of TRS

The group example

Let us concentrate on the use of rewriting for proving equational
theorems.

[Assoc] (x+y)+z=x+(y+2)
G= [NEImt] x+0= X
[Inver] X+ i(x) = 0
where these three equational axioms are implicitly assumed to be

universaly quantified.
Simple ( ?) exercice, prove that 0 + x = x.
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Properties of rewrite systems Completion of TRS

What is completion ?

Transform any equational proof in E into a valley proof in R :
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Properties of rewrite systems Completion of TRS

What is completion ?

Transform any equational proof in E into a valley proof in R :
Uo =E U4 =E 000 =E voc == Un—1 =E Un
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Properties of rewrite systems Completion of TRS

Completion as a compilation process

Given an equational theory E
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Properties of rewrite systems Completion of TRS

Completion as a compilation process

Given an equational theory E
Find a term rewrite system R
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Properties of rewrite systems Completion of TRS

Completion as a compilation process

Given an equational theory E
Find a term rewrite system R
Such that,

EFt=t — t-Spg g—1t
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Properties of rewrite systems Completion of TRS

First completion principle : ORIENT

Orient equalities to build (at least) a well founded ordering
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Properties of rewrite systems Completion of TRS

First completion principle : ORIENT

Orient equalities to build (at least) a well founded ordering
Simple example

X+ 0= xisorientedinto x + 0 — x
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Properties of rewrite systems Completion of TRS

First completion principle : ORIENT

Orient equalities to build (at least) a well founded ordering
Simple example

X+ 0= xisoriented into x + 0 — x
Less obvious, how to orient

X+y)+z=x+(y+2
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Properties of rewrite systems Completion of TRS

First completion principle : ORIENT

Orient equalities to build (at least) a well founded ordering
Simple example

X+ 0= xisoriented into x + 0 — x
Less obvious, how to orient
X+y)+z=x+(y+2)

Furthermore, well-founded orderings are used to decrease proof
complexity

Horatiu CIRSTEA, Hélene KIRCHNER



Properties of rewrite systems Completion of TRS

Completion of groups : starts with

x+e = X
P=¢ x+(y+2) = (x+y)+z R=10
X+ i(x) = @
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Properties of rewrite systems Completion of TRS

Completion of groups : starts with

x+e = X
P=¢ x+(y+2) = (x+y)+z R=10
X+ i(x) = @

Apply saturation rules
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Properties of rewrite systems Completion of TRS

Orient

Deduce

Simplify

Delete

Compose

Collapse

Pu{p=gq},R
P,R

Pu{p=gq}.R
PuU{p=p},R
P,RU{l—r}
P,RU{l —r}

P.RU{p— q}
sip>q

PU {p = q}v R
si (p, q) € CP(R)

Pu{p =q},R
sip—pp

P,R

P,RU{I -}
sir—gr

PU{l =r},R
sil—=2%/and/—»r>g—d
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Properties of rewrite systems Completion of TRS

Completion of groups : ends with

(X +e
e+ x
X+ (y+2)
X+ i(x)
i(x)+ x
i(e)
(y + i(x)
(Y +x)+i
i(i(x))

L i(x+y)

/>'<\><><
u
S
u
N

Q
I
=
Y]
I

+
x

—

X

~—

XX O OO

R EEE

S
_|_
&

[Knuth & Bendix 1970]
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Properties of rewrite systems Completion of TRS

The associated proof transformations

@ Orient : t@pzq V=t 29 ¢

@ Deduce : t' "t — Q”d P = P

@ M“—f qt’=>t oler P p sler

@ Delete : t 5Pt = A

® m t _DIR—DF f — t—bgbrl t’ <_"%—bd tifr _D'%—bd r

® Collapse : t =Rt/ = t =49 ¥/ =" if | =379 1.

@ Peak without overlap : t' « 5" t — gwd #— § _D‘;;;d ty o g7

@® Peak with variable overlap :
# (_I,?—Dr t _D"Qq—Dd !

— t gty — *pt”
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Properties of rewrite systems Completion of TRS

The main result

The sets of persisting rules and pairs are defined as :

Ps = Uizo ﬂ,->f Pl and Ry = Uizo ﬂ,->,- H/

If the derivation (Py, Ry) +» (P4, Ry) + - - - satisfies
o CP(Rw) is a subset of | J;»¢ P (i.e. the set of all generated
equalities),
o R is reduced and
0 P is empty,
then R, is Church-Rosser and terminating.
«p,uR, and < —p__ coincides.
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Properties of rewrite systems Completion of TRS

Three possible issues

A completion process may
o terminate
o diverge by generating infinitely many rules
o fail on an unorientable equation
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Properties of rewrite systems Completion of TRS

Exercise

Let 7 = {c, f} where c is a constant and f a unary operator. Complete
the set of equalities
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Properties of rewrite systems Completion of TRS

