Overlay networks maximizing throughput

Olivier Beaumont, Lionel Eyraud-Dubois, Shailesh Kumar Agrawal

Cepage team, LaBRI, Bordeaux, France

RO Working Group
May 24, 2011
In this talk: broadcast/streaming operation

- One source node holds (or generates) a message
- All nodes must receive the complete message
- Steady-state: quantity of data per time unit
- Goal: optimize throughput
- Keep things reasonable: degree constraint
In this talk: broadcast/streaming operation

- One source node holds (or generates) a message
- All nodes must receive the complete message
- **Steady-state**: quantity of data per time unit
- Goal: optimize throughput
- Keep things reasonable: degree constraint
An example

$N_0 \quad b_0 = 2$

$N_1 \quad b_1 = 1$

$N_2 \quad b_2 = 1$

$N_0 \quad b_0 = 2$

$N_1 \quad b_1 = 1$

$N_2 \quad b_2 = 1$
An example

Best tree: $T = 1$
An example

Best DAG: $T = 1.5$
An example

Optimal: $T = 2$
Precise model

An instance
- n nodes, with output bandwidth b_i and maximal out-degree d_i
- node N_0 is the master node that holds the data

A solution (Trees)
- A weighted set of spanning trees (w_k, T_k) rooted at N_0
- $\chi_k(N_j, N_i) = 1$ iff there is an edge from N_j to N_i in tree T_k
- $\forall j, \sum_k \sum_i \chi_k(N_j, N_i) w_k \leq b_j$ (capacity constraint at node j)
- $\forall j, \sum_i \max_k \chi_k(N_j, N_i) \leq d_j$ (degree constraint at node j)
- Maximize $T = \sum_k w_k$
Precise model

An instance

- \(n \) nodes, with output bandwidth \(b_i \) and maximal out-degree \(d_i \)
- node \(N_0 \) is the master node that holds the data

A solution (Flows)

- Flow \(f^i_j \) from node \(N_j \) to \(N_i \)
- \(\forall j, \sum_i f^i_j \leq b_j \) (capacity constraint at node \(j \))
- \(\forall j, \left| \left\{ i, f^i_j > 0 \right\} \right| \leq d_j \) (degree constraint at node \(j \))
- Maximize \(T = \min_j \text{mincut}(N_0, N_j) \)
3-Partition

- $3p$ integers a_i such that $\sum_i a_i = pT$
- Partition into p sets S_l such that $\sum_{i \in S_l} a_i = T$
Complexity

3-Partition

- $3p$ integers a_i such that $\sum_i a_i = pT$
- Partition into p sets S_l such that $\sum_{i \in S_l} a_i = T$

Reduction

- p “server” nodes, $b_j = 2T$ and $d_j = 4$
- $3p$ “client” nodes, $b_{j+p} = T - a_j$ and $d_{j+p} = 1$
- 1 “terminal” node, $b_{4p} = 0$, $d_{4p} = 0$

$$b_0 = b_1 = 2T$$
$$N_0 \rightarrow N_1$$

$$a_2 + a_5 + a_6 = T$$

$$T - a_1$$

$$T - a_2$$
Outline

1 Introduction

2 Successive algorithms
 - Acyclic Algorithm
 - With cycles

3 Simulations

4 Conclusions
Upper bound

If S has throughput T

- Node N_i uses at most $X_i = \min(b_i, Td_i)$
- Total received rate: nT
- Thus $\sum_{i=0}^{n} \min(b_i, Td_i) \geq nT$
- Of course, $T \leq b_0$

Our algorithms

- Inputs: an instance, and a goal throughput T
- Output: a solution with resource augmentation (additional connections allowed)
ACYCLIC algorithm

If \(\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT \)

- Order nodes by capacity: \(X_1 \geq X_2 \geq \cdots \geq X_n \)
- Each node \(k \) sends throughput \(T \) to as many nodes as possible, in consecutive order

\[\begin{align*}
 \mathcal{N}_0 & \quad \mathcal{N}_1 & \quad \mathcal{N}_2 & \quad \mathcal{N}_3 & \quad \mathcal{N}_4 & \quad \mathcal{N}_5 \\
\end{align*} \]
ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT$

- Order nodes by capacity: $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

Overlay networks maximizing throughput
Acyclic Algorithm

\[\text{If } \sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT \]

- Order nodes by capacity: \(X_1 \geq X_2 \geq \cdots \geq X_n \)
- Each node \(k \) sends throughput \(T \) to as many nodes as possible, in consecutive order
ACYCLIC algorithm

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT$

- Order nodes by capacity: $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order
Acyclic algorithm

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT$

- Order nodes by capacity: $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order.

![Diagram of nodes and connections](image-url)
Acyclic algorithm

If $\sum_{i=0}^{n-1} \min(b_i, Td_i) \geq nT$

- Order nodes by capacity: $X_1 \geq X_2 \geq \cdots \geq X_n$
- Each node k sends throughput T to as many nodes as possible, in consecutive order

Provides a valid solution

- $b_0 \geq T$
- Sort by $X_i \implies \forall k, \sum_{i=0}^{k} X_i \geq (k + 1)T$
- Since $X_k \leq Td_k$, the outdegree of \mathcal{N}_k is at most $d_k + 1$
Successive algorithms with cycles

General case: \(\sum_{i=0}^{n} X_i \geq nT \)