Exemple

The theory of idempotent semi-groups (sometimes called bands) is
defined by a set E of two axioms :

(xxy)xz = Xxx(yx2)
X*X = X

From Py = E the completion generates

(xxy)xz — Xxx*x(yx*2)
X*xX — X
X*(X%2Z) — X%xZ
X*(yx(x*y)) — Xxy
X+ (y*(X*x(y*2)) — Xx(yx2)
Xx(y*(Zx(yx(xx(y*(2xx))) — Xxx(y*(Z2xX))
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Equational rewrite systems

\y Equational rewrite systems
O Matching modulo
O Rewriting modulo
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Equational rewrite systems Matching modulo

Matching and Rewriting Modulo
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Equational rewrite systems Matching modulo

Equality modulo C

CH): WX, yeT(F,X) x+y=y+x

For example, on Peano integer, + is commutative :

(8(0) + (x + s(¥))) + X =c(+) ((s(y) + X) + 5(0)) + x
Theorem :
h+b =C(+) ﬁ I té <~ (t1 =C(+) t1, AN ) =C(+) té)

v
(h=ceh) b A =c() 1)
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Equational rewrite systems Matching modulo

Matching modulo

Finding a substitution o such that

oll)y=t

is called the matching problem from / to t (denoted -).
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Equational rewrite systems Matching modulo

Matching modulo

Finding a substitution o such that

oll)y=t

is called the matching problem from / to t (denoted -).

Finding a substitution o such that
o(l) =gt

is called the matching problem from / to t (denoted -).
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Equational rewrite systems Matching modulo

Examples (commutative symbol(s))

F ={a(0),6(0),¢(0),f(2),9(2), h(1)}
f is assumed to be commutative (the other symbols have no
property).

C(f): Vx,y e T(F,X) f(x,y)=1f(y, x)

o f(a,b) =f(b,a)
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Equational rewrite systems Matching modulo

Examples (commutative symbol(s))

F ={a(0),6(0),¢(0),f(2),9(2), h(1)}
f is assumed to be commutative (the other symbols have no
property).

C(f): Vx,y e T(F,X) f(x,y)=1f(y, x)

o f(a,b) = f(b, ) — yes
o g(f(aa b)a a) = g(f(b> a)v a)
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Equational rewrite systems Matching modulo

Examples (commutative symbol(s))

F ={a(0),6(0),¢(0),f(2),9(2), h(1)}
f is assumed to be commutative (the other symbols have no

property).
C(f): Vx,y e T(F,X) f(x,y)=1f(y,x)

o f(a,b) =f(b,a) — yes
o g(f(a,b),a) = g(f(b, a), a) — yes
o g(f(av b)a a) = g(aa f(ba a))
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Equational rewrite systems Matching modulo

Examples (commutative symbol(s))

F ={a(0),b(0),¢(0),1(2),9(2), h(1)}
f is assumed to be commutative (the other symbols have no
property).

C(f): Yx,yeT(F,X) f(x,y)="~f(y,x)

o f(a,b) =f(b,a) — yes
© g(f(a b),a) = g(f(b, a), a) — yes
o g(f(a,b),a) = g(a, f(b,a)) —no
o f(a,f(a,b)) =f(f(b,a),a)
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Equational rewrite systems Matching modulo

Examples (commutative symbol(s))

F ={a(0),6(0),¢(0),f(2),9(2), h(1)}
f is assumed to be commutative (the other symbols have no

property).

C(f): Yx,yeT(F,X) f(x,y)="~f(y,x)

o f(a,b) =f(b,a) — yes
© g(f(a,b),a) = g(f(b, a), a) — yes
o g(f(a,b),a) = g(a, f(b,a)) — no
o f(a,f(a,b)) =f(f(b,a),a) — yes
o f(a,f(b,c)) = f(f(c,b), a)
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Equational rewrite systems Matching modulo

Examples (commutative symbol(s))

F ={a(0),6(0),¢(0),f(2),9(2), h(1)}
f is assumed to be commutative (the other symbols have no

property).

C(f): Yx,yeT(F,X) f(x,y)="~f(y,x)

o f(a,b) =f(b,a) — yes
o g(f(a,b),a) = g(f(b, a), a) — yes
o g(f(a,b),a) = g(a, f(b,a)) — no
o f(a,f(a,b)) =f(f(b,a),a) — yes
o f(a,f(b,c)) =f(f(c,b),a) — yes
o f(f(a,b),c) = f(a,f(b,c))
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Equational rewrite systems Matching modulo

Examples (commutative symbol(s))

F ={a(0),6(0),¢(0),f(2),9(2), h(1)}
f is assumed to be commutative (the other symbols have no

property).

C(f): Yx,yeT(F,X) f(x,y)="~f(y,x)

o f(a,b) =f(b,a) — yes
© g(f(a,b),a) = g(f(b,a), a) — yes
o g(f(a,b),a) = g(a, f(b,a)) —no
o f(a,f(a,b)) =f(f(b,a),a) — yes
o f(a,f(b,c)) =f(f(c,b),a) — yes
o f(f(a,b),c) =f(a, f(b,c)) —no

Horatiu CIRSTEA, Hélene KIRCHNER



Equational rewrite systems Matching modulo

Matching modulo C : examples

Solve the following problems :
o f(x,y) <¢ f(a,b)
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Equational rewrite systems Matching modulo

Matching modulo C : examples

Solve the following problems :

o f(x,y) < f(a b)
o={x—aywr b}
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Equational rewrite systems Matching modulo

Matching modulo C : examples

Solve the following problems :

o f(x,y) <% f(a,b)
o={x—aywr b}
o={x— b,y a}
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Equational rewrite systems Matching modulo

Matching modulo C : examples

Solve the following problems :

o f(x,y) <% f(a,b)
o={x—aywr b}
o={x— b,y a}

o f(y, f(x,x)) <% f(f(f(a, b), f(b, a)), (b, a))
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Equational rewrite systems Matching modulo

Matching modulo C : examples

Solve the following problems :

o f(x,y) <% f(a,b)
o={x—aywr b}
o={x— b,y a}

o f(y, f(x,x)) <% f(f(f(a, b), f(b, a)), (b, a))
o = {x+ f(a b),y — f(a,b)}
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Equational rewrite systems Matching modulo

Matching modulo C : A rule based description

Delete t<’tAP
P
Decomposition f(ty,... t) << f(t,,....t)) AP

> /\,-:1’._.7 t <’ tt AP

SymbolClash f(ty,....tn) <" g(t],....th) AP

v Fail if f#g
SymbolVariableClash  f(t;,..., t;) <’ x A P

v Fail ifx e X
MergingClash x<tAXx<Lt AP

v Fail if t £t

Horatiu CIRSTEA, Hélene KIRCHNER



Equational rewrite systems Matching modulo

Assume + commutative

C—Dec t+th<Lti+ty AP
> (<A <LH AP)V(h<LthAb<ot AP)
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Equational rewrite systems Matching modulo

Find a match

xx(3+y) <5 1%(4+3)
= Decompositon X <o 1 A 3+y <-4+3
=>C(+)—Decompositon X K¢ 1A (B <KE 4Ny <5 3) V (B<E 3Ny < 4))
=MergingClash X <o 1 A (Fail v (3 <53 A y <L 4)
—Delete X <o 1 A (Fail v (y <5 4))
—Bool X <61 A y<b4
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Equational rewrite systems Matching modulo

Matching rules

Does it terminate ?
Do we always get the same result ?
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Equational rewrite systems Matching modulo

Matching rules

Does it terminate ?
Do we always get the same result ?

FTREsrem The normal form by the rules in Commutative — Match, of

any matching problem t <’ ' such that Var(t) N Var(t') = 0, exists
and is unique.
@ Ifitis Fail , then there is no match from t to t'.

@ Ifitis of the form \/,_x Ajc, XK <5 t& with 1, K # 0, the

substitutions 0% = {xX  tk},, are all the matches from ¢ to t'.

@ Ifitis empty then t and t’ are identical : t=1".
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Equational rewrite systems Matching modulo

Matching modulo associativity-commutativity (1)

U is assumed to be an associative commutative (AC) symbol :

Vx,y,z, U(x,U(y,z)) =UU(x,y),z) and V¥x,y, U(x,y) = U(y,X) .
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Equational rewrite systems Matching modulo

Matching modulo associativity-commutativity (1)

U is assumed to be an associative commutative (AC) symbol :

Vx,y,z, U(x,U(y,z)) =UU(x,y),z) and V¥x,y, U(x,y) = U(y,X) .

—AC
—AC

5 different and non AC-equivalent matches.
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Equational rewrite systems Matching modulo

Matching modulo AC : examples

Solve the following problems :
o f(x,y) <4 f(a,b)
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Equational rewrite systems Matching modulo

Matching modulo AC : examples

Solve the following problems :
o f(x,y) <4 f(a,b)
o={x—aywr b}
o={x— b,y a}
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Equational rewrite systems Matching modulo

Matching modulo AC : examples

Solve the following problems :

o f(x,y) <4 f(a,b)
o={x—aywr b}
o={x— b,y a}

o f(y, f(x, X)) <% f(f((a, b), f(b, &), f(b, a))
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Equational rewrite systems Matching modulo