- Acyclic algorithm until \(k_0 \) such that \(\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \)

\[N_0 \quad N_1 \quad N_2 \quad N_3 \quad N_4 \quad N_5 \]
Successive algorithms

With cycles

General case: $\sum_{i=0}^{n} X_i \geq nT$

- Acyclic algorithm until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0 + 1)T$
General case: \[\sum_{i=0}^{n} X_i \geq nT \]

- Acyclic algorithm until \(k_0 \) such that \(\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \)
General case: \(\sum_{i=0}^{n} X_i \geq nT \)

- Acyclic algorithm until \(k_0 \) such that \(\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \)
Successive algorithms with cycles

General case: \[\sum_{i=0}^{n} X_i \geq nT \]

- Acyclic algorithm until \(k_0 \) such that \[\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \]
General case: \[\sum_{i=0}^{n} X_i \geq nT \]

- Acyclic algorithm until \(k_0 \) such that \(\sum_{i=0}^{k_0} X_i < (k_0 + 1)T \)
- Recursively build partial solutions in which
 - All nodes up to \(\mathcal{N}_k \) are served
 - Only node \(\mathcal{N}_k \) has remaining bandwidth
- Use the source and \(\mathcal{N}_{k_0-1} \) to serve \(\mathcal{N}_{k_0} \) and \(\mathcal{N}_{k_0+1} \)
- Then for all \(k \), \(\mathcal{N}_{k+1} \) is served by \(\mathcal{N}_k \) and \(\mathcal{N}_{k-1} \)
Acyclic algorithm until k_0 such that $\sum_{i=0}^{k_0} X_i < (k_0 + 1)T$

- Recursively build partial solutions in which
 - All nodes up to \mathcal{N}_k are served
 - Only node \mathcal{N}_k has remaining bandwidth

- Use the source and \mathcal{N}_{k_0-1} to serve \mathcal{N}_{k_0} and \mathcal{N}_{k_0+1}
- Then for all k, \mathcal{N}_{k+1} is served by \mathcal{N}_k and \mathcal{N}_{k-1}

Final outdegree of \mathcal{N}_i: $o_i \leq \max(d_i + 2, 4)$

- Acyclic solution: $o_i \leq d_i + 1$
- Degree of the source and of \mathcal{N}_{k_0-1} is increased by 1
- \mathcal{N}_k has edges to \mathcal{N}_{k-2}, \mathcal{N}_{k-1}, \mathcal{N}_{k+1} and \mathcal{N}_{k+2}.
A running example

\[b_0 = \frac{5}{4} \]
\[\forall i > 0, b_i = \frac{7}{8} \]
A running example

\[b_0 = \frac{5}{4} \]

\[\forall i > 0, b_i = \frac{7}{8} \]
A running example

\[\begin{align*}
 b_0 &= \frac{5}{4} \\
 \forall i > 0, b_i &= \frac{7}{8}
\end{align*} \]
A running example

\[b_0 = \frac{5}{4} \]
\[\forall i > 0, b_i = \frac{7}{8} \]
A running example

\[\forall i > 0, b_i = \frac{7}{8} \]

\[b_0 = \frac{5}{4} \]
A running example

\[
\begin{align*}
 b_0 &= \frac{5}{4} \\
 \forall i > 0, b_i &= \frac{7}{8}
\end{align*}
\]
A running example

\[N_0 \]

\[N_1 \rightarrow N_2 \rightarrow N_4 \rightarrow N_5 \rightarrow N_6 \]

\[b_0 = \frac{5}{4} \]

\[\forall i > 0, b_i = \frac{7}{4} \]
A running example

\[b_0 = \frac{5}{4} \]

\[\forall i > 0, b_i = \frac{7}{8} \]
A running example

$$\forall i > 0, b_i = \frac{7}{8}$$

$$b_0 = \frac{5}{4}$$
Successive algorithms
With cycles

A running example

∀i > 0, b_i = \frac{5}{8}

b_0 = \frac{5}{4}
A running example

\[b_0 = \frac{5}{4}, \quad \forall i > 0, b_i = \frac{7}{4} \]
Outline

1. Introduction
2. Successive algorithms
3. Simulations
4. Conclusions
Comparison of different solutions

Unconstrained solution
Best achievable throughput without degree constraints: \(\frac{\sum_i b_i}{n} \)

Best Tree
In a tree of throughput \(T \), flow through all edges must be \(T \). Counting the edges yield \(\sum_i \min(d_i, \left\lfloor \frac{b_i}{T} \right\rfloor) \geq n \).

Best Acyclic
Computed by the ACYCLIC algorithm

Cyclic
Throughput when adding cycles
Experimental setting

Random instance generation

- Outgoing bandwidths generated from the data of XtremLab project
- Nodes degrees are homogeneous

Complementary CDF of the data used
Results: comparisons to Cyclic

Throughput ratio vs. Number of nodes for different structures and depths.

- DAG d=3
- DAG d=5
- DAG d=10
- Tree d=3
- Tree d=5
- Tree d=10
Results: Cyclic vs Unconstrained

Cycle ratio against Optimal

Throughput ratio vs Output degree for different values of N (N=10, N=100, N=1000).
Outline

1. Introduction
2. Successive algorithms
3. Simulations
4. Conclusions
Summary

- Theoretical study of the problem: optimal resource augmentation algorithm
- In practice:
 - a low degree is enough to reach a high throughput
 - an acyclic solution is very reasonable
 - once the overlay is computed, there exist distributed algorithms to perform the broadcast

Going further

- Worst-case approximation ratio of \textsc{Acyclic}?
- Study the \textit{robustness} of our algorithms
- Design \textit{on-line} and/or \textit{distributed} versions