Matching modulo AC : examples

Solve the following problems :

o f(x,y) <4 f(a,b)
o={x—aywr b}
o={x— b,y a}

o f(y,f(x,x)) <<Z‘C f(f(f(a,b),f(b,a)),f(b,a))
o={xw—f(a,b),y— f(a,b)}
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Equational rewrite systems Matching modulo

Matching modulo AC : examples

Solve the following problems :
o f(x,y) <4 f(a,b)
o={x—aywr b}
o={x— b,y a}

o f(y, f(x,x)) <¢ f(f(f(a,b), f(b, a)), f(b, a))
o = {x— f(a,b),y s f(a,b)}
o={x—ayw f(f(b,b),f(b,a))}
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Equational rewrite systems Matching modulo

Matching modulo AC : examples

Solve the following problems :
o f(x,y) <4 f(a,b)
o={x—aywr b}
o={x— b,y a}

o f(y, f(x,x)) <<?40 f(f(f(a,b),f(b,a)),f(b,a))
U:{X'_)f(aﬂb)ay'_’f( 7b)}
o ={x—ay— f(f(b,b),f(b,a))}
o ={x— b,y f(f(a a)f(b a))}
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Equational rewrite systems Matching modulo

Matching modulo AC : examples

Solve the following problems :
o f(x,y) <4 f(a,b)
o={x—aywr b}
o={x— b,y a}

o f(y, f(x,x)) <<?40 f(f(f(a,b),f(b,a)),f(b,a))
U:{X'_)f(aﬂb)ay'_’f( 7b)}
o ={x—ay— f(f(b,b),f(b,a))}
o ={x— b,y f(f(a a)f(b a))}
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Equational rewrite systems Rewriting modulo

Rewriting modulo : definition

A class rewrite system R/Ais composed of a set of rewrite rules R
and a set of equalities A, such that A and R are disjoint sets.

x+0
x+(0+y)
X+ (—x)

X+ ((=x) +y)
——X

-0

—(x+Y)

A AR A

X+y = y+x
(X+y)+2 = x+(y+2)
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Equational rewrite systems

t (R/A)-rewrites to t' if tE=gyt Rl =AY
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Equational rewrite systems Rewriting modulo

t (R/A)-rewrites to t' if tE=gyt Rl =AY

To be more effective, consider any relation —gz4 such that :

—Rr < —RA < —R/A
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Equational rewrite systems Rewriting modulo

—PRA

A term rewrite system R (a set of rewrite rules) determines a relation
on terms denoted — 4 , [Peterson & Stickel,81]
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Equational rewrite systems Rewriting modulo

—PRA

A term rewrite system R (a set of rewrite rules) determines a relation
on terms denoted — 4 , [Peterson & Stickel,81]

U—paVv
iff
there exist | — r € R, an occurrence w in t, such that
U, =a0o(l)
and
vV =ulo(r)w
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Equational rewrite systems Rewriting modulo

—PRA

A term rewrite system R (a set of rewrite rules) determines a relation
on terms denoted — 4 , [Peterson & Stickel,81]

U—paVv

iff

there exist | — r € R, an occurrence w in t, such that
U, =a0o(l)

and

vV =ulo(r)w

USUALLY, when defining the rewriting relation, one requires the all
rewrite rules satisfy Var(r) C Var(/).
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Equational rewrite systems Rewriting modulo

For example

Let U be an AC symbol, such that

{itUx — i
{1}u{2} U{3} U{4} U{5} =ac
{2y u{3u{ 4} U{5}U{1} =xc
{5} U{ 1} U{2} U{ 3} U{ 4)
Since this term matches the lefthand side of the rewriting rule in 5

different and non AC-equivalent ways, the rewrite rule applies in 5
different ways.
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Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R={a+a— a}

Horatiu CIRSTEA, Hélene KIRCHNER



Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R={a+a— a}

R/E -rewrite the term _
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Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R={a+a— a}

R/E -rewrite the term _ a+c
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Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R={a+a— a}

R/E -rewrite the term

(a+o)+a
R, E -rewrite the term _

a+c
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Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R={a+a— a}

R/E -rewrite the term a+c

(a+o)+a
R, E -rewrite the term _

R={a+a—»a (a+a)+x—a+x}
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Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R={a+a— a}

R/E -rewrite the term a+c

R, E -rewrite the term

R={a+a—»a (a+a)+x—a+x}

R/E -rewrite the term _
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Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R={a+a— a}

R/E -rewrite the term a+c

R, E -rewrite the term

R={a+a—»a (a+a)+x—a+x}

R/E -rewrite the term _ a+c
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Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R={a+a— a}

R/E -rewrite the term _ a+c
R, E -rewrite the term _

R={a+a—»a (a+a)+x—a+x}
R/E -rewrite the term a+c

R, E -rewrite the term
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Equational rewrite systems Rewriting modulo

Examples

Assume + to be AC (associative and commutative)

R={a+a— a}

R/E -rewrite the term _ a+c
R, E -rewrite the term _

R={a+a—»a (a+a)+x—a+x}
R/E -rewrite the term a+c
R, E -rewrite the term a+c
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Equational rewrite systems Rewriting modulo

o Huet’s approach [JACM80] uses standard rewriting —g but is
restricted to left-linear rules.

o Peterson and Stickel’s approach [JACM81] uses rewriting modulo
A, denoted —pg 4, and requires matching modulo A.

o Pedersen’s approach [Phd84] uses a restricted version of
matching modulo A, confined to variables.

o Jouannaud and Kirchner’s method [SIAM86] uses standard
rewriting with left-linear rules and rewriting modulo A with
non-left-linear rules, mixing advantages of the two first methods.
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Equational rewrite systems Rewriting modulo

Definitions

The rewriting relation RA is
o Church-Rosser modulo A if

* *
=RUAC —RAC =AOC RA — .
o confluent modulo A if
* * * *
RA <— 9 ——pRa C ——RAC —A O RA ——
o locally coherent with R modulo A if
* *
RA<— 00— & ——RA0O=A0C RA¢“—
o locally coherent with A modulo A if
* *
RA+—0=aC —Ra0 =40 RA
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Equational rewrite systems Rewriting modulo

Good news

If R/A is terminating, the following properties are equivalent :
(@ —ga is Church-Rosser modulo A.
@ —»py is confluent modulo A and — g4 is coherent modulo A.

@ —vRais locally confluent with R modulo A and locally coherent with
A modulo A.

@ vt t, t=puat ifft |ga=at' |Ra.
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Equational rewrite systems Rewriting modulo

Rewriting and theorem proving, a few examples

o Boolean algebras and rings Applications to proof search in first
order logic (Hsiang, 1985).

o Proof of commutativity in specific rings
(Vx, X" =Xx) = VX, ¥, (Xxy =y *X)

n = 3 (Stickel, 1984), n pair (Kapur,Zhang, 1991).

o The Robbins conjecture (McCune, 1996)
In a Boolean algebra

implies

X+y+x+y =y
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Equational rewrite systems Rewriting modulo

References on rewriting modulo

o G. Huet. Confluent reductions : Abstract properties and
applications to term rewriting systems. Journal of the ACM,
27(4) :797-821, October 1980.

o G. Peterson and M. E. Stickel. Complete sets of reductions for
some equational theories. Journal of the ACM, 28 :233—-264, 1981.

o J.-P. Jouannaud and Hélene Kirchner. Completion of a set of rules
modulo a set of equations. SIAM Journal of Computing,
15(4) :1155—-1194, 1986.

o Enno Ohlebusch. Church-Rosser Theorems for Abstract
Reduction Modulo an Equivalence Relation RTA, pages 17-31,
LNCS 1379, 1998.

o Claude and Hélene Kirchner. Rewriting Solving Proving
www.loria.fr/ ckirchne/rsp.ps.gz
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Strategies

(5) Strategies
O Why strategies ?
O Abstract strategies
O Properties of rewriting under strategies
O Strategy language
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Strategies Why strategies ?

Rewrite rules ...

Rewrite rules describe local transformations

Rewrite derivations are computations

Normal forms are the results

tis in normal form if it cannot be reduced anymore : result of
terminating computations

t has a unique normal form if the rewrite system is terminating and
confluent.

Paradigm of computation in algebraic languages : ASF+SDF, OBJ,
Maude,...

and in functional languages : ML, Haskell,...
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Strategies Why strategies ?

... and Strategy

Strategies describe the control of rewrite rule application

o traversals : innermost, outermost, lazy... (Stratego)
o higher-order functions with choice and iteration (ELAN, TOM)
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Strategies Why strategies ?

Strategies are ALWAYS needed

1- Even for “good” TRSs
leftmost innermost strategy
i.e. to make clear how the computation is performed

2- To describe the way deduction should be done
Lazy evaluation
Search plans
Action plans
Tactics
User interaction

3- This requires to search for a particular derivation
corresponding to the desired strategy.
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Strategies Why strategies ?

rewrite rewrite rewrite rewrite rewrite rewrite rewrite rewrie

Logic Programming, Theorem Proving, Constraint Solving are
instances of the same deduction schema :

Apply rewrite rules (may be modulo) on formulas with some strategy,
until getting specific forms

— Rewrite blindly : implements computations
— Rewrite wisely : implements deduction
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Strategies Abstract strategies

Back to Abstract rewrite systems

An Abstract Rewrite System (ARS) is a labelled oriented graph
(0,5).

The nodes in O are called objects

The oriented labelled edges in S are called steps .

o
¢2J/ “ J{¢4
c d
¢2
@ Ac: %
®1

Horatiu CIRSTEA, Hélene KIRCHNER



Strategies Abstract strategies

Reductions

For a given ARS A :
(@ A reduction step is an oriented labelled edge ¢ together with its
source a and target b, written a —ﬁ b.
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Strategies Abstract strategies

Reductions

For a given ARS A :
(@ A reduction step is an oriented labelled edge ¢ together with its
source a and target b, written a —ﬁ b.

@ A-derivation :7:ay —% ay —% a,... —»%-1 g, 0r ag —" an.
The source of 7is ag and dom(w) = {ap}.
The target of 7 is a, and ray = {an}.
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Strategies Abstract strategies

Reductions

For a given ARS A :
(@ A reduction step is an oriented labelled edge ¢ together with its
source a and target b, written a —ﬁ b.

@ A-derivation :7:ay —% ay —% a,... —»%-1 g, 0r ag —" an.
The source of 7is ag and dom(w) = {ap}.
The target of 7 is a, and ray = {an}.

@ A derivation is empty when its source and target are the same.
The empty derivation issued from a is denoted by idj.
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Strategies Abstract strategies

Reductions

For a given ARS A :
(@ A reduction step is an oriented labelled edge ¢ together with its
source a and target b, written a —>j b.

@ A-derivation :7:ay —% ay —% a,... —»%-1 g, 0r ag —" an.
The source of 7is ag and dom(w) = {ap}.
The target of 7 is a, and ray = {an}.

@ A derivation is empty when its source and target are the same.
The empty derivation issued from a is denoted by id,;. The set of
all derivations is denoted D(.A).
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Strategies Abstract strategies

Reductions

For a given ARS A :
(@ A reduction step is an oriented labelled edge ¢ together with its
source a and target b, written a —>j b.
@ A-derivation :7:ay —% ay —% a,... —»%-1 g, 0r ag —" an.
The source of 7is ag and dom(w) = {ap}.
The target of 7 is a, and ray = {an}.

@ A derivation is empty when its source and target are the same.
The empty derivation issued from a is denoted by id,;. The set of
all derivations is denoted D(.A).

@ The concatenation of two derivations ;7> is defined as
a—") b—="¢ cif {a} = dom(ny) and m1a = dom(mp) = {b}.
Then mq; mea =momia = {c}
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Strategies Properties of rewriting under strategies

Properties : Termination

For a given ARS A= (0,S) :

o Ais terminating (or strongly normalizing ) if all its derivations are
of finite length ;
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Strategies Properties of rewriting under strategies

Properties : Termination

For a given ARS A= (0,S) :

o Ais terminating (or strongly normalizing ) if all its derivations are
of finite length ;

o An object ain O is normalized when the empty derivation is the
only one with source a (e.g., a is the source of no edge) ;
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Strategies Properties of rewriting under strategies

Properties : Termination

For a given ARS A= (0,S) :
o Ais terminating (or strongly normalizing ) if all its derivations are
of finite length ;

o An object ain O is normalized when the empty derivation is the
only one with source a (e.g., a is the source of no edge) ;

o A derivation is normalizing when its target is normalized ;
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Strategies Properties of rewriting under strategies

Properties : Termination

For a given ARS A= (0,S) :
o Ais terminating (or strongly normalizing ) if all its derivations are
of finite length ;

o An object ain O is normalized when the empty derivation is the
only one with source a (e.g., a is the source of no edge) ;

o A derivation is normalizing when its target is normalized ;

o An ARS is weakly terminating if every object a is the source of a
normalizing derivation.
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Strategies Properties of rewriting under strategies

Properties : Confluence

An ARS A = (0,S) is confluent if

for all objects a, b, ¢ in O, and all A-derivations w1 and m»,
when a —™ band a —™ ¢,
there exist d in O and two .A-derivations w3, 74 such that
c—" dand b—™ d.
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Strategies Properties of rewriting under strategies

Abstract strategies

For a given ARS A :

(@ An abstract strategy ( is a subset of the set of all derivations
(finite or not) of A.

@ Ca={b|3Ir € ¢ suchthata —»™ b} = {ra | € (}.
When no derivation in ¢ has for source a, we say that the strategy
application on a fails.

@ dom(¢) = Use, dom(s)

@ The strategy that contains all empty derivations is
Id ={id; | ac€ O}.
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Strategies Properties of rewriting under strategies

Examples
1
P Ae= a b
¢2J/ = l%
c d

D(Aje) D {ida, b1, p1¢3, P10, P193d1, ($193)", (p163)“, - ..}, where
¢" denotes the n-steps iteration of ¢ and ¢“ denotes the infinite

iteration of ¢ ;
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Strategies Properties of rewriting under strategies

Examples
1
P Ae= a b
¢2J/ = l%
c d

D(Aic) D {ida, p1, D103, 9104, D10301, (P193)", (P1¢3)“, . ..}, Where
¢" denotes the n-steps iteration of ¢ and ¢“ denotes the infinite
iteration of ¢ ;

®2

@Acz{%

1
D(Ac) D {p1, 2, P102, ..., (01)%, (¢2), ...}
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Strategies

Examples
o1
Ae=a "b
¢2J/ o i%
c d

A few strategies :
@ <1 = D(-A/C), C1a = {37 ba C, d}

Properties of rewriting under strategies
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Strategies

Examples
o1
Ae=a "b
¢2J/ ic i%
c d

A few strategies :
@ C‘I = D(-A/C), C1a = {aa ba C, d}
@ (=0, forall xin O, (ox = 0.

Properties of rewriting under strategies
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Strategies

Examples
Al
Aie = avb
¢2J/ ic i%
c d

A few strategies :
@ ¢ =D(Ak), ¢ta={a,b,c,d}.
@ (=0, forall x in Oy, (ox = 0.
@ G = {(o103)"d2},

Properties of rewriting under strategies

a always converges to ¢ : (za = {c};
b is not transformed (as well as ¢ and d) : (zb = 0.
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Strategies

Examples
Al
Aie = avb
¢2J/ ic i%
c d

A few strategies :
@ ¢ =D(Ak), ¢ta={a,b,c,d}.
@ (=0, forall x in Oy, (ox = 0.
@ G = {(o103)"d2},

Properties of rewriting under strategies

a always converges to ¢ : (za = {c};
b is not transformed (as well as ¢ and d) : (zb = 0.

@ The result of ((¢p193)“ a) is the empty set.
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Strategies Properties of rewriting under strategies

Termination under strategy

For a given ARS A = (0, S) and strategy ( :
o Ais (¢-terminating if all derivations in ¢ are of finite length ;

o An object ain O is (-normalized when the empty derivation is the
only one in ¢ with source a;

o A derivation is ¢-normalizing when its target is (-normalized ;

o An ARS is weakly ¢-terminating if every object a is the source of
a ¢-normalizing derivation.
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Strategies Properties of rewriting under strategies

Example

Given the strategy ¢ defined as
a—? p % g

b is (-normalized since there is no derivation in ¢ with source b.
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Strategies Properties of rewriting under strategies

Confluence under strategy (1)

Weak Confluence under strategy
An ARS A = (0, S) is weakly confluent under strategy ( if

for all objects a, b, ¢ in O, and all A-derivations w1 and 75 in (,
when a —™ band a —™ ¢

there exists d in O and two A-derivations 73, 7 in ¢ such that
np:a—b—dandm,:a— c— d.
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Strategies Properties of rewriting under strategies

Confluence under strategy (2)

Strong Confluence under strategy
An ARS A = (O, S) is strongly confluent under strategy ( if

for all objects a, b, ¢ in O, and all A-derivations 71 and 75 in (,
when a —-™ band a—"™ ¢

there exists d in © and two A-derivations 73, 74 in ¢ such that :
@ b—"dandc—"d;
@ mq;m3 and mo; w4 belong to ¢.
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Strategies Properties of rewriting under strategies

Example
1
Ae=a b
¢2J/ & i%
c d

Consider the following various strategies :

@ ¢ =D(Ar) : A is neither weakly nor strongly confluent under ¢; :
m:a—"b-%dandm:a—%c.
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Strategies Properties of rewriting under strategies

Example

1

Ae= a"b

a
¢2J/ & i%
(o]

d
Consider the following various strategies :

@ ¢ =D(Ar) : A is neither weakly nor strongly confluent under ¢; :
m:a—"b-%dandm:a—%c.

@ (¢ =0 : A is trivially both weakly and strongly confluent under (5.
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Strategies Properties of rewriting under strategies

Example
1
Ae=a b
¢2J/ & i%
c d

Consider the following various strategies :

@ ¢ =D(Ar) : A is neither weakly nor strongly confluent under ¢; :
m:a—"b-%dandm:a—%c.

@ (¢ =0 : A is trivially both weakly and strongly confluent under (5.

@ (= {(d193)* P2} : Al is also weakly and strongly confluent under
Ca-
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Strategies Properties of rewriting under strategies

Example
1
Ae=a b
¢2J/ & i%
c d

Consider the following various strategies :

@ ¢ =D(Ar) : A is neither weakly nor strongly confluent under ¢; :
m:a—"b-%dandm:a—%c.

@ (¢ =0 : A is trivially both weakly and strongly confluent under (5.

@ (= {(d193)* P2} : Al is also weakly and strongly confluent under
Ca-

@ For a different reason, this is also the case for (4 = (¢1¢3)* whose
result is the empty set.
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Strategies Properties of rewriting under strategies

Example

Let O = {a, b, ¢, d} and reduction steps ¢1, ¢2, #3, Pa, ¢}, P, P, Py
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Strategies Properties of rewriting under strategies

Example

Let O = {a, b, ¢, d} and reduction steps ¢1, ¢2, #3, Pa, ¢}, P, P, Py
This ARS A is weakly and strongly confluent under the strategy ¢ =

{a 1 b, a _, P2 c,b _, %3 d,c _ P4 d,a 91 p 93 d,a 92 o0 4 d}
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Strategies Properties of rewriting under strategies

Example

Let O = {a, b, ¢, d} and reduction steps ¢1, ¢2, #3, Pa, ¢}, P, P, Py

This ARS A is weakly and strongly confluent under the strategy ¢ =

{a 1 b, a _, P2 c,b _, %3 d,c _ P4 d,a 91 p 93 d,a 92 o0 4 d}
but is not under

¢ ={a—* b,a—?c,b—%d,c—d}
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Strategies Properties of rewriting under strategies

Example

Let O = {a, b, ¢, d} and reduction steps ¢1, ¢2, #3, Pa, ¢}, P, P, Py

This ARS A is weakly and strongly confluent under the strategy ¢ =

{a 1 b, a _, P2 c,b _, %3 d,c _ P4 d,a 91 p 93 d,a 92 o0 4 d}
but is not under

¢ ={a—* b,a—?c,b—%d,c—d}

A is weakly but not strongly confluent under the strategy ¢ =

{a—% ba—?c b—-®dc—*d,a —% b —% d,a—% ¢ —% d}
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Strategies Properties of rewriting under strategies

Strategic rewriting

Given A = (Og, Sr) generated by a rewrite system R, and a strategy ¢
of A,

o A strategic rewriting derivation (or rewriting derivation under
strategy () is an element of (.

o A strategic rewriting step under ( is a rewriting step t —g t' that
occurs in a derivation of (.
This is also denoted t — t'.
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Strategies Strategy language

Strategy language

Elementary strategies : Identity, Fail, R, Sequence(sy, S2) Or So; S
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Strategies Strategy language

Strategy language

Elementary strategies : Identity, Fail, R, Sequence(sy, S2) Or So; S

o Choice(sy, sp) selects the first strategy that does not fail ; it fails if
both fail :
Choice(sy, s2)t = syt if s1t does not fail, else sot.
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Strategies Strategy language

Strategy language

Elementary strategies : Identity, Fail, R, Sequence(sy, S2) Or So; S

o Choice(sy, sp) selects the first strategy that does not fail ; it fails if

both fail :
Choice(sy, s2)t = syt if s1t does not fail, else sot.

o On aterm t, All(s) applies the strategy s on all immediate

subterms :
All(s)f(ty, ..., t) = f(t], ..., 1))

if sty = t,..., sty = t; it fails if there exists i such that st; fails.
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Strategies Strategy language

Strategy language

Elementary strategies : Identity, Fail, R, Sequence(sy, S2) Or So; S

o Choice(sy, sp) selects the first strategy that does not fail ; it fails if
both fail :
Choice(sy, s2)t = syt if s1t does not fail, else sot.

o On aterm t, All(s) applies the strategy s on all immediate

subterms :
All(s)f(ty, ..., t) = f(t], ..., 1))

if sty = t,..., sty = t; it fails if there exists i such that st; fails.

o On aterm t, One(s) applies the strategy s on the first immediate
subterm where s does not fail :

One(s)f(ty, ..., tn) = (b, .o Uy ooy 1)

if for all j < i, st; fails, and st; = t/; it fails if for all i, st; fails.
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Strategies Strategy language

Strategy language

Elementary strategies : Identity, Fail, R, Sequence(sy, S2) Or So; S

o Choice(sy, sp) selects the first strategy that does not fail ; it fails if
both fail :
Choice(sy, s2)t = syt if s1t does not fail, else sot.

o On aterm t, All(s) applies the strategy s on all immediate
subterms :
All(s)f(ty, ..., t) = f(t], ..., 1))
if sty = t,..., sty = t; it fails if there exists i such that st; fails.
o On aterm t, One(s) applies the strategy s on the first immediate
subterm where s does not fail :

One(s)f(ty, ..., tn) = (b, .o Uy ooy 1)

if for all j < i, st; fails, and st; = t/; it fails if for all i, st; fails.
o Fixpoint : ux.s = s[x « ux.s]
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Strategies Strategy language

Try(s) =
Repeat(s) =
OnceBottomUp(s) =
BottomUp(s) =
TopDown(s) =
Innermost(s) =

Choice(s, Identity)
ux.Choice(Sequence(s, x), Identity)
ux.Choice(One(x), s)
ux.Sequence(All(x), s)
ux.Sequence(s, All(x))
ux.Sequence(All(x), Try(Sequence(s, x)))
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Programming with Rules and Strategies -
TOM
